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Abstract.  In this paper we present methodology for parameters identification of constitutive model which 
is able to present behavior of a connection between two members in a structure. Such a constitutive model 
for frame connections can be cast in the most general form of the Timoshenko beam, which can present 
three failure modes. The first failure mode pertains to the bending in connection, which is defined as coupled 
plasticity-damage model with nonlinear softening. The second failure mode is seeking to capture the 
shearing of connection, which is defined as plasticity with linear hardening and nonlinear softening. The 
third failure mode pertains to the diffuse failure in the members; excluding it leads to linear elastic 
constitutive law. Theoretical formulation of this Timoshenko beam model and its finite element 
implementation are presented in the second section. The parameter identification procedure that will allow 
us to define eighteen unknown parameters is given in Section 3. The proposed methodology splits 
identification in three phases, with all details presented in Section 4 through three different examples. We 
also present the real experimental results. The conclusions are stated in the last section of the paper. 
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1. Introduction 
 

In this paper we present methodology for identification parameters of model which is able to 

present behavior of a connection between two members in a structure. These connections have 

very important effect upon nonlinear behavior of frame structures, especially, those built of steel 

and timber. Many types of connection all of exist and practically each of them has something 

specific. Thus, the best choice of adequate model for describing these phenomena is very 

challenging task.  

The Timoshenko beam (e.g., Medic et al. 2013) provides the possibility for constructing the 

optimal model of this kind. There precisely, we use coupled plasticity-damage model (e.g., 

Ibrahimbegovic et al. 2008, Ayhan et al. 2013) with includes softening response (e.g., 

Ibrahimbegovic 2009). Plasticity and damage models are defined with linear hardening, while 

softening response is defined with nonlinear law. Transverse displacement or shearing of the 
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connection is defined with plasticity model with softening. Theoretical formulation of the joint 

element which can describe this kind of behavior for bending and shearing is presented in the next 

section of the paper.   

Each member of frame structure is modeled with the Euler-Bernoulli beam (e.g., Dujc et al. 

2010). Constitutive law is defined as plasticity with linear hardening and nonlinear softening 

models. This type of beam model is adequate for slender elements where length l of the elements 

versus high h ratio l/h >10. We note in passing that, although the temperature effects in steel 

structures can very important (e.g., Ibrahimbegovic et al. 2013), in this work such an effect is 

completely neglected. Rather, the main focus of this research pertains to identification of model 

parameters for the connection between two members of a structure.  

The identification of model parameters can be split into three subsequent phases, in following 

(Kucherova et al. 2009). In the first phase we present identification of parameters governing the 

elasticity response, where we have three unknowns. The second phase deals with identification of 

parameters for coupled plasticity-damage model. Two unknown parameters are active in 

Euler-Bernoulli beam and six parameters in the connection. Identification of connection behavior 

can be split into the shearing and the bending. In the bending case there are two possible scenarios, 

first when parameters for plasticity and damage models take very close values, and the second 

when the values of parameters are not as close, so that we can identify two by two parameters. 

The identification of these parameters in each phase is done using combination of two software 

programs Matlab (The MathWorks, Inc., Natick, Massachusetts, United States) and FEAP (e.g., 

Zienkiewicz and Taylor 2005). FEAP is the finite element program which is used for FEM analysis 

task in the identification process. Matlab is used for computing the minimization of objective or 

cost function. Objective functions for different phases of identification are presented in the third 

section of this paper. 

The outline of the paper is as follows. In the next section we present the main ingredients of the 

proposed joint element for the presenting behavior of connection in terms of the Timoshenko beam 

(e.g., Bui et al. 2014). In the third section we describe the global identification problem of 

connection. The fourth section presents proposition for experimental setup, loading program and 

all phases of identification in three different examples. In the fifth section we also compare 

examples of identification against real experimental results (e.g., Gang Shi et al. 2007, Mesic 

2003). 

 

 

2. Theoretical formulation of the Timoshenko beam audits finite element 
implementation 

 

In this section we present theoretical formulations for the joint element in terms of the 

Timoshenko beam. The joint element is slight modification of the Timoshenko beam defined in 

(Bui et al. 2014, Nikolic and Ibrahimbegovic 2015) with embedded discontinuity. The need for 

this modification can be found in physically admissible displacement/deformation of connections. 

Namely, for pure bending in the connection there does not exist transverse displacement and if we 

use Timoshenko or Euler-Bernoulli beam this condition is not satisfied. The modification of the 

Timoshenko beam starts in Eq. (1), where we modify expression for the shear deformation. The 

Euler-Bernoulli beam with embedded discontinuity (e.g., Dujc et al. 2010) is used to present 

bending behavior of members of the frame structure. Constitutive law is defined as plasticity with 

linear hardening for continuous part and discontinuity defining the softening according the 
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nonlinear law.  

 

2.1 Timoshenko modified beam element 
 

The theoretical formulation of the joint element - modified Timoshenko beam can first be 

defined in terms of its strong form of equilibrium equation, there we present the main ingredients 

of these models.  

 

2.1.1 Strong form of equilibrium equations 
In Fig. 1 we present different formulation of beam curvature measure in a given cross section. 

It can be written 

         - Euler-Bernoulli beam

   - Timoshenko beam

         - Joint element - modified T. beam

dv

dx

dv

dx

dv

dx



 





 



             (1) 

where γ is shear deformation of the beam cross section. 

Equilibrium equations at the infinitesimal beam 

2
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2

( ) 0
2

( )
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dx dM
M M dM M Vdx q x dx V

dx d M
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
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  


         
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(2) 

Relation between internal forces and deformations when restricted to linear elasticity 

( ) ; ( )  - Timoshenko beamv

d dv
M x EI V x GA

dx dx

 
   

 


             (3) 

 

 

 
 

Fig. 1 Deformation of beams 
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Fig. 2 Equilibrium at the infinitesimal beam 

 

 

( ) ; ( )   - Joint element v

d dv
M x EI V x GA

dx dx

 
   

 



       

(4) 

Using Eqs. (1)-(3) we can obtain the strong form of the equilibrium equations 

Timoshenko beam:  

2

2 4 2
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d d
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(5) 

Joint element:     
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2
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(6)

 

 
2.1.2 Weak form of equilibrium equations 
The corresponding weak form of equilibrium equation can be written in the standard form for 

both beams (e.g., Nikolic et al. 2014) 

0 0

  

( , , ; ) 0

l l

p d T T T

External force

G w dx dx    σ ε f w F w      

        

(7)

 
where  , ,

T
M T Nσ  is the stress resultant force, , , N   ε     is a vector of virtual 

deformations,  , ,
T

m q nf  is vector of the external distributed load,  , ,w uw     is a 

generalized virtual displacement and , ,
T

ext ext extM T N   F  is vector of the external concentrated 

end forces. 

Generalized displacements are split into regular part and jump point introducing the generalized 

displacement discontinuity 

340



 

 

 

 

 

 

Plasticity-damage model parameters identification for structural connections 

 

( , ) ( )
1;   

( , ) ( , ) ( ) ( ) ( , ) ( ) ( );   ( )
0;   

( , ) ( )

u

x v x x

u x t t
x x

x t x t t H x v x t t H x H x
x x

x t t





 

   
   

               

u u α    (8) 

where α  is vector of generalized displacement jumps at the point x , ( )xH x  is the Heaviside 

function and ( , )x tu is vector of regular displacements in the beam. 

 
2.1.3 Constitutive equations for bending  
In this section we present constitutive models for bending strains, both the continuous part and 

the discontinuity. The continuous part is defined with coupled plasticity-damage model, with 

linear hardening and nonlinear softening. The main ingredients of the coupled plasticity - damage 

model (e.g., Ibrahimbegovic et al. 2007) are 

 additive decomposition of the regular curvature field of the beam 

 
e p d               (9) 

 Helmholtz free energy 

 

 

1 1 1 1
, , ,   

2 2 2 2

1
;   ( ) ( ) ( )

2

e p d d

s

e d p d e e p p d d d

p d

s s s s

s x

E K D K

K

   



                  

             

     (10) 

where E is the elasticity modulus, , ,p d s    are internal hardening variables for: plasticity,  

damage and softening, respectively,
  Mσ

 
is internal force in integration point, ,d pK K

 
are hardening moduli for damage and plasticity, and sK  is softening modulus. 

 the total dissipation produced by this coupled plasticity-damage model, must be remain 

non-negative. That can be written by appealing to the second principle of thermodynamics 

0

0

p de

e d p d d
e d p p d

p d
M M M D

M M D



       
          

       

  
    

 

D DD

D =
 

  (11) 

where   is complementary energy, see Ibrahimbegovic (2009). 

 yield functions for plasticity and damage 

   

   

,       0

,       0

p p p

y

d d d

f

M q M M q

M q M M q

    

    
     (12) 

where My > 0 denotes the yield stress, Mf > 0 denotes the damage stress at the start of the fracture 

process zone initiation.  
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 The principle of maximum plastic dissipation states that among all the variables  ,  pM q

that satisfy the yield criteria  ,  p pM q . This can be written as a constrained minimization 

problem 

,
min max ( , , ) ( , ) ( , )p p

p p p p p p p p

M q
L M q M q M q


       D

          
(13) 

where the plastic multiplier 0p 
 

plays the role of Lagrange multiplier. The corresponding 

Kuhn-Tucker optimality condition, constrained for this minimization problem can provide the 

evolution equations for internal variables along the loading/unloading conditions 

0 ( )

0

0,   0,   0

p
p p p p

p
p p p p

p p p p

L
sign M

M M

L

q q

 
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 

 
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 

      

            
(14) 

The correct value of plasticity multiplier p can be computed from the plastic consistency 

condition 

0

( )

 ;   0;   0 

p

p p p p

p p

p p

p

p

d

p p

M M q q

E

q
E




   


  

   

 

 





   
            

(15)
 

The principle of maximum damage dissipation states that among all the variables ( , )dM q that 

satisfy the yield criteria  ,  d dM q , we have to select those that maximize damage dissipation.  

This can be written as a constrained minimization problem: 

,
min max ( , , ) ( , ) ( , )d d

d d d d d d d d

M q
L M q M q M q


       D

    
 (16) 

where the damage multiplier 0d 
 

plays the role of Lagrange multiplier. By appealing to the 

Kuhn-Tucker optimality conditions, from the last result we can provide the evolution equations for 

internal variables along the loading/unloading conditions 

1
0 ( )

0

d d
d d

d d
d d d d

d d

L
DM D sign M

M M M

L

q q

 
       

 

 
        

 
         

(17) 

The damage consistency conditions can finally provide the correct value for damage multiplier 
d  

0,   0,   0d d d d                   (18) 
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1

1

0  ;   0;   0 
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d d
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d d M
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D

q
D




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   


  

   

 







              (19) 

 By enforcing the condition that bending moment has same value in both constitutive models, 

we can obtain bending moment rate constitutive equation for coupled damage/plasticity model 

and define the corresponding elasto-plastic-damage tangent modulus 

 
( )

ep ed
epd ep p d ed d epd

ep ed

C C
M C C C C

C C
          

        
(20) 

The remaining model ingredients define the softening response. In particular we have 

 Yield criteria for plasticity in the discontinuity can be written 

 
 ( , ) 0

u

s s

M M Mt q t t q    
     

(21) 

where Mt  is bending traction, 
yMt is ultimate bending traction  and ( )s sq   is softening stress 

like variable at the discontinuity. 
 The principle of maximum plastic dissipation at discontinuity states that among all 

admissible variables ( , )s

Mt q that satisfy the yield criteria  ,s s

Mt q  the ones we choose are 

those that maximize softening dissipation. This can be written as a constrained minimization 

problem 

Mt ,
min max ( , , ) ( , ) ( , )s p

s s s s s s s s

M M Mq
L t q t q t q



      
 

D
     

(22) 

where 0s  plays the role of Lagrange multiplier, s s sq D  is dissipation of the energy in the 

softening process . By using Kuhn-Tucker loading/unloading condition, the last result can provide 

the evolution equations for softening internal variables 
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s s
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s s
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 
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 
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(23)

 

For softening process at the discontinuity and elasticity process in the regular part of beam, we 

can write expression for final stress resultant value 

   
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(24) 
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2.1.4 Constitutive equations for shearing  
Constitutive law for shearing of connection is defined as plasticity with linear hardening and 

nonlinear softening. Main ingredients for such a plasticity model are: 

 additive decomposition of shear strain into elastic and plastic 

e p

s s s                 (25) 

 Helmholtz free energy 

   

     

, ,s
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2 2 2
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(26)

   

where G is shear modulus, ,p s   
are

 
internal hardening and softening variables, 

,s pK
 

is 

hardening modulus and ,s sK is softening modulus.
 

 

 the plastic dissipation produced by this model, must be remain non-negative. That can be 

written as 

0

0

e
s

e p
p e p p

s s s p
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

  
    

  


  



D

D =

            

(27) 

 yield functions for shearing 

   ,       0p p p

s y sV q V V q    

         

(28) 

where Vy > 0 denotes the yield shear force. 

 The principle of maximum plastic dissipation which states that among all the variables 

( , )p

sV q  
that satisfy the yield criteria  ,p p

sV q we ought to choose those that maximize 

plastic dissipation. This can be written as a constrained minimization problem 

,
min max ( , , ) ( , ) ( , )p p

p p p p p p p p

s s sq
L V q V q V q

 
       D

       
(29) 

where 0p  plays the role of Lagrange multiplier. By using the Kuhn-Tucker optimality 

conditions, the last result can provide the evolution equations for internal variables along with the 

loading/unloading conditions 
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 
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 
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(30) 

 The correct value of plastic multiplier can be computed from the consistency condition: 
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0  ;   0;   0 
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(31) 

The remaining model ingredients define the softening response: 

 The yield criteria for plasticity at the discontinuity can then be written 

 ( , ) 0
y

p p

V s V V st q t t q    
          

(32) 

where Vt  
is shearing traction, 

yVt is yield shearing traction and ( )p p

sq  is softening shear stress 

variable at the discontinuity  xd. 

 The principle of maximum plastic dissipation at discontinuity states that among all the 

variables ( , )s

V st q that satisfy the yield criteria  ,s s

s V st q  we choose those that maximize 

plastic dissipation. This can be written as a constrained minimization problem 
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where s  
plays the role of Lagrange multiplier, s s s

sq D  is dissipation of the energy in the 

softening process. By using the Kuhn-Tucker optimality conditions, the last result can provide the 

evolution equations for internal variables along with loading/unloading conditions 
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s s
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s s

s s

s s s s

L
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t t
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q q

 
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 

 
        

 

      

          
(34) 

 
2.1.5 Finite element implementation 
The finite element formulation is practically same as formulation for the Timoshenko beam 

(e.g., Bui et al. 2014). In this section we present only the difference between these two elements. 

The finite element implementation of the model is based upon the incompatible mode method 

(e.g., Ibrahimbegovic and Wilson 1991). The use of such a technique ensures that the enrichment 

with a generalized displacement jump remains local, with no additional degrees of freedom 

required at the global level. We consider the standard two-node Timoshenko beam and modified 

beam finite element interpolations, with linear polynomials as shape functions 

     1 21 / /;e e
x x L xN N x L 

           

(35) 

Standard interpolation of displacements at the continuous part can be written 
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1 1 2 2

1 1 2 2

1 1 2 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
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h
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u x N x u N x u

v x N x v N x v

x N x N x  

 

 

 

       (36) 

where ua , va , θa are nodal values of generalized displacements and Na(x) is the interpolation 

function for node “a”. 

Thus, the corresponding interpolation of strain regular field for the modified Timoshenko beam 

can be written 
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
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(37) 

where 

 
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     (38) 

We note that the choice we made herein is different from the standard interpolation of strain 

Timoshenko beam, recall that the latter can be written 
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(39) 

where 

 

1 2

1 1 2 2
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1 1 1 2 2 2
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T
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  



B

d  

          (40) 

This different interpolation of the strains we choose herein produces uncoupling between 

transverse displacement and bending moment. Details of the finite element formulation and 

computational procedure were presented in (Bui et al. 2014).  
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3. Identification procedure for model parameters 
 
In the case of connection testing, the global response of a specimen can be represented in terms 

of load-displacement F-u diagram. Any such curve can be related to three-phases of the connection 

response: elastic, hardening and softening part (Fig. 3). Model for hardening behavior of the 

connection is defined as coupled plasticity-damage while the softening response is governed by 

nonlinear law. For the most general case, in the elastic phase, we need to identify four parameters, 

whereas in the hardening phase eight and in the softening phase another six parameters. 

The identification in general case is performed in two steps: i) definition of an objective 

function based on some experimental measurements; ii) minimization of this objective function in 

order to find values of constitutive parameters used in the model.  

The choice of objective function is very important step, to ensure the success of the 

minimization. In general case, objective function can be defined as gap between measured and 

computed response values (displacement, stress, deformation, reaction force and etc.) 

 
2

exp

p p( ) ( )com

j j

j J

J n


 d u d u        (41)  

where dp are the model parameters that we seek to identify or similar, 
p( )com

ju d  and exp

ju are, 

respectively, computed and experimentally measured values of displacements/stresses/strains and 

n is weighting factor for different terms of objective function. Coupled plasticity – damage model 

is complex for identification because both plasticity and damage can represent same behavior 

during the loading process. However, we can find difference in the unloading process. For that 

reason, the objective function in the hardening phase needs to contain information from unloading 

process. 

Minimization of the objective function can formally be written as minimization under 

constraint  

 
2

exp

p p
( ; ) 0
min ( ) ( )com

j j
G w

j J

J n




 d u d u
 

      (42) 

where the weak form of equilibrium equations ( , , ; ) 0p dG w      is the corresponding 

constraint. Namely, the weak form of equilibrium equations has to be satisfied at every moment. 

The constrained minimization of objective function can be transferred into unconstrained 

minimization by using Lagrange multiplier method (e.g., Ibrahimbegovic et al. 2004) 

 

 

Fig. 3 Curve force F – displacement U 
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Fig. 4 Flow chart of parameters identification 
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p p
( ; ) 0

max min ( , , ) ( ) G( , , )
p

p
G

L J


 
d

d d d


               (43) 

where λ are Lagrange multipliers inserted into the weak form of equilibrium equations instead of 

virtual displacement. This type of minimization of the objective function is very complex for 

eighteen unknowns. 

Such an unconstrained minimization of the objective function is split in several phases, in every 

phases number of unknowns decreases to maximal of four parameters.  

The general identification procedure of the connection model parameters is presented in the 

flowchart in Fig. 4. The process is split in three phases, with every phase further split to few cases. 

For every case, local and global measurements are required. 

Local measurements depend only on one constitutive model, while the global ones depend on 

all models. This objective function is defined in detail for different cases of identification, in the 

first example, where experimental results are replaced by those obtained from FEM model. 

Unconstrained minimization methods included in Matlab are used to solve the identification 

problem. In particular, we use four methods: BFGS (Broyden–Fletcher–Goldfarb–Shanno method), 

DFP (Davidon–Fletcher–Powell method), Trust Region and Steepest Descent. The comparisons 

between these methods are presented in the examples that follow. 

Objective function for parameters identification of the connection for the general case can be 

written as 
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(44) 

where are: exp,com

Pi PiF F
  

- forces for different load level (Pi); 
exp,com

Pi PiU U   - displacements (Pi ) ;  
exp

, ,,com

S Pi S PiU U  - shear displacements (Pi ); 
exp

' ',com

Pi PiU U  - residual displacements (unloaded point Pi'); 

exp,com

Pi Pi   - rotations of the connection (Pi); 
exp

' ',com

Pi Pi   - residual rotations (unloaded point Pi'); 
exp exp exp

1 1 and com com com

Pi Pi Pi Pi Pi Pi             - gradients of rotation between two different load (Pi ) ; 
exp,com

Pi Pi   - curvatures of the section (Pi ); exp

' ',com

Pi Pi   - residual curvatures of the section 

(unloaded point  Pi'); 
exp exp exp

1 1and  com com com

Pi Pi Pi Pi Pi Pi             - gradients of curvature between 

two different load (Pi ); a, b, c, d, e, g  - constants 

 

 
4. Numerical examples 

 

In this work we present three numerical examples in order to illustrate the performance of 

proposed approach. First example serves to illustrate all cases of identification, where the 

corresponding experimental results are obtained from fine FEM model. The remaining two 

examples provide the illustration procedure for identification of model parameters for real 

experimental results of the steel connection and the timber connection. Moreover, the examples 

serve to illustrate that proposed identification procedure applies to parameters identifications in 
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steel and in timber structures, the cases of large practical interest. 

 

4.1 Steel structure connection with complete set of failure modes 
 

In this example we present methodology for identification parameters which describes 

nonlinear behavior of both connection and structural members. We need to obtain eighteen 

unknowns in total. Measurement values in this example were computed by a more refined mesh of 

beam elements. We practically can test all phases for proposed identification procedure.  

 

4.1.1 Experimental setup and FEM model 
In Fig. 5 are shown experimental setup for testing connection between two orthogonal steel 

beams and corresponding FEM model. The horizontal beam is chosen much stronger then the 

vertical beam, which should ensure the linear elastic behavior of horizontal beam during the test. 

The equipment for displacements and deformations measurements is arranged so that gives us 

sufficient information for identification of mechanical properties. The results can be classified as 

local and global measurements. The global measurements depend on all model parameters, while 

the local measurements depend on only one model parameter. 

In particular, the measuring equipment illustrated in Fig. 5 consists of: LVDT (Linear variable 

displacement transducer) 1 and 2, which measure global displacements of the vertical beam in node 

3 ( exp

3,PiU ) and node 5 ( exp

5,PiU ); LVDT 3 and 4, which measure relative vertical displacement between 

horizontal and vertical beams, which the latter used for calculating rotation of the connection 

exp exp
exp 3 4

.vert beam

v v

h

 


       

(45) 

 

 

 
(a) Experimental setup (b) FEM model 

Fig. 5 Experimental setup and FEM model 

350



 

 

 

 

 

 

Plasticity-damage model parameters identification for structural connections 

 

LVDT 5, which measurs relative horizontal displacement ( exp exp

2, S,Pi PiU U ) between horizontal and 

vertical beams, which measures transverse(shearing) displacement of connection; Strain guges 

measure deformation at the vertical beam. The latter is used for calculating the curvature of the 

section near to connection, assuming the vertical beam is not loaded with axial force 

exp
exp exp 1 2;  ,

2 2 2

i
i i i

h h
y y

y

 
          

 

  
   

        

(46)

 All the measurments can be taken continuously during the test. 

The FEM model is composed of six frame elements. Element number 1 was used for modeling 

connection as described in Section 2.1., while all other elements (2,3,4,5,6) are chosen as the 

Euler-Bernoulli beams. 

 
4.1.2 Phase I of elastic parameters identification (Sjb,Sjs, E) 

In this phase we need to identify three parameters governing elastic response: Sjb is stiffness of 

connection for bending, Sjs is stiffness of connection for shearing and E is modulus of elasticity for 

steel beams.  

Modulus of elasticity E for steel beam can be obtained using the standard material tests. 

Alternatively, the modulus E can be identified from local measurement of strain gauges, separately 

of the other measurements. The shearing stiffness of connection (Sjs) can be obtained from local 

measurement of LVDT 5. The bending stiffness of connection (Sib) can be identified from local 

measurement rotations of connection. 

Loading program for this phase is presented at the Fig, 6. In the time (points: a',b',c') we 

measure residual (plastic) displacement, if these measurements are equal to zero then plasticity is 

not activated yet. 

By using only measurements of rotation, we can identify stiffness of connection in elasticity 

(for virgin material). In this identification, we use relation between elasticity and damage stiffness 

of connection 

1e

jb d

jb

S
S

           (47) 

 

 

 

Fig. 6 Loading program and measurements in the elasticity 
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where ,e d

jb jbS S  are stiffness coefficients of linear-elastic and of damage model. This relation 

allows us to reduce identification procedure to one parameter. 

The objective function for the identification properties for elastic bending of the connection can 

be written as 

( ) ( )
23

1

exp∑ -=, Pi

com

Pi

d

jb

e

jb θθSSJ                           (48) 

The shearing stiffness of the connection can be obtained from local measurements of LDVT5, 

where we measure relative displacement between horizontal and vertical beam, which is triggered 

by sliding of connection. The objective function for this identification can be written as 

   
2

exp

2,

1

3

2,

e com

js Pi PiJ S U U             (49) 

Modulus of elasticity of steel beam can be obtained from local measurements of strain gauges.  

The objective function is now defined as 

   
2

exp

1

3
beam com

Pi PiJ E   
         

(50) 

At the end of this phase we can control results of identification using combination of local and 

global measurements and identify all parameters simultaneously. A universal objective function 

can be written 
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              (51) 

where c and d are constants defining the weights of global and local displacement measurements. 

Global measurements typically have significantly bigger weights than local. 
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Fig. 7 Objective functions 

1.5 2 2.5 3

x 10
4

0

0.02

0.04

0.06

0.08

0.1

0.12
Objective function for Se and Sd 

0.5 1 1.5 2

x 10
4

0

2

4

6

8

10

12
Objective function for modulus G - connection 

1.5 2 2.5

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Objective function for modulus E - beam 

352



 

 

 

 

 

 

Plasticity-damage model parameters identification for structural connections 

 

4.1.3 Phase II of identification procedure for coupled plasticity-damage model constitutive 
parameters 

 
In this phase we need to identify eight parameters: 

con

yM - bending moment of plastic yielding 

of the connection; 
,

con

b hK - plastic hardening modulus for bending of the connection; 
con

fM - bending 

moment of damage yielding of the connection; con

dK - damage hardening modulus for bending of 

the connection; Vcon

y - shearing force of plastic yielding of the connection; 
,

con

s hK - plastic hardening 

modulus for shearing of the connection; 
beam

yM - bending moment of plastic yielding of the beam; 

beam

hK - plastic hardening modulus for bending of the beam. For identification procedure these 

parameters can be divided in three groups: beam parameters ( ,beam beam

y hM K ), shearing in connection 

( ,V ,con con

y s hK ) and bending in connection ( ,, , ,con con con con

y b h f dM K M K ). 

 
Plasticity model for beam failure 
The parameters for plasticity model for beam failure can be obtained from local measurements 

by strain gauges. The strain gauges are providing the measurements all along the loading program. 

When the plasticity is activated, we need to have values of deformation for three 

loading-unloading cycles.  
The identification can be completed successfully with this kind of measurements. Objective 

function for this identification can be written 

( ) ( ) ( ) ( )∑∑
2

1

2exp

3

1

2exp

3

1

2exp Δ-Δ+-+-=, ∑ Pi

com

PiPi

com

PiPi

com

Pi

beam

y

beam

h kkkkkkMKJ            (52) 

The objective function is shown in Fig. 9(a), we can see that function is convex, which allows 

to easily obtain its minimum. The minimization of the objective function was done using different 

methods: BFGS, DFP, Trust Region and Steepest Descent. Comparison of efficiency of these 

methods is presented in Table 1 

 

 

 

 

Fig. 8 Loading program and results of measurings in the plasticity 
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Table 1 Efficiency of different methods for minimization of   ,beam beam

h y
J K M  

Applied method for 

minimization 

Number of 
Time of computation 

Max. error of the 

Identification [%] Iterations Evolutions 

BFGS 11 21 50 s 0,00 

DFP 45 57 95 s 0,00 

Trust Region 22 23 125 s 0,00 

Steepest Descent 5 48 108 s 12,55 

 

 

Table 2 The efficiency of different methods for minimization of  ,?
con

y hs
J F K

 
Applied Method for 

minimization 

Number of 
Time of computation 

Max. error of the 

Identification [%] Iterations Evolutions 

BFGS 13 19 34 s 0,10 

DFP 16 45 75 s 3,35 

Trust Region 171 171 780 s 0,59 

Steepest Descent 37 150 380 s 0,04 

 

 

Plasticity model for shearing of the connection 
Parameters of the plasticity model for shearing of the connection can be identified from local 

measurement LVDT 5. In this part we use analogy in the loading program which has presented in 

this paper. More precisely, the loading program and expected results of measuring look same as 

presented. The chosen objective function can be written 

( ) ( ) ( ) ( )
22

1

exp

,2,2

23

1

exp

,2,2

23

1

exp

,2,2 Δ-Δ+-+-=, ∑ ∑∑ Pi

com

PiPi

com

PiPi

com

Pi

con

hsy UUUUUUKFJ
    

(53) 

The shape of this objective function we can see in Fig. 9(b). This function is convex and has a 

minimum. Results of comparison among different methods for minimization of this function are 

presented in Table 2. 

 

Coupled-plasticity model for bending deformation of the connection 
Parameters of the coupled-plasticity model for bending of the connection can be obtained from 

all measurements. This task is the most complex, where we need to have measurements at both 

global and local levels, as well as previously identified values ( ,V , , ,con con beam beam

y s h y hK M K ). Here we can 

have two different cases. In the first case, the value of damage moment is significantly larger than 

yielding moment. The second case, both bending moments have close values. 

The first case is simpler for identification, because we can identify parameters for plasticity 

first and then for damage model. We consider having this case when minimum three cycles occur 

with typical plasticity type response (unloading lines parallel with first loading line). The 

measured values should look like those in diagram in Fig. 10.  
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Fig. 9 Shapes of Objective functions 

 

 

 
 

Fig. 10 Loading program and results of measurements in the coupled plasticity-damage 

 

 

 

Objective function for identification of parameters of plasticity models for connection can be 

written as 
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(54) 

The shape of objective function is shown in Fig. 12(a). This surface is convex and it can easily 

be minimized. The minimization is done by using four different methods. The comparison of the 

results is shown in Table 3. 
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Table 3 Efficiency of different methods for minimization of  
,

,
con con

y h b
J M K  

Applied Method for 

minimization 

Number of 
Time of computation 

Max. error of the 

Identification [%] Iterations Evolutions 

BFGS 12 27 53 s 0,00 

DFP 39 51 91 s 0,00 

Trust Region 71 72 402 s 1,33 

Steepest Descent 13 69 120 s 14,80 

 

Table 4 Efficiency of different methods for minimization of  ,
con con

f d
J M K

 
Applied Method for 

minimization 

Number of 
Time of computation 

Max. error of the 

Identification [%] Iterations Evolutions 

BFGS 14 29 64 s 0,00 

DFP 50 66 137 s 0,00 

Trust Region 34 35 231 s 10,14 

Steepest Descent 9 48 87 s 20,75 

 

 

Afterward, we start identification of parameters for damage model ( ,con con

f dM K ), where the 

previously identified parameters for plasticity are kept. The identification problem is reduced to 

two parameters. The objective function is same, while only load level is different therefore we use 

measured values from last three cycles (Fig. 10). 

This objective function is convex and we can see shape in Fig. 12(b). The minimization is 

done using four different methods. The efficiency of these methods is presented in Table 4. 

The second case is the most complex, the identification can’t be split in two parts. The damage 

moment and the yielding moment have close values (Fig. 11) and we need to identify four 

parameters simultaneously. The identification of four parameters is possible with the same 

objective function, where we use results of local and global measurements. The efficiency and the 

accuracy in minimization process depend on first guest values, if we have good start values we can 

obtain parameters with acceptable errors. Results of the minimization objective function for four 

unknowns with four different methods are presented in the Table 5. In this minimization we used 

start values, which are not close to correct values. From these results we can conclude that only 

BFGS method gives results with acceptable errors (2,79 < 3%).  

 

Table 5 Efficiency of different methods for minimization of  
,

, , ,
con con con con

y h b f d
J M K M K  

Applied Method for 

minimization 

Number of 
Time of computation 

Max. error of the 

Identification [%] Iterations Evolutions 

BFGS 25 54 161 s 2,79 

DFP 58 97 289 s 13,62 

Trust Region 81 82 1333 s 6,05 

Steepest Descent 22 96 290 s 9,25 
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Fig. 11 Loading program and results of measurements in the coupled plasticity-damage 
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Fig. 12 Shapes of Objective functions 

 

 

To reduce these errors we can make control identification two by two parameters. First, we can 

identify parameters for plasticity model ( ,,con con

y h bM K  ), while damage parameters are taken as 

known. Afterword, parameters for the damage model ( d,,con con

f bM K  ) are unknown and for the 

plasticity known. In these two control identifications were determined practically same values of 

model parameters, but all methods for minimization gave us acceptable errors. 

 

4.1.4 Phase III of identification procedure for softening model constitutive parameters  

In this phase six parameters can be actived: con

uM  - ultimate bending moment of the 

connection; 
,

con

f bG   - fracture energy for bending of the connection; V con

u   - ultimate shearing 

force of the connection; 
,

con

f sG   - fracture energy for shearing of the connection; beam

uM  - ultimate 

bending moment of the beam; beam

fG
 

- fracture energy of the beam. These parameters can be 
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obtained in three different cases:  failure for bending in the connection ( ,,con con

u f bM G ), failure for 

shearing in the connection ( ,,con con

u f sV G ) and failure in the steel beam ( ,,beam beam

u f bM G ).  

Only one failure mechanism can happen. The local measurements are able to indicate which of 

the failure mechanism is activated. Failure for bending in connection can be noted from local 

measurements LVDT 3 and 4, while the failure for shearing in connection from LVDT5. The 

identification can be done for each of these cases. 

 

 

First case – softening (failure) for bending in the connection  
Objective function for this case is combination of local and global measurements. It can be 

written:  

       
4 4

2 2 2
exp exp exp

5, 5, 5,

1 1

4

5,

1

,, com com com

Pi P

con con

u f b i Pi Pi Pi PiJ F F U mM G U        
    

(55) 

The shape of this objective function is shown in Fig. 13(a). We can see, it is convex function 

and has minimum. The minimization was done with four methods. Results of the identification 

procedure are presented in Table 6. 

 

 

Table 6 Efficiency of different methods for minimization of  ,,con con

u f bM GJ  

Applied Method for 

minimization 

Number of 
Time of computation 

Max. error of the 

Identification [%] Iterations Evolutions 

BFGS 7 32 196 s 0,22 

DFP 6 35 217 s 0,75 

Trust Region 41 42 796 s 0,44 

Steepest Descent 28 75 497 s 0,45 

 

 

  
(a) Objective function  ,,con con

u f bM GJ  (b) Objective function  ,s,con con

u fF GJ  

Fig. 13 Shapes of Objective functions 
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Table 7 The efficiency of different methods for minimization of  ,s,con con

u fF GJ         

Applied Method for 

minimization 

Number of 
Time of computation 

Max. error of the 

Identification [%] Iterations Evolutions 

BFGS 2 40 48 s 2,02 

DFP 5 34 75 s 3,70 

Trust Region 21 22 139 s 5,11 

Steepest Descent 3 30 80 s 3,31 

 

 

Second case – softening (failure) for shearing in the connection 
Objective function for this case is combination of local and global measurements. It can be 

written 

       
2 2 2

exp exp exp

5, 5, 5, 5, 2

4 4 4

, , 2

1 1

s ,

1

,c com com com

Pi Pi Pi

on con

u Pi Pi PifJ F F U UF U UG      
   

(56)

 

The shape of this objective function is shown in Fig. 13(b). It is convex function and the 

minimization was done with four methods. In the Table 7, we can see that only BFGS method 

obtained results with acceptable errors.  

 

Third case – softening (failure) in the steel beam 
This failure mechanism is current if other have not activated. In this case, we can use only 

global measurements for identification softening parameters of steel beam. The local measurement 

of strain gauges isn’t useful because we don't know where the hinge will be located.   

     
2 2

exp exp

5, 5, 5, 5

4 4

,s ,

1 1

,con c com com

Pi

on

u f Pi Pi PiJ F F U UF G     
    

(57) 

The shape of this objective function is shown in Fig. 14. This function is convex, but with small 

irregularities. These irregularities can be reduced, if we use more experimental results. In this work 

we used four time point (load level) and the identification procedure was successful.  

 

 

Table 8 The efficiency of different methods for minimization of  ,b,beam beam

u fM GJ  

Applied Method for 

minimization 

Number of 
Time of computation 

Max. error of the 

Identification [%] Iterations Evolutions 

BFGS 5 27 47 s 0,75 

DFP 7 35 68 s 0,70 

Trust Region 20 21 146 s 0,88 

Steepest Descent 5 31 61 s 0,95 
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Fig. 14 The objective function  ,b,beam beam

u fM GJ  

 

 
4.2 Identification parameters of the steel connection in bending 
 

The presented identification methodology was applied to the experimental results found in the 

literature. The corresponding hysteresis curve (e.g., Shi et al. 2005) was used for approximation of 

relation bending moment – rotation. For these experimental results we have tested presented 

methodology. The hysteresis curve of the end plate connection and approximation of test results 

are shown in Fig. 15. 

The identification of model parameters starts with elastic phase, where we need to identify the 

bending stiffnesses of elasticity and damage model. Namely, coupled plasticity-damage model is 

composed of two serial connected models, so that the bending stiffness can be calculated as 

1

, ,

, 1

, , , ,

1

, ,

1

2

j bp j bd

j b

j bp j bd j b j bp

j bp j bd

S S
S

S S S S

S S








 

  


        

(58) 

 

 

Fig. 15 Typical hysteresis curve and approximation of the test results 
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where ,e d

jb jbS S  are stiffness of linear-elastic and damage model. This expression reduces 

identification to one parameter. 

Objective function can be written 

( ) ( )2exp

P11 -=, θθSSJ com

P

d

jb

e

jb                           (59) 

The objective function (Fig. 16(a)) is convex and parameters were identified successfully.         

In the second phase of identification for coupled plasticity-damage model, we start with 

simultaneous identification of four parameters.  

Objective function, which was used for the identification 

( ) ( ) ( ) ( )2exp

2

1

2exp

3

1

2exp

3

1

,,, Δ-Δ+-+-=, , ∑ Pi

com

PiPi

com

PiPi

com

Pi

con

f

con

bd

con

y

con

bh θθnθθmθθmMKMKJ ∑∑ (60) 

The objective function is convex for all parameters and process was done successfully.  

Control of these identified parameters was made in two split processes of the identification. 

First we identify two unknown for plasticity model while damage parameters are fixed and known. 

In the second cases we use analogy where two damage parameters are unknown and plasticity 

known. Shape of objective functions for both cases is presented in the Fig. 16. 

Objective functions (Figs. 16(b) and 16(c)) are convex. These control results are matched with 

results of simultaneous identification for all parameters. 

Results of identification are presented in Fig. 19(a) where we can see very good matching 

experimental and computed results. Computed results were obtained using FEM element model 

with identified constitutive parameters.  

 

4.3 Identification parameters of the connection in Timber structure 
 

In the second example, presented methodology was tested at the connection between two wood 

elements. Hysteresis curve (e.g., Mesic 2003) and approximation of experimental results are 

showed at the Fig. 17. This hysteresis curve was measured with big increment steps of 

displacement. In the middle of curve we can see gap without unloading measurings, but this enable 

to test quality of proposed methodology.  

 

 

   

(a) OF:  ,?e d

jb jbJ S S  (b) OF:  ,?con con

d fJ K M  (c) OF:  ,?con con

h yJ K M  

Fig. 16 Shapes of Objective functions 
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Fig. 17 Typical hysteresis curve and approximation of the test results 

 

The identification of models parameters is started with elastic phase, same as last example.  

Objective function can be written (Fig. 18(a)) 

( ) ( )2exp

11 -=, P

com

P

d

jb

e

jb θθSSJ                          (61) 

In second phase of identification for coupled plasticity-damage model, we start with 

simultaneous identification for four parameters.  

The objective function can be written as 

( ) ( ) ( ) ( )2exp

2

1

2exp

3

1

2exp

3

1

,,, Δ-Δ+-+-=, , ∑ Pi

com

PiPi

com

PiPi

com

Pi

con

f

con

bd

con

y

con

bh θθnθθmθθmMKMKJ ∑∑ (62) 

The objective function is convex for all parameters and process of identification is done 

successfully. 

Same as in the last example, control of identified parameters was made in two split processes of 

the identification. First we have identified two unknowns for plasticity model while damage 

parameters were fixed and known. In this case objective function is good conditioned (Fig. 16(b)). 

In the second case objective function is convex but no so good conditioned, but with the good start 

values in the minimization we can obtain good results. 

 

   
(a) OF:  ,?e d

jb jbJ S S  (b) OF:
 

 ,?con con

h yJ K M   (c) OF:  ,?con con

d fJ K M  

Fig. 18 Shapes of Objective functions 
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(a) Steel connection  (b) Timber connection 

Fig. 19 Matching results: experimental vs. computed  

 

 

Results of identification are presented in the Fig. 19(b) where we can see good matching 

experimental and computed results. Computed results were obtained using FEM element model 

and identified constitutive parameters.  

 

 

5. Conclusions 
 

We have proposed methodology for identification constitutive parameters of connection and 

material. Constitutive model of connection contain coupled plasticity-damage in hardening and 

nonlinear law for softening with different mechanisms of the failure. The hardening behavior is 

split to the bending and the shearing, but all combinations are included. The most important 

conclusions can be stated as follows:  

 Proposed methodology is able to identify all unknown parameters(eighteen), when these 

parameters were split in three phases: elasticity, hardening and softening. In every phase 

we use local and global measurements. 

 Successful identification is conditioned with enough measurments during the experimental 

test and adequate loading program. In this work were presented requirements for 

measurments (Fig. 3) and loading program. Loading program contains cycles of 

loading-unloading and in hardening we need to have minimal three cycles for every cases. 

 The focus of this work was positioned at the behavior of the constitutive models and  

choice of the objective function. In the work we showed that using loading and unloading 

cycles we can obtain all unknown constitutive parameters. These cycles are needed to 

make difference between plasticity and damage model. Both models can describe same 

behavior in the loading regime, and only in unloading we can see difference between them. 

 All cases of identification were presented in the Section 3. For illustartion of the complete 

procedure, we first used academic example of inverse analysis and all results of 

experiments were obtained from FEM model. Then, two practical examples were shown in 

the Section 4, but only for partial measurements that pertain to bending of connection, as 

the only results found in these papers. More complete experiments to fully illustrate real 

procedure capacity of one model are planned as the rational sequence of this work. 
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