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Abstract.  This paper deals with frequency analysis of Euler-Bernoulli beams carrying an arbitrary number 

of Kelvin-Voigt viscoelastic dampers, subjected to harmonic loads. Multiple external/internal dampers 

occurring at the same position along the beam axis, modeling external damping devices and internal 

damping due to damage or imperfect connections, are considered. The challenge is to handle simultaneous 

discontinuities of the response, in particular bending-moment/rotation discontinuities at the location of 

external/internal rotational dampers, shear-force/deflection discontinuities at the location of external/internal 

translational dampers. Following a generalized function approach, the paper will show that exact closed-

form expressions of the frequency response under point/polynomial loads can readily be derived, for any 

number of dampers. Also, the exact dynamic stiffness matrix and load vector of the beam will be built in a 

closed analytical form, to be used in a standard assemblage procedure for exact frequency response analysis 

of frames. 
 

Keywords: Euler-Bernoulli beam; dynamic Green’s function; frequency response function; Kelvin-Voigt 
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1. Introduction 
 

Frequency response analysis of beam-like structures carrying viscoelastic dampers, and 

subjected to harmonically-varying loads, has been the subject of several studies in the last decades 

(Housner et al. 1997; Soong and Spencer 2002). While frequency response data plays a crucial 

role for control design, finite element (FE) model updating, system identification or damage 

detection (Li et al. 2014a,b; Keivani et al. 2014), beam models with viscoelastic dampers are of 

interest not only in vibration mitigation applications, but also to model dynamic interaction 

between beam and coupled sub-systems, or in those cases where flexibility and/or damping arise 

as a result of damage and imperfections (Ou et al. 2007; Kareem and Kline 1995; Sadek et al. 

1997; Lewandowski and Grzymislawska 2009; Oliveto et al. 1997; Xu and Zhang 2001; 

Kawashima and Fujimoto 1984; Sekulovic et al. 2002; Hanss et al. 2002; Abdel Raheem 2014). In 

most studies, a classical Kelvin-Voigt model has been considered as viscoelastic law of dampers. 
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There exist external/internal translational and external/internal rotational dampers. 

In frequency response analysis, bending vibrations under harmonic point or distributed loads 

have been actively investigated, generally within a standard 1D formulation of the equation of 

motion. In particular, the frequency response to arbitrarily-placed unit point loads provides the so-

called dynamic Green’s functions (DGFs). DGFs, as well as frequency response functions (FRFs) 

under distributed loads, can be computed by a classical exact approach. It requires expressing the 

vibration response over every segment between consecutive positions of dampers/point load, and 

every segment under a distributed load, in analytical form with 4 integration constants, totaling 

4k constants for k segments. The integration constants are computed by enforcing matching 

conditions between the responses over adjacent segments, along with the boundary conditions 

(B.C.). By this approach, however, the size of the coefficient matrix associated with the set of 

equations inevitably increases with the number of dampers. Also, it has to be re-inverted 

numerically for any forcing frequency of interest, and updated whenever dampers or loads change 

positions. For these reasons, alternative exact or even approximate solutions have been sought. For 

sake of generality, studies have generally attempted to derive analytical solutions, which may hold 

for any number of dampers along the beam. 

Frequency analysis of bending vibrations has been addressed in several studies. For stepped 

Euler-Bernoulli (EB) and Timoshenko (TM) beams with an arbitrary number of translational 

dampers, Sorrentino et al. (2003, 2004, 2007) used a transfer matrix approach to derive exact 

DGFs, based on a direct integration method (Sorrentino et al. 2004), or a complex mode 

superposition with characteristic equation built as determinant of a 44 matrix, regardless of the 

number of dampers (Sorrentino et al. 2003; 2007). For a TM beam with an arbitrary number of 

translational and rotational dampers, Hong and Kim (1999) used a dynamic stiffness matrix 

method to derive exact DGFs by a complex mode superposition, with characteristic equation built 

as determinant of a dynamic stiffness matrix whose size, in this case, depends on the number of 

dampers. For EB beams with an arbitrary number of translational and rotational dampers, Failla 

(2014; 2016a) used the theory of generalized functions to build exact DGFs and FRFs under 

polynomial loads, by a direct integration method (Failla 2016a) or complex mode superposition 

(Failla 2014). The latter extends an approach previously devised by Oliveto et al. (1997) for EB 

beams with end viscous rotational dampers. Approximate yet accurate dynamic Green’s functions 

were built using the eigenfunctions of the bare beam, i.e. the beam without dampers, for an EB 

beam with an arbitrary number of mass dampers by Wu and Chen (2000), for an EB beam with 

intermediate viscous translational damper, an intermediate fixed support and a tip mass by 

Gürgöze and Erol (2002). In frequency analysis of bending vibrations, many other studies have 

focused on beams carrying an arbitrary number of devices such as external or internal elastic 

springs, attached masses or spring-mass systems, but without damping. Exact DGFs were derived 

by the classical approach (Lin 2008, Bambill and Rossit 2002) or using the DGFs of the bare beam 

on enforcing suitable conditions at locations of supports/masses (Abu-Hilal 2003; Alsaif and Foda 

2002; Foda and Albassam 2006) but, in these cases, the number of equations to be solved increases 

with the number of supports/attachments (Lin 2008; Bambill and Rossit 2002; Abu-Hilal 2003; 

Alsaif and Foda 2002; Foda and Albassam 2006). For EB beams including an arbitrary number of 

rotational springs modeling cracks, exact DGFs were obtained by inverting a 88 dynamic 

stiffness matrix built by a transfer matrix method (Khiem and Lien 2002). Further studies on 

beams with rotational springs modeling cracks have concerned the response to moving loads: for 

instance, for EB beams a frequency-domain spectral FE method has been proposed by Sarvestan et 

al. (2015), and for TM beams a mode superposition approach involving the modes of the cracked 
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beam has been pursued by Shafiei and Khaji (2011). The dynamic response of EB beams with end 

rotational springs has also been studied (Maximov 2014). 

Since the combined use of several dampers is resorted to, for instance, for vibration control 

under different excitation sources (Kareem and Kline 1995; Sadek et al. 1997; Lewandowski and 

Grzymislawska 2009), and in recognition of the fact that dampers may model local damage or 

imperfect joint and connections (Kawashima and Fujimoto 1984; Sekulovic et al. 2002; Hanss et 

al. 2002), there exists an interest in frequency response solutions for beams where multiple 

dampers may occur simultaneously at the same location: an example could be an external damper, 

either translational or rotational, applied at a beam section where an internal damper is also 

introduced to model flexibility/damping due to an imperfect connection or damage. On the other 

hand, beams with simultaneous occurrence of external supports and internal joints has already 

been the subject of some studies, focusing on static response. For instance, using the theory of 

generalized functions Caddemi et al. (2013a) derived exact closed-form expressions for the static 

response of stepped TM beams carrying simultaneous external translational/rotational elastic 

supports and internal translational/rotational elastic joints. The dynamic response under moving 

loads of multi-span stepped beams with simultaneous occurrence of external 

translational/rotational elastic supports and internal translational/rotational elastic joints has been 

studied by Xu and Li (2008). Computing the dynamic response of beams with multiple dampers 

requires solving the differential motion equation of the beam coupled with the motion equations of 

the dampers, with an increasing computational and implementation effort as the number of 

dampers increases.  

Recently, EB beams with multiple external/internal translational and rotational dampers 

occurring at the same position have been investigated by the author (Failla 2016b). Exact closed-

form FRFs have been derived under harmonically-varying point/polynomial loads, for any number 

of dampers. Specifically, dampers with fractional-derivative constitutive law have been 

considered. In the same context, the exact dynamic stiffness matrix and load vector of the beam 

have been derived in a symbolic form, to be assembled for computing the frequency response of 

2D frames with multiple dampers. For this purpose, the theory of generalized functions has been 

used (Yavari et al. 2000; Falsone 2002; Caddemi et al. 2013a,b; Caddemi et al. 2015; Failla and 

Santini 2007). 

This paper revisits the approach devised by the author in his previous study (Failla 2016b), with 

the aim of presenting a new method to derive an exact analytical form of dynamic stiffness matrix 

and load vector for beams with an arbitrary number of multiple dampers at the same position, and 

subjected to harmonically-varying point/polynomial loads. It will be shown that the approach 

proposed in this paper and the previous one (Failla 2016b) lead to the same exact dynamic 

stiffness matrix and load vector. However, once the global dynamic stiffness matrix of the frame is 

built and the nodal displacements are computed, the approach proposed in this paper proves 

computationally more efficient. In this paper, dampers with Kelvin-Voigt viscoelastic law will be 

considered. 

Upon describing the problem under study in Section 2, Section 3 will present the exact 

frequency response of the beam with multiple dampers at the same position, under 

point/polynomial loads. Exact dynamic stiffness matrix and load vector will be presented in 

Section 4. Numerical applications will be discussed in Section 5. 

 

 

2. Beams under study 
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Fig. 1 Euler-Bernoulli beam with multiple Kelvin-Voigt viscoelastic dampers at the same position 

 

 

Consider the EB beam in Fig. 1. Be x the longitudinal axis, y the transverse axis, L the length, 

EI the flexural rigidity, m0 the mass per unit length. Symbols v(x,t), (x,t) denote flexural 

deflection and bending rotation of the cross section; s(x,t), m(x,t) are shear force, bending moment 

(Fig. 1 shows positive sign conventions). The beam carries an arbitrary number n of external and 

internal dampers at abscissas xj’s along the axis, with Kelvin-Voigt viscoelastic law. For the jth 

damper, spring stiffness and dash-pot coefficients are indicated below: 

• External translational dampers: ,
j jG Gk c for grounded dampers; ,

j jM Mk c for mass-dampers, with 

jM denoting the pertinent mass 

• Internal translational dampers: ,
j jV V

k c 
 

for right and left dampers 

• External rotational dampers: ,
j jW Wk c  

• Internal rotational dampers: ,
j j

k c 
 

for right and left dampers 

Equations will be written for the most general case of external and internal dampers occurring 

simultaneously at the same position. Changes will be straightforward to consider single dampers at 

a given location, as shown later in the paper. 

 

 

3. Exact frequency response via generalized function approach  
 

The general framework to build the frequency response of a beam with multiple dampers at the 
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same position has been outlined by the author in a recent study (Failla 2016b). The fundamental 

steps are synthetized here for completeness. They will serve as a basis for an original approach to 

build the exact dynamic stiffness matrix of the beam, in a closed form, as explained in Section 4.  

Consider the beam in Fig. 1 loaded by a transverse harmonic load   i t
f x e


 , which acts on the 

interval (a,b) with 0  a  and  b  L,  and represent the steady-state response variables as 

    i
, ,

t
v x t V x e


 ,     i t

x,t x, e


  ,     i
, ,

t
s x t S x e


 and     i

, ,
t

m x t M x e


 , the steady-

state motion equation is (Wang and Qiao 2007) 

 
       

4

2

04
0

d V x
EI m V x R f x

dx
         (1) 

where bar means generalized derivative,  R   and     are generalized functions given as 

           1

1 1

n n

j j j j

j j

R R x x W x x

 

           (2) 

             2 3

1 1

n n

j j j j

j j

EI x x EI V x x

 

              (3) 

In Eq.(1),  jR   and  jW   are the reactions of the jth external translational damper and 

external rotational damper, respectively, for which the following relations hold 

     j j jR S x S x
 

   (4) 

           
j jj G M j j jR V x V x     

 
        (5) 

and 

     j j jW M x M x
 

   (6) 

     
jj W jW x      (7) 

where  jS x


 and  jS x


,  jM x


 and  jM x


 are shear forces and bending moments to the 

right and left of 
jx x . In Eq.(5),  

jG   and  
jM   are frequency-dependent terms (Guo and 

Chen 2007, Wang and Qiao 2007) given as 

       
1

2 2
i ;       i i

j j j j j j j jG G G M M M j j M Mk c k c M M k c


           
   

          (8a,b) 
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while  
jW   in Eq.(7) is 

  i
j j jW W Wk c      (9) 

Eq.(5) is written for the most general case of a grounded and a mass-damper both applied at 
jx x  

A lumped mass along the beam can be modeled as mass damper with 
, jMk   in Eq.(8b).  

In Eq.(3),  jV   and  j   are the relative deflection and rotation between the cross 

sections at jx x


  and jx x


 , associated with the internal translational and rotational dampers. 

Based on the constitutive law of the dampers, they are given as 

         
 
 

 
 

                              (10)

j j

j j

j j

j j j j j

V V
V V

S x S x
V V x V x V x V x

    

 

 

 

 
 

        (10) 

         
 
 

 
 

                         (11)

j j

j j

j j

j j j j j

M x M x
x x x x

    

 

 

 

 
 

         (11) 

where 

   i            i
j j j j j jV V V

k c k c          
     

       (12) 

Notice that, in Eq.(1) through Eq.(11), frequency dependence of the response variables  ,V x  ,

 x,  ,  ,S x  and  ,M x   is omitted for brevity.  

In Eqs.(2)-(3), the reaction force  jR  , reaction moment  jW  , relative deflection  jV   

and relative rotation  j   at the damper location 
jx x  are all unknown. Next, be 

         
T

x V x x M x S x    Y  the vector of frequency response variables solution of 

Eq.(1), and be 
T

j j j j jR V W    Λ  the vector collecting the unknown reaction 

force/moment and relative deflection/rotation at 
jx x . Based on the linear superposition 

principle,  xY  can be cast in the general form 

         
1

,

n

f

j j

j

x x x x x



  Y Ω c J Λ Y  (13) 

where  xΩ  is a 44 matrix collecting the response variables derived from the solution of the 

homogeneous equation associated with Eq.(1), i.e. 
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 

1 2 3 4 1

1 2 3 4 2

1 2 3 4 3

1 2 3 4 4

                                            (14)

V V V V

M M M M

S S S S

c

c

x

c

c

   

      
   
   
      

    
      
   
   
         

Ω c  (14) 

with  1 2 3 4

T
c c c cc  vector of integration constants; also,  , jx xJ  is a 44 matrix 

containing the particular integrals associated with the Dirac’s deltas and successive derivatives in 

Eqs.(1)-(2)-(3), i.e. 

         
,

P V W

jx x
  

 
J J J J J  (15) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

;         ;          ;                   (16c-d)

P V W

U U U U

P V W

P V W

P V W

M M M M

P V W

S S S S

J J J J

J J J J

J J J J

J J J J

 

 

   
 

 

 

       
       
       
       

          
       
       
       
              

J J J J  (16a-d) 

Specifically, in Eqs.(15)-(16) superscripts (P), (V), (W), () denote respectively the particular 

integrals associated with a unit transverse force P=1, a unit relative deflection V=1, a unit 

moment W=1 and a unit relative rotation =1, applied at 
jx x ; finally, 

                   
T

f f f f f
x V x x M x S x  

 
Y  is 

         ,
b

f P

a

x x f d   Y J  (17) 

All terms in Eqs.(14)-(15) are available in a simple analytical form, which involve typical 

generalized functions. Closed-form solutions are available also for Eq.(17) related to the applied 

load, following simple rules of integration of generalized functions. For brevity, pertinent 

equations are reported in Appendix A. 

Based on Eqs.(5)-(7) and Eqs.(10)-(11), the unknowns 
jΛ  can be expressed in terms of the 

integration constants c, yielding the following general form of the FRFs 

       
f

x x x Y Y c Y  (18) 

where  xY  and 
   

f
xY  are given as 
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             
   

       
 

2
1 2 ,

2   ( , , ,..., , )

, , ,

           , , ,  

j

j

q

q

n n

j j j j l l

j j j l

j l l m r s s

q j j l m r s

x x x x x x x x x x

x x x x x x x



  

  

  




   








  

 

Ω J Ω

J J J Ω

Y Ω J Φ J Φ Φ

Φ Φ Φ Φ

 (19) 

                     
   

         
 

2
1 2 ,

2   ( , , ,..., , )

,  , ,

                  , , ,

j

j

q

q

n n

f f f f

j j j j l l

j j j l

f

j l l m r s s

q j j l m r s

x x x x x x x x x x

x x x x x x x



  

  

  




   








  

 

J

J J J

Y Y J Φ J Φ Φ

Φ Φ Φ Φ

 (20) 

where 
   { ( , , ,... , ) : ... ;  , ,... , 1,2,..., 1  }

j

q

q

j l m r s j l m r s l m r s j         is the set including all 

possible q-ples of indexes ( , , ,... , )

q

j l m r s  such that ...j l m r s     , being 2 q j  . In Eq.(19), 

symbol  jxΩΦ  denotes the 44 matrix 

 

    
  
 

   
  

 

 
  

  
 

    
  
 

   
  

 

 
  

  
 

4

1

4

4 1
Δ Δ Δ

3

2

3

3 2

1 1

1 1

j

j j j j

j

j

j

j j j j

j

j j

V

jj

j j

V V V V

j

j

W j

jW

j j

x
x

x
x x

x

x
x

x
x x

 
 

 

       

 
 

 

       



   



   







   

  
   
  

 

   

     
   

   
 

 
   
 
 


   
      
  

   

Ω

Ω
Ω

Ω
Ω Ω

Φ

Ω
Ω

Ω
Ω Ω



















 


 
(21) 
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being   j
i

xΩ  row vectors coinciding with the ith row of matrix  jxΩ . Further, for k < j, 

 ,j kx x


JΦ  is the 44 matrix 

 

    
  

 

   
  

 

 
  

  
 

    
  

 

   
  

 

4

1

4

4 1
Δ Δ Δ

3

2

3

,
,

,1 1
, ,

,

,
,

1 1
,

j

j j j j

j

j

j

j j j

j k

j j k

V

j k
j

j k j k

V V V V

j k

j k

W j k

W

j k

x x
x x

x x
x x x x

x x

x x
x x

x x

 
 

 

       

 
 

 

    



   



  









 













  

 
  
 
 
 

  
    
       



 
  
 
 
 

 
   
 
 

J

J
J

J
J J

Φ

J
J

J
 

  
  

 
3

2

,
,

j

j k

j k

x x
x x

  







 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
  
   
  

J
J

 (22) 

where   ,j k
i

x x


J  are the row vectors coinciding with the ith row of matrix  ,j kx x


J , and 

   f

jxΦ  is the 41 vector 

   

     
   

 

   
   

 

 
   

   
 

     
   
 

   
   

 

 
   

   
 

Δ Δ Δ

1 1

1 1

j

j j j j

j

j

j

j j j j

f

jf

j j

V

f

jf fj

j j

V V V V
f

j
f

jf

W j

f

W jf f

j j

S x
V x

S x
S x V x

x

M x
x

M x
M x x

 
 

 

       

 
 

 

       



   



   







   

  
   
  

 


   
      
   
   


 
   
   


    
            
   

Φ



















 

 
(23) 

All terms in Eqs.(21)-(23) are given in Appendix A, for brevity.  

At this stage, the integration constants c in Eq. (18) can be computed by enforcing the B.C. of 

the beam. This leads to 4 equations, regardless of the number of dampers, with general form 

1
        


  Bc r c B r  (24) 
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where vector r involves the load-dependent terms 
   

f
xY  in Eq.(18), as computed at the beam 

ends. Due to the limited size (44), the coefficient matrix B can readily be inverted in a symbolic 

form (e.g., see Failla (2016a)). Therefore, upon deriving c from Eq.(24), Eq.(18) provides exact 

closed-form expressions for the frequency response vector  xY . The load-dependent term 

   
f

xY  can be solved in a closed form for any loading function f(x) for which a primitive exists 

as, for instance, polynomial loads (see Appendix A). 

 
3.1 Remarks 

 
Eq.(18) can be used for both homogeneous and non-homogeneous B.C., the latter as due to end 

dampers. In this case homogeneous B.C. can still be considered, while the end dampers are 

modelled as internal dampers located at 
1 0x


  and 

nx L


  (Failla 2016a). 

Eq.(18) for Y(x) have been derived for the most general case of multiple dampers occurring 

simultaneously at the same location 
jx x . Changes for single dampers occurring at a given 

location are immediate, as explained in the following. 

If no external translational damper occurs at 
jx x ,   0j    shall be set at 

jx x  . This will 

automatically set equal to zero the 1
st
 row in matrices  jxΩΦ ,  ,j kx x



JΦ  and 
   f

jxΦ . In 

addition, being 0jR   at 
jx x , the 1

st
 column of matrix  ,m jx x



JΦ  shall be set equal to zero for 

all m jx x

 . Obviously, if at 

jx x  there is no external translational damper but there is an internal 

translational damper,    j jS x S x
 
  and, in view of Eq.(10),       2

jj j
VV V

      
   , with 

 
jV   frequency-dependent stiffness of the internal translational damper at 

jx x . 

If no internal translational damper occurs at 
jx x ,    

j jV V
   
 

     shall be set at 

jx x . As a result, the 2
nd

 row of matrices  jxΩΦ ,  ,j kx x


JΦ  and 
   f

jxΦ  will be equal to zero. 

Also, being 0jV   at 
jx x , the 2

nd
 column of matrix  ,m jx x



JΦ  shall be set equal to zero for all 

m jx x

 . 

Changes to be made if no external rotational damper or internal rotational damper occurs at 

jx x  mirror those explained above for the translational dampers, and are not reported for brevity 

(if only an internal rotational damper occurs at 
jx x , its frequency-dependent stiffness will be 

denoted as  
j

  , with    j jM x M x
 
  and       2

jj j

      
    in Eq.(11), see 

Fig. 1). 

It is noticed that Eq.(18) has been derived for distributed load f(x). If the applied load is a point 

force, i.e.    0f x P x x    at
0x x , Eq.(17) yields 

       0,
f P

x P x x Y J . Whereas the point 

force  0P x x   is applied at a damper location 
jx x , i.e. 

0 jx x , Eq.(4) will be written as 
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     j j jR P S x S x
 

   . Consequently, an additional term  
Δ jV

P    shall be 

considered on the r.h.s. of Eq.(10) and in the 2
nd

 entry of vector 
   f

jxΦ  given by Eq.(23) where, 

in this case, 
   

f
S x  will be computed at jx x


  (unlike the case of distributed load f(x), the shear 

force 
   

f
S x  is now discontinuous at 

jx x  since the point force is applied at 
0x x ). 

Final remarks concern the computational advantages of the proposed approach. Eq.(18) is an 

exact closed-form expression of the FRFs, fulfilling all required conditions at the locations of 

dampers and point load (see Appendix A). On the contrary, by the classical exact approach the 

vibration response in every beam segment, either between two consecutive positions of 

dampers/point load or under a distributed load, must be represented in terms of 4 integration 

constants, totaling 4×k constants for k segments, to be computed by a set of equations built from 

the B.C. and matching conditions between the responses over contiguous segments. Obviously, by 

this approach the coefficient matrix associated with the set of equations to be solved has to be 

updated whenever positions of dampers or loads change along the beam axis, and its size increases 

with the number of dampers. Also, it has to be re-inverted for any forcing frequency of the applied 

load. Eq.(18) can also serve as benchmark for FRFs built by a standard FE method with two-node 

beam elements. Further advantages are that, in a standard FE method, a mesh node shall be 

inserted at the application point of any damper or point load, and re-meshing may be required 

whenever dampers or load change position. 

 

 

4. Dynamic stiffness matrix and load vector 
 

Consider the beam in Fig. 1 as a beam element with two nodes at the ends. Each node has three 

degrees of freedom. Let  1 1 1 2 2 2

T
U V U V  u  be the vector collecting nodal displacements: 

 1 0U U  and  2U U L  with  U x  axial displacement positive rightward;  1 0V V  and  2V V L  

with  V x  transverse displacement positive downward;  1 0   and  2 L   with  x  

rotation positive clockwise. Correspondingly, be  1 1 1 2 2 2

T
H Q C H Q Cf  the vector collecting 

nodal forces that, in view of the positive sign conventions for nodal forces and internal stress 

resultants, read 

     

     

1 1 1

2 2 2

0 0 0H N Q S C M

H N L Q S L C M L

    

   

 (25) 

where  N x  is the axial force,  S x  is the shear force and  M x  the bending moment. The 

following nodal relation holds 

  0 f D u f  (26) 
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where  D  is the dynamic stiffness matrix, 
0f  is the nodal force vector attributable to the loads 

acting along the beam. It will be shown that elements of both matrix  D  and vector 
0f  can be 

derived based on the frequency response (18), on assuming that both ends are clamped. 

 

4.1 Exact dynamic stiffness matrix 
 

Be            
0,

T
r r r r r

x x V M S  
 

G  , for ,r V  , the frequency response vector of the 

clamped-clamped beam, subjected to a harmonic unit deflection 
i t

V e


 , V=1, and harmonic unit 

rotation 
i t

e


 , 1 , applied at the beam ends 
0 0x   or 

0x L . It is noted that 
   0,
r

x xG  takes 

the form (18) with no load-dependent terms 
   

f
xY , i.e. 

           1

0, for    
r r r r

x x x


 G Y c c B e ,r V   (27) 

In Eq.(27), matrix B is 

           

           

           

           

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

0 0 0 0

0 0 0 0

L L L L

L L L L

 
 
 
 
 
 
 
 
 
 

Y Y Y Y

Y Y Y Y

B

Y Y Y Y

Y Y Y Y

 (28) 

where    
,m n
Y  denotes the m,n element of matrix  xY  given by Eq.(19), while vectors 

 r
e  are 

given as 

   

   

0

0

1 0 0 0 if  0

0 0 1 0 if  

TV

TV

x

x L

 

 

e

e

 (29) 

   

   

0

0

0 1 0 0 if  0

0 0 0 1 if  

T

T

x

x L





 

 

e

e

 (30) 

At this stage, the elements of matrix  D  can be built based on the Eq.(27). In particular, 

bearing in mind that the elements of the dynamic stiffness matrix  D are the nodal forces due to 

unit displacements/rotations at the nodes, and taking into account the relations (25) between nodal 
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forces and stress resultants, it yields 

 

       

               

               

       

               

               

0,0 0 0 0, 0 0

0 0,0 0,0 0 0, 0,

0 0,0 0,0 0 0, 0,

,0 0 0 , 0 0

0 ,0 ,0 0 , ,

0 ,0 ,0 0 , ,

U U

V V

V V

U U

V V

V V

N N L

S S S L S L

M M M L M L

N L N L L

S L S L S L L S L L

M L M L M L L M L L



 

 

 

 

  
 
 

    
 
 
 

  
 
 
 
 
 
     

D  (31) 

where 
   0,
r

S x x  and 
   0,
r

M x x  for ,r V  , are given by Eq.(27) with 0,x L  and 
0 0,x L . 

It is worth remarking that all elements in Eq.(31) for  D  are readily available in a closed form, 

as Eq.(27) are closed-form expressions for 
   0,
V

x xG  and 
   0,x x


G , as explained in Section 3. 

Also, 
   0,
U

N x x  is obtained from the steady-state axial vibration equation 

 
 

2

2

02
0

d U x
EA m U x

dx
   (32) 

under harmonic unit axial displacements 
i t

U e


 , 1U  , applied at the beam ends 
0 0x   or 

0x L . 

Bearing in mind that the solution to Eq.(30) is 

         1 11 2 12 1 2cos sinU x aU x a U x a x a x      (33) 

with corresponding axial force 

         1 11 2 12 1 2sin cos
dU

N x EA a N x a N x a x a x
dx

          (34) 

for   1 2 1 2

0EA m   


  , terms 
   ,0
U

N x  and 
   ,
U

N x L  in Eq.(31), for x=0 and x=L, can 

readily be obtained from Eq.(34) on computing the two sets of integration constants (a1,a2) 

corresponding, respectively, to the following boundary conditions:  0 1U  ,   0U L  ; and 

 0 0U  ,   1U L  . 

 

4.2 Exact load vector 
 

Next, denote by    0 0 0 0 0

T
x V M S Y  the frequency response vector (18) of the 

beam in Fig. 1 under loads f(x), when both ends of the beam are clamped. Be 
 f

c  the vector of 
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integration constants in Eq.(18) where, in this case, superscript (f) distinguishes vector 
 f

c  from 

vectors 
 V

c  and 
 

c  associated with unit deflection and rotation at the beam ends, see Eq.(27). 

They are computed by the following equations 

                           0 0
T

f f f f f f f
V V L L     
 

Bc e e  (35) 

Using the closed-form expressions (18), and in view of relations (25), the exact load vector is then 

given in the closed form 

       0 0 0 0 00 0 0 0
T

S M S L M L     f  (36) 

In Eq.(36), it is assumed that no harmonic axial loads act along the beam, although pertinent terms 

could readily be obtained from steady-state equations (32) under axial load. 

Now, exact dynamic stiffness matrix and load vector can be assembled by a standard FE 

procedure. It is interesting to note that dynamic stiffness matrix and load vector hold the same size, 

i.e. 66 and 61, for any number of dampers and loads. For this, the size of the corresponding 

global matrix and vector will depend only on the number of beam-to-column nodes, regardless of 

the number of dampers and loads.  

Upon deriving the global node solution, the exact frequency response can be built in every 

frame member, using the following general expression 

                   1 1 2 2 0,0 ,0 , ,
V V

x x V x x L V x L x
 

      Y G G G G Y  (37) 

where 
iV  and 

i  are the nodal displacements in vector u, while represent the frequency response 

of the clamped-clamped beam to the applied loads. 

At this stage, a few remarks are in order. The exact dynamic stiffness matrix (31) and load 

vector (36) can be derived by an alternative procedure, proposed in a previous study (Failla 2016b) 

and briefly recalled in Appendix B. Although the two approaches lead both to the exact dynamic 

stiffness matrix and load vector in a symbolic form, there is a relevant difference between the two 

approaches. Once the global dynamic stiffness matrix of the frame is built and the nodal 

displacements u are computed, the previous approach (Failla, 2016b) requires back-calculating the 

vector of integration constants  1 2 1 2 3 4

T
a a c c c cb  in Eq.(B.8); the latter includes indeed 

vector  1 2 3 4

T
c c c cc , to be used in Eq.(18) to compute the frequency response vector 

along the beam. On the contrary, Eq.(37) is expressed directly in terms of nodal displacements u. 

This provides an immediate insight into how the response variables along the beam are affected by 

nodal displacements and loads, with relevant advantages in terms of computational effort. 

 

 

5. Numerical application 
 

Consider the beam in Fig. 2 with parameters: L=15 m, EI=1.05510
7
 Nm

2
, m0=49.54 kgm

1
 

(corresponding to a Young’s modulus = 19.5×10
10

 Nm
2

; moment of inertia 5.4110
5

 m
4
; cross 

section area = 64.34×10
4

 m
2
; mass density = 7.7×10

3
 kgm

3
). Two external translational dampers 
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and two external rotational dampers are applied at 3x L  and 2 3x L . Also, it is assumed that 

internal translational and rotational dampers are located to the right and left of 3x L  and 

2 3x L , modeling imperfect/damaged connections. Parameters are given in Table 1. 

Free and forced vibrations are investigated under various loading conditions, using exact 

proposed method and exact classical method. The first makes use of the closed-form expression 

(18), with a total number of n=2 damper locations, i.e. 
    2

2 2,1  only is considered in Eq.(18). 

The second involves 44=16 integration constants for the frequency response to a point load at 

0 1 2,x x x  (i.e. not occurring at damper locations) and 45=20 for the frequency response to the 

distributed loads over [L/6,L/2], to be computed by inverting the coefficient matrix associated with 

the matching conditions + 4 B.C. (the steady-state response over each segment between two 

consecutive damper/point load locations or under distributed load is represented in terms of 4 

integration constants). For the beam segment under the uniform or linear load, a particular integral 

can readily be obtained in a closed form by Mathematica (Wolfram, 2008). Due to the large size, in 

this case matrix inversion is performed numerically, and the inverse matrix shall be re-computed 

for any forcing frequency of interest. Analogous comments hold when free vibration responses are 

built by both proposed and classical method. By the proposed method, exact eigenvalues are built 

as root of the transcendental equation det(B)=0, where B is the 44 matrix in Eq.(24). 

 

 

 
Fig. 2 Beam with multiple dampers at x1=L/3 and x2=2L/3, under: (a) point load 1e

it
 at x=x0; (b) 

uniform load fe
it

 over [L/6,L/2], with f=3/a Nm
-1

 for a=15; (c) linear load f(x)e
it

, with 

f(x)=36(xa/6)/a
2
 Nm

-1
 over [L/6,L/3], f(x) = 36(a/2x)/a

2
 Nm

-1
 over [L/3,L/2] for a=15. 
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Table 1 Beam in Fig. 2: spring stiffness and damping coefficients of dampers 

Damper Spring stiffness Damping coefficient 

Ext. translational damper at 
1 3x L  

1

5 1
3.13 10  NmGk


   

1

3 1
1.52 10  Nm sGc


   

Int. translational damper at  1 3x L


  
1

8 1
1.56 10  Nm

V
k 




   

1

3 1
1.52 10  Nm s

V
c 




   

Int. translational damper at  1 3x L


  
1

8 1
1.56 10  Nm

V
k 




   

1

3 1
1.52 10  Nm s

V
c 




   

   

Ext. rotational damper at 
1 3x L  

1

5
3.43 10  NmWk    

1

8
7.03 10  NmsWc    

Int. rotational damper at  1 3x L


  
1

6
7.03 10  Nmk 


   

1

5
3.43 10  Nmsc 


   

Int. rotational damper at  1 3x L


  
1

6
7.03 10  Nmk 


   

1

5
3.43 10  Nmsc 


   

   

Ext. translational damper at 
2 2 3x L  

2

5 1
3.13 10  NmGk


   

2

3 1
1.52 10  Nm sGc


   

Int. translational damper at  2 2 3x L


  
2

8 1
1.56 10  Nm

V
k 




   

2

3 1
1.52 10  Nm s

V
c 




   

Int. translational damper at  2 2 3x L


  
2

8 1
1.56 10  Nm

V
k 




   

2

3 1
1.52 10  Nm s

V
c 




   

   

Ext. rotational damper at 
2 2 3x L  

2

5
3.43 10  NmWk    

2

8
7.03 10  NmsWc    

Int. rotational damper at  2 2 3x L


  
2

6
7.03 10  Nmk 


   

2

5
3.43 10  Nmsc 


   

Int. rotational damper at  2 2 3x L


  
2

6
7.03 10  Nmk 


   

2

5
3.43 10  Nmsc 


   

 

 

Figs. 3-4 show the deflection eigenfunctions of the first 4 modes. Corresponding eigenvalues 

are reported in Table 2, along with the damping ratio = Im(Eigenvalue)/Abs(Eigenvalue). The 

agreement between proposed and classical solutions is excellent. It is noticed that the deflection is 

discontinuous due to the presence of the internal translational dampers. Figs. 3-4 report the 

deflections at 
1x x


  and 
2x x


 ; from these, the deflection at the application points of the external 

translational dampers, i.e. at 1x x  and 2x x , can readily be derived using 

   
 
 

   
 
 

      

j j

j j

j j j j

V V

S x S x
V x V x V x V x

    

 

 

 

      (38) 

Obviously, a similar expression could be used to derive the rotation at the application point of the 

external rotational dampers from the rotations at 1x x


  and 2x x


 , here reported for later 

convenience 

   
 
 

   
 
 

      

j j

j j

j j j j

M x M x
x x x x

    

 

 

 

         (39) 
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(a) 

 
(b) 

Fig. 3 Deflection eigenfunctions of modes 1-3 of beam in Fig. 2: (a) real part; (b) imaginary part 
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(a) 

 
(b) 

Fig. 4 Deflection eigenfunctions of modes 2-4 of beam in Fig. 2: (a) real part; (b) imaginary part 
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Table 2 Eigenvalues and damping ratios of first four modes of beam in Fig. 2 

 Eigenvalue Damping ratio 

Mode 1  46.5273 +5.1626 i 0.110282 

Mode 2  112.217 + 14.428 i 0.127527 

Mode 3  306.425 + 13.739 i 0.044793 

Mode 4  359.011 + 10.935 i 0.030444 

 
Table 3 Elements of dynamic stiffness matrix and load vector for beam in Fig. 2. 

 = 20 rad/s  

 Eq.(31) Eq.(B.6) 

D22 238856. + 74678.5 i 238856. + 74678.5 i 

D23  = D32 803880. + 131052. i 803880. + 131052. i 

D25  = D52 128590.  47128.3 i 128590. 47128.3 i 

D26  = D62 377768. + 99700.3 i 377768. + 99700.2 i 

   

D33 4.23475×10
6
 + 363550. i 4.23475×10

6 
+ 363549. i 

D35 = D53 377768.0  99700.3 i 377768.0  99700.3 i 

D36 1.0995×10
6
 + 182826. i 1.0995×10

6
 + 182826. i 

   

D55 238856. + 74678.5 i 238856. + 74678.5 i 

D56  = D65 803880.  131052. i 803880.  131052. i 

D66 4.23475×10
6
 + 363550. i 4.23475×10

6
 + 363550. i 

 

 

Fig. 5 shows the DGFs of all response variables for a point load 1e
it

 applied at x0=L/3 with 

forcing frequency =150 rad/s, as obtained by Eq.(18) (continuous line) and classical method 

(symbol “•”). Again, real and imaginary parts of the two solutions are in perfect agreement. The 

proposed solutions inherently satisfy all the required discontinuity conditions at the damper 

locations. That is, deflection and rotation are discontinuous due to the presence of the internal 

dampers, while shear force and bending moment are discontinuous due to the external dampers. As 

in Figs. 3-4, Fig. 5 shows the response variables to the left and right of the damper locations, and 

Eqs.(38)-(39) can be used to compute deflection and rotation at the application point. 

Figs. 6-7 show real and imaginary parts of the deflection DGF for a point load applied at 

varying position x0, as computed by the proposed method. The deflection is symmetric, i.e. V(x, 

x0)) = V(x0, x) (Brandt, 2011). Results in Figs. 6-7 coincide with those from the classical method, 

but comparisons are not shown for brevity. 

Fig. 8 shows the deflection DGFs at x=L/2 and x=L/3, as due to a point load with varying 

forcing frequency  and position x0. It is well evident that the contribution of the various modes 

depend on excitation frequency and load position. The contribution of first mode is always 

dominating. As expected, contributions of second and fourth modes are zero at x=L/2, consistently 

with the shape of the corresponding eigenfunctions, shown in Fig. 4. 

Fig. 9 shows the deflection FRFs at x=L/2 and x=L/3, for uniformly- and linearly-distributed 

loads over the interval [L/6,L/2], as shown in Fig. 2. Again, the agreement between proposed and  
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Fig. 5 Dynamic Green’s functions of beam in Fig. 2 for a point load with forcing frequency =150 

rad/s, applied at x0=L/3. Left column: real part; right column: imaginary part. 
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Frequency analysis of beams with multiple dampers via exact generalized functions 

 
(a) 

 
(b) 

Fig. 6 Deflection dynamic Green’s function of beam in Fig. 2 for a point load with forcing frequency 

=40 rad/s, computed at x for various load positions x0: (a) real part; (b) contour plot of real part. 
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(a) 

 
(b) 

Fig. 7 Deflection dynamic Green’s function of beam in Fig. 2 for a point load with forcing frequency 

=40 rad/s, computed at x for various load positions x0: (a) real part; (b) contour plot of real part. 
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(a) 

 
(b) 

Fig. 8 Deflection dynamic Green’s function of beam in Fig. 2 for a point load with varying forcing 

frequency  and varying load position x0, computed at: (a) x=L/2; (b) x=L/3. 
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(a) 

 
(b) 

Fig. 9 Deflection frequency response function of beam in Fig. 2 for uniform (black line) and linear 

(grey line) loads with varying forcing frequency , computed at: (a) x=L/2; (b) x=L/3. 
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Table 4 Elements of dynamic stiffness matrix and load vector for beam in Fig. 2. 

 = 20 rad/s – uniform load  

 Eq.(36) Eq.(B.7) 

 0

2f  0.583334 + 0.00930356 i 0.583334 + 0.00930356 i 

 0

3f  1.47582 + 0.125022 i 1.47582 + 0.125022 i 

 0

5f  0.210926  0.0192521 i 0.210926  0.0192521 i 

 0

6f  0.604232  0.00133359 i 0.604232  0.00133359 i 

 
Table 5 Elements of dynamic stiffness matrix and load vector for beam in Fig. 2. 

 = 20 rad/s – linear load  

 Eq.(36) Eq.(B.7) 

 0

2f  0.576563 + 0.00970668 i 0.576563 + 0.00970668 i 

 0

3f  1.53058 + 0.141108 i 1.53058 + 0.141108 i 

 0

5f  0.204916  0.0213591 i 0.204916  0.0213591 i 

 0

6f  0.587722 + 0.00623944 i 0.587722 + 0.00623944 i 

 

 

classical solutions is excellent. 

Finally, the elements of the dynamic stiffness D() matrix and load vector f0 are reported in 

Tables 3-4-5 for different frequencies , as computed by Eqs.(31)-(36) and Eqs.(B.6)-(B.7) in 

Appendix B. Again, the two solutions coincide.  

 

 

5. Conclusions 
 

This paper has addressed the frequency response of beams under harmonically-varying 

point/polynomial loads, which carry multiple external/internal Kelvin-Voigt viscoelastic dampers 

at the same position, modeling external damping devices and internal damping due to damage or 

imperfect connections. A solution recently proposed by the author (Failla 2016b) has been 

revisited, presenting an original formulation of exact dynamic stiffness matrix and load vector, 

with advantages with a previous one (Failla 2016b). 

The proposed solutions are exact and fulfill the required conditions at the locations of 

dampers/point loads. They can readily be implemented for any number and positions of dampers, 

positions of point/polynomial loads, with significant advantages over the exact classical approach 

and the standard FE method, as discussed throughout the paper. The proposed solutions appear 

particularly suitable for investigating frequency response as damper/load positions change, as is 

typical in identification or optimization problems. 

Finally, it is worth noticing that the frequency analysis approach of this paper is not restricted 

to Kelvin-Voigt viscoelastic dampers, but applies for any damper with constitutive law for which a 

Fourier transform is available in a closed form (examples may be found in recent papers by Ding 

et al. (2016), Li and Hu (2016)). This is a relevant advantage in recognition of the fact that, in 

some cases, Kelvin-Voigt viscoelasticity does not prove adequate to fit experimental behavior of 
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dampers. From the frequency-domain solutions built as explained in this paper, impulse response 

functions can readily be obtained by a standard inverse Fourier transform (Clough and Penzien 

2003), in order to build the time-domain numerical response of the beam with multiple dampers. 

Further effort will be devoted to formulate the proposed approach for TM beams with multiple 

dampers. For this purpose, pertinent closed-form solutions of the TM beam motion equation shall 

be built, under discontinuity-related generalized functions as in Eqs.(2)-(3) of this paper. 
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Frequency analysis of beams with multiple dampers via exact generalized functions 

Appendix A 
 

To derive terms of matrix  xΩ  in Eq.(14) and vectors 
   ,
r

jx xJ  in Eqs.(16) for r=P, W, V 

and , first consider the following steady-state motion equations of the beam under harmonic 

unit point load, unit moment, relative displacement, given as 

(A.1) 

 
       

       

4

12

04

1 1

2 3

1 1

                 0

n n

j j

j j

n n

j j

j j

d V x
EI m V x P x x W x x

dx

EI x x EI V x x

  

 

 

 

      

       

 

 

 (A.2) 

with P=1, W=1, V=1 and =1. Using integration by parts, the following relations can be 

derived among the particular solution 
   0,
P

VJ x x  due to a unit point load P=1, the particular 

solution 
   0,
W

VJ x x  due to a unit moment W=1, the particular solution 
   0,

V

VJ x x


 due to a unit 

relative deflection V=1, and the particular solution 
   0,VJ x x


 due to a unit relative rotation 

=1: 

           
   1 0

0 0
0 0

,
, ,

P
L

W P V

V V

dJ x x
J x x J x x d

dx
        (A.3) 

           
   2

2 0

0 0 2
0

0

,
, ,

P
L

P V

V V

d J x x
J x x EI J x x d EI

dx
   


    (A.4) 

           
   3

3 0

0 0 3
0

0

,
, ,

P
L

V P V

V V

d J x x
J x x EI J x x d EI

dx
   


     (A.5) 

Next, starting from the solution of the homogeneous equation associated with Eq.(A.2) and the 

particular integral 
   0,
P

VJ x x  due to a unit point load P=1, which are readily available in a closed 

form by Mathematica (Wolfram 2008), and using Eqs.(A.1), (A.3)-(A.5), terms in  matrix  xΩ  

and vectors 
   ,
r

jx xJ  for , , ,r P W U    are obtained as (obviously, terms in matrix  xΩ  

do not depend on the loading function and, for this, do not carry superscript (r)): 
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           

           

           

         

1 2 3 4

1 2 3 4

2 2 2 2

1 2 3 4

3 3 3 3

1 2 3 4

e ; e ; cos ; sin

e ; e ; sin ; cos

e ; e ; cos ; sin

e ;  e ;  sin ;  

x x

V V V V

x x

x x

M M M M

x x

S S S S

x x x x x x

x x x x x x

x EI x EI x EI x x EI x

x EI x EI x EI x x EI

 

 

 

 

 

     

     

    





   





       

         

         

           cos x

 (A.6a-p) 

Particular integrals    0,
P

x xJ  for a point load P = 1 at 
0x x  

           0 0 0 0, sinh sin
P

VJ x x x x x x H x x          (A.7) 

   
   

       0

0 0 0 0

,
, cosh cos

P

P VdJ x x
J x x x x x x H x x

dx
  

         (A.8) 

   
   

       
2

20

0 0 0 02

,
, sinh sin

P

P V

M

d J x x
J x x EI EI x x x x H x x

dx
             (A.9) 

   
   

       
3

30

0 0 0 03

,
, cosh cos

P

P V

S

d J x x
J x x EI EI x x x x H x x

dx
             (A.10) 

Particular integrals    0,
W

x xJ  for a point moment W = 1 at 
0x x  

   
   

       0

0 0 0 0

0

,
, cosh cos

P

W V

V

dJ x x
J x x x x x x H x x

dx
            (A.11) 

   
   

       20

0 0 0 0

,
, sinh sin

W

W VdJ x x
J x x x x x x H x x

dx
  

          (A.12) 

   
   

       
2

30

0 0 0 02

,
, cosh cos

W

W V

M

d J x x
J x x EI EI x x x x H x x

dx
            (A.13) 

   
   

         
3

40

0 0 0 0 03

,
,   1 sinh sin

W

W V

S

d J x x
J x x EI x x EI x x x x H x x

dx
                (A.14) 
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Particular integrals 
   0,x x


J  for a relative rotation =1 at 
0x x  

   
   

       
2

20

0 0 0 02

0

,
, sinh sin

P

V

V

d J x x
J x x EI EI x x x x H x x

dx
  


         (A.15) 

   
   

       30

0 0 0 0

,
, cosh cos

VdJ x x
J x x EI x x x x H x x

dx
  






         (A.16) 

   
   

         
2

2 40

0 0 0 0 02

,
, sinh sin

V

M

d J x x
J x x EI EI x x EI x x x x H x x

dx
   




              (A.17) 

   
               

3

1 2 50

0 0 0 0 03

,
, cosh cos

V

S

d J x x
J x x EI EI x x EI x x x x H x x

dx
   




              (A.18) 

Particular integrals 
   0,

V
x x


J  for a relative deflection V=1 at 

0x x  

   
   

       
3

30

0 0 0 03

0

,
, cosh cos

P

V V

V

d J x x
J x x EI EI x x x x H x x

dx
  


          (A.19) 

   
   

         40

0 0 0 0 0

,
,   1 sinh sin

V

V VdJ x x
J x x x x EI x x x x H x x

dx
   






            (A.20) 

   
               

2

1 2 50

0 0 0 0 02

,
, cosh cos

V

V V

M

d J x x
J x x EI EI x x EI x x x x H x x

dx
   




              (A.21) 

   
               

3

2 2 60

0 0 0 0 03

,
, sinh sin

V

V V

S

d J x x
J x x EI EI x x EI x x x x H x x

dx
   




              (A.22) 

In Eqs.(A.6)-(A.22),   1 1 4 3 4 3 2

02 EI m   
   

  ,   1 4 1 4 1 2

0EI m   


  , and 
3

1 2EI  . 

Interestingly, notice that the particular integrals are all continuous through the whole domain, 

except for 
0x x  where appropriate, i.e.: 
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       

       

       

       

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

, , 1

, , 1

, , 1

, , 1

P P

S S

W W

M M

V V

V V

J x x J x x

J x x J x x

J x x J x x

J x x J x x

 

 

  

 

  

  

 

 

 

 (A.23) 

Next, consider Eq.(17) for 
   

f
xY , which represents the particular solutions related to the 

applied load. In view of the analytical expressions of    ,
P

x J  given in this Appendix, it can be 

seen that every integral in Eq.(17) can be reverted to the general form    
b

a

g H x d   , with 

 g   given by the product of the loading function and certain trigonometric/hyperbolic functions. 

For instance, in view of Eq.(A.7) for 
   0,
P

VJ x x , computing 
   

f
xY  will involve, among others, 

the integral 

                   , ,          sinh sin
b b

P

V
a a

J x f d g H x d g f x x                      (A.24) 

Using the theory of generalized functions, integrals    
b

a

g H x d    can be computed as: 

              

                   

1 1

1 1 1 1
                                

b b

aa

g H x d H x g g x

H x b g b g x H x a g a g x

         
 

        
   


 (A.25) 

where 
 1

g  denotes the first-order primitive function of  g . It is noticed that, for polynomial 

loads f(x) typically encountered in engineering applications, the first-order primitive 
 1

g  can be 

obtained in a closed form by any symbolic package as, for instance, Mathematica (Wolfram 2008). 

This means that, upon deriving closed-form expressions of c from Eq.(24), Eq.(18) provides the 

exact closed-form expressions of the FRFs beam with an arbitrary number of dampers, due to 

polynomial loads   i t
f x e


, for all response variables. 

 

Appendix B 
 

The exact dynamic stiffness matrix (31) and load vector (36) can be derived by an alternative 

procedure (Failla 2016), here recalled for convenience. 
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Eq.(18) and Eqs.(33)-(34) for the frequency response can be used to build the nodal equations 

 f
 u Γb u  (B.1) 

 f
 f Ξb f  (B.2) 

for                  0 0 0 0
T

f f f f f
V V L L   

 
u  

                 0 0 0 0
T

f f f f f
S M S L M L   
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In Eqs.(B.3)-(B.4),   
,i j

Y  denote the (i,j) element of matrix  xY  in Eq.(19). From Eqs.(B.1)-

(B.2) the following nodal matrix relation can be derived 

      1

0

f f



    f ΞΓ u u f D u f  (B.5) 

where 

  1



D ΞΓ  (B.6) 

   1

0

f f
  f ΞΓ u f  (B.7) 
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In Eqs.(B.6)-(B.7), D() and q are the exact dynamic stiffness matrix and exact load vector of the 

beam in Fig. 1. Numerical applications of this paper show that Eq.(B.6) coincides with Eq.(31), 

while Eq.(B.7) coincide with Eq.(36). Upon deriving the nodal displacements, the frequency 

response in every member is computed from Eq.(18), where the vector of integration constants is 

back calculated from the nodal displacements using the following expression 

    1 f
 b Γ u u  (B.8) 
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