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Abstract.  The article presents a theoretical-experimental approach developed for modeling the coefficient 
of sliding friction in the dynamic system tool-workpiece in slide diamond burnishing of low-alloy 
unhardened steels. The experimental setup, implemented on conventional lathe, includes a specially 
designed device, with a straight cantilever beam as body. The beam is simultaneously loaded by bending 
(from transverse slide friction force) and compression (from longitudinal burnishing force), which is a 
reason for geometrical nonlinearity. A method, based on the idea of separation of the variables (time and 
metric) before establishing the differential equation of motion, has been applied for dynamic modeling of the 
beam elastic curve. Between the longitudinal (burnishing force) and transverse (slide friction force) forces 
exists a correlation defined by Coulomb's law of sliding friction. On this basis, an analytical relationship 
between the beam deflection and the sought friction coefficient has been obtained. In order to measure the 
deflection of the beam, strain gauges connected in a “full bridge” type of circuit are used. A flexible adhesive 
is selected, which provides an opportunity for dynamic measurements through the constructed measuring 
system. The signal is proportional to the beam deflection and is fed to the analog input of USB DAQ board, 
from where the signal enters in a purposely created virtual instrument which is developed by means of 
Labview. The basic characteristic of the virtual instrument is the ability to record and visualize in a real time 
the measured deflection. The signal sampling frequency is chosen in accordance with Nyquist-Shannon 
sampling theorem. In order to obtain a regression model of the friction coefficient with the participation of 
the diamond burnishing process parameters, an experimental design with 55 experimental points is 
synthesized. A regression analysis and analysis of variance have been carried out. The influence of the 
factors on the friction coefficient is established using sections of the hyper-surface of the friction coefficient 
model with the hyper-planes. 
 

Keywords:  diamond burnishing; tool-workpiece system; slide friction coefficient; geometric nonlinearity; 

dynamic deflection; strain gage measurement 

 
 
1. Introduction 
 

It is well-known that the fatigue life of the metal engineering components is increased when in 

their surface layers, which are most loaded, beneficial residual normal compressive stresses are 

introduced through cold plastic deformation (Reid 1993, Su et al. 2008, Maximov et al. 2013). 

One of the methods by which low surface roughness, increased micro-hardness and residual 

                                                      
Corresponding author, Professor, E-mail: maximov@tugab.bg 



 

 

 

 

 

 

J.T. Maximov, A.P. Anchev and G.V. Duncheva 

 

compressive stresses in the surface layers are achieved is slide diamond burnishing (Korzynski 

2013, Korzynski et al. 2009, Korzynski et al. 2011). The essence of the method consists of 

elastic-plastic deformation of the surface layer as a result of compression of the deforming element 

to the workpiece under the influence of a normal elastic force, so that a sliding friction exists. 

The increase of the slide friction coefficient leads to an intensive wear and the presence of 

adhesion of the metal particles on the diamond deforming element, and to a deterioration of the 

quality of the treated surface. 

The friction coefficient in slide diamond burnishing includes two components – adhesion and 

deforming. The contribution of the first component constitutes (15÷40)% from the full friction 

coefficient (Yatzenko et al. 1985). According to Korzynski (2013) this coefficient is in the range 

0.02÷0.08 when processing steels. Torbilo et al. (1976) state similar values for the friction 

coefficient (0.03÷0.08), and according to Yatzenko et al. (1985) the interval of change is 

0.03÷0.12. 

There are empirical relationships used to determine the deforming component of the friction 

coefficient in the case of small speeds. According to Yatzenko et al. (1985) this component 

depends on the radius of the spherical tip of the deforming diamond and on the depth of 

penetration in the workpiece, respectively on the burnishing force. The adhesion component does 

not depend on the process parameters and it is in the range 0.025÷0.05. 

More extensive research on the friction coefficient in slide diamond burnishing process has 

been made in Russia at the end of 20
th
 century (Hvorostuhin and Ilin 1973, Torbilo et al. 1976, 

Yatzenko et al. 1985). The study mainly deals with hard high-alloyed and high-carbon steels. The 

influence of different parameters on the friction coefficient is principally evaluated by the 

one-factor-at-the time method. 

However, regression models for the friction coefficient with the participation of the four main 

process parameters (tool radius, burnishing force, feed rate, burnishing speed) are missing. 

Furthermore, information about the friction coefficient when processing rail steels R260 and 76 is 

also missing. 

The dependence of the friction coefficient on the process parameters is important in two 

aspects: 

 For finite element simulations of the diamond burnishing process (thermo-mechanical 

problem) in order to optimize the process parameters to achieve the desired quality of the treated 

surface layer (for instance residual stresses); 

 For a multi-objective optimization of diamond burnishing process, since, by itself, the friction 

coefficient is an optimization criterion - with decreasing the coefficient, the quality of the 

processed surface increases. Furthermore, the combination of the friction coefficient, the 

burnishing force and the burnishing speed, results in power of the friction forces. This power is a 

measure of the generated heat, which (despite the presence of coolant), when above a certain limit, 

causes thermo-plastic deformation of the processed surface layer. These deformations change the 

distribution of the beneficial residual stresses in the treated surface layer in a negative direction. 

In the present article a theoretical-experimental approach is developed for modeling the friction 

coefficient in diamond burnishing process of unhardened structural steels with a hardness of 220 

HB. For this purpose a special device containing a beam with geometric nonlinearity is designed 

and manufactured. The dynamic deflection of this beam is correlated with the sought friction 

coefficient. This correlation is determined analytically (using the method of separation of the 

variables in the differential equation of the dynamic deflection of the elastic line) and is 

experimentally verified. The dynamic deflection in the experimental setup is measured 
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experimentally with a specially created virtual instrument in Labview. In order to obtain a 

regression model of the friction coefficient with the participation of the diamond burnishing 

process parameters, an experimental design with 55 experimental points has been synthesized. The 

influence of the factors on the friction coefficient is established using sections of the hyper-surface 

of the friction coefficient model with the hyper-planes. 

 

 

2. A device for experimentally determining the friction coefficient 
 
2.1 Basic idea 
 
The geometrical nonlinearity of a deformable solid is expressed in a significant difference 

between the areas D  and 1D  that the body occupies in the space, respectively in natural and 

elastic equilibriums. Because of that, the conditions for equilibrium are made for the deformed 

geometry. A particular case of geometrical nonlinearity of a straight beam, even at small 

displacements, is when the same is loaded simultaneously with an axial and a transverse force. For 

the two forces the principle of independence of their action is not applicable.  

Such a beam structure with а geometrical nonlinearity is contained in the device developed by 

the authors for the experimental determination of the slide friction coefficient between the 

deforming element and the workpiece in the diamond burnishing process (Fig. 1). The burnishing 

force bP  is one of the main process parameters and the slide friction force T , transverse to the 

cantilever beam, is determined by Coulomb's law bPT  , where   is the friction coefficient, 

which is to be determined. This coefficient depends on the manufacturing parameters of the 

diamond burnishing process: r  - radius of the deforming diamond tip, bP  - burnishing force; 

f  - burnishing feed; v  - burnishing speed. It is assumed that Coulomb's law always holds true. 

Under the action of the two forces bP  and T , the elastic line of the beam is distorted and the 

deflection of the cross-section with abscissa x  is registered by an indicator. The force bP  is 

set by a helical spring with stiffness c , and the force T  is determined by Coulomb's law. For 

specific pair bP  and  , a corresponding deflection  w  is obtained. If the dependency 

   w  is known, then for every measured  w  the friction coefficient will be readily 

calculated.  

 

2.2 Physical model 
 

Fig. 1 shows a photograph of the device (a), a scheme of work (b) and a beam model (c). An 

object of dynamic modeling is a cantilever beam with length L , constant cross-section, and 

bending stiffness EJ . The beam is loaded in its free end by transverse and axial forces and the 

ratio of their magnitudes is equal to   (Fig. 1(c)). At the beam’s free end mass m  is 

concentrated. The traditional analytical method for dynamic analysis of beams is based on the 

well-known partial differential equation of the elastic line from fourth order concerning the metric 

coordinate and involving partial derivatives at the time from first and second orders, which 

account for the distributed resistance and inertial forces respectively. Very often in engineering 

applications the elastic line of the beam corresponds to its main semitone in free and forced 
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vibrations. For this reason in the present work the method developed by Maximov (2014) is used 

 The function of the elastic line deflection is presented as 

      xytx,tw   (1) 

where  t  is a normal coordinate and  xy  is a normal function (shape function of the elastic 

line); 

 The normal function is selected in advance so as to satisfy the boundary conditions, using the 

trigonometric series method (Timoshenko 1922, Maximov 2014).  

 Thus, the separation of the variables is carried out in advance, and the function of the normal 

coordinate is determined by solving an ordinary differential equation. 

In this case (Fig. 1(c)), it is appropriate for the normal function to be chosen 

 
L2

x
cos1xy


                             (2) 

where  L,0x . 

 

 

 

 

Fig. 1 Device and model: 1 - beam; 2 - spring; 3 - deforming element; 4 - workpiece 
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This function satisfies the boundary conditions:     00y0y  . 

Moreover, in the defined interval the curvature does not change its sign, i.e.: 

  0
L2

x
cos

L4
xy

2

2




 for 









2
,0

L2

x 
. 

 

2.3 Dynamic behaviour 
 

The equation of motion of the elastic line of the physical model of Fig. 1c is obtained from 

 


Q
EEE

dt

d pkk 















 (3) 

The kinetic energy kE  is 

 m
k

b
kk EEE   (4) 

where  

  2

L

0

22b
k FL1134.0dxxy

2

F
E 


    

is beam kinetic energy,   is density and  xy  is defined by (2) 

 2

2

2
2m

k I
L42

1
m

2

1
E 


    (5) 

is kinetic energy of the concentrated mass, I  is a mass moment of inertia about an axis defined by 

abscissa Lx   and perpendicular to the beam axis. 

The beam potential energy is 

    2

0

3

4
22

p
L64

EJ
dxxy

2

EJ
E 


  



 (6) 

Q  is the summarized force by the external load: transverse force bPT   and axial force 

bP  (the forces of the weights of the beam and concentrated mass are ignored). The summarized 

force is determined by the principle of virtual displacements. An increase of the deflection w , 

equal to w , is set which leads to a distortion of the elastic line 

   









L2

x
cos1xyw


   

and to the slope angle 

  
L2

x
sin

L2
xy

x

w 
 












.   
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The transverse force bP  performs a virtual transverse displacement 

    
LxP xyw  (7) 

The moment with magnitude aPb  performs a virtual rotation 

  
L2

xy
Lx


 


 (8) 

The axial force bP  performs an axial displacement  

  
L16

dxxw
2

1
L

2
2

L

0

2 
     

and the virtual axial displacement is 

 







L8

L 2





 (9) 

The virtual displacement of the summarized force Q  is  . Taking into account the 

relationships (7) - (9), from the equation of the virtual work  







 bb

2

b P
L2

a
P

L8
PQ   

the summarized force is determined 

 


 b

2

b P
L8L2

a
1PQ 








                         (10) 

In fact, the axial force bP  varies insignificantly in the process of diamond burnishing for two 

reasons: 

 deviation from the correct geometric shape of the workpiece in cross-section and longitudinal 

section; 

 machine spindle whipping. 

The first reason has a stochastic nature of a particular workpiece and is not subject to an 

analytical model. The second reason leads to a change of burnishing force in accordance with a 

harmonic law with the frequency   of the machine spindle. 

Let the machine spindle whipping is 2 . Then bP  can be presented as: 

 tsincPP n
bb   

where c  is the stiffness of the spring. 

Changing the axial force magnitude from zero to bP , due to the nature of the device from Fig. 

1 shall be made for a time pt , assuming a linear law. Then, for the axial force bP , it follows 
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  tsincP
t

t
P n

b
p

b   за  Pt,0t  (11) 

 tsincPP n
bb   за   ,tt P  (11а) 

First, the dynamic behavior of the beam is considered in the time interval  Pt,0t . From 

(3)-(6), (10) and (11) for the differential equation of change of the normal coordinate it follows 

   tsintKtKt 21
2    (12) 

where 

    tsincP
t

t

Lm8mL32

EJ
t n

b
P

*

2

*3

4




   (13) 

I
L4

mFL2268.0m
2

2
* 

   is the reduced mass, 
*

P

n
b

1
mt

P

L2

a
1K 











 , 

*
P

2
mt

c

L2

a
1K


 








 . 

The function  t  is visualized in Fig. 2 in the time interval  Pt,0t  for the following 

numeric data: the beam cross-section is а rectangle 2mm612 , a length mm80L  ; 

3m/kg7850 ; kg05.0m  ; 25 kgm102I  ; mm30a  ; s1tP  ; N400Pn
b  ; 

m/N10c 5 ; mm05.02  ; 1s40  . Due to the insignificant change of the function, it is 

accepted the same to be replaced by the constant 

*

n
b

2

*3

4

Lm8

P

mL32

EJ 
                       (14) 

i.e., the frequency spectrum (13) is replaced by the eigenvalue (14) corresponding to the normal 

function (2). 

 

 

Fig. 2 Graph of the function  t   

  t

 

mm80L  ; 3m/kg7850 ; kg05.0m  ; 

25 kgm102I  ; mma 30 ; s1tP  ;  

N400Pn
b  ; m/N10c 5 ; mm05.02  ; 

1s40   

time t, s

n
a

tu
ra

l 
fr

e
q
u

e
n
c
y,

 1
/s
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After substitution of (14) into (12), the total integral of the resulting equation with constant 

coefficients is 

  ttcosctsinc 21    (15) 

and the private integral  t  is sought by the method of undetermined coefficients in the form 

       tcosHGttsinDCtBAtt    (16) 

After substitution of (14) and (16) into (12) and equalizing the relevant coefficients, for 

unknown constants А , B , C , D , G  and H it follows 

 
2
1КА


 ; 0GDB  ; 

22
2K

C
 

 ;
 222

2K2
H







 . 

The working frequency   always satisfies the condition   , which can be seen from the 

graph and the numerical data in Fig. 2, since 1s5.1920   and 1s10010  . 

The initial conditions are 

     000                                 (17) 

From (15)-(17) for the constants ic  it follows 

 
3
1

1

K
c


 ; 

 222

2
2

K2
c







                         (18) 

Finally, from (1), (2), (15), (16) and (18) for the functions of the dynamic deflection it follows 

 

 
 

 






































L2

x
cos1

tcos
K2

tsint
K

t
K

tcos
K2

tsin
К

x,tw

222

2
22

2
2
1

222

2
3
1



















 (19) 

for  Pt,0t , and 

 

 
 

 






































L2

x
cos1

tcos
K2

tsin
tKtK

tcos
K2

tsin
К

x,tw

222

2
22

P2
2
P1

222

2
3
1



















 (20)  
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for   ,tt P . 

 

2.4 Determination of the function    w  

 

Fig. 3 shows a visualization of (19) and (20) for mm60x  . The amplitudes of the free 

vibrations (Fig. 3b) and of the forced vibrations (Fig. 3(c)) are respectively three and two orders 

smaller than the deflection (Fig. 3(a)) caused by the nominal magnitude of the burnishing force 

bP  in the interval   ,tt P . Moreover, in reality, the free vibrations are quickly hushed, mainly 

due to material hysteresis and energy dissipation at the place of the beam fixing. Therefore, with 

sufficient accuracy for the engineering practice, it can be worked with the static deflection, which 

is obtained when in (20) the harmonic functions are ignored 

  









L2

x
cos1

tK
xw

2

p1 


 

 

 

Fig. 3 Deflection of the section with abscissa mm60x   versus time: a. resultant deflection, (b) 

deflection by the free vibration with natural frequency, corresponding to the shape defined by (2) 

and (c) deflection by the free vibration 

time t, s

a. time t, s

  ,tww 

d
e
fl
e
c
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m

c. time t, s

d
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d
e
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c
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Taking into account (14) and the expression for 1K , the deflection of arbitrary section with 

abscissa x  takes the following form 

  






















L2

cos1
PL4EJ

LP
L2

a
132

w
n

b
224

3n
b 






                      (21) 

For the desired function    w  it follows 

     wPn
b  (22) 

where 

  






















L2
cos1LP

L2

a
132

PL4EJ
P

3n
b

n
b

224
n

b 


 . (23) 

The denominator of (21) is always greater than zero since 

 
 2

2
n
cr,b

n
b

L2

EJ
PP


 , 

where n
cr,bP  is the known Euler’s critical force for the first case of fixing 

 

2.5 Experimental verification 
 

An experimental verification is made of the dependence of the deflection by the transverse 

force T  (see Fig. 1(b)). The analytical form of this dependence is obtained from (21) after 

substitution of TPn
b   

   kTw                              (24) 

where  

 






















L2

cos1
PL4EJ

L
L2

a
132

к
n

b
224

3







 (25) 

Obviously the imported by the burnishing force n
bP  geometric nonlinearity is negligible. 

The experimental setup for experimental determination of the dependence    Tfw   is 

depicted in Fig. 5 and Fig. 6 shows the obtained experimental outcomes. The comparison for k  

is carried out for the case when 0Pn
b   - the value of the function  

0P

n
b n

b

Pk


  is reported by 

Fig. 4, since the experiment is conducted without the existence of an axial force n
bP . 

 

 

288



 

 

 

 

 

 

Modeling of the friction in the tool-workpiece system in diamond burnishing process 

 

 

 

Fig. 4 Graph of the dependence  n
bPkk   

 

 

 

Fig. 5 Experimental determination of the dependence    Tfw   

 

 

Fig. 6 Experimental results 
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Fig. 7 Typical graphic of the experimentally obtained dependence  t,ww   

 

 

From Fig. 6 for the slope of the straight line N/m1081.3k 6exp   is obtained and from Fig. 4 

  N/m10825.3Pk 6

0P

n
b n

b




  

is accounted. The obtained result gives a basis for formula (25), respectively the graph in Fig. 4, to 

be considered credible and reliable, which means that formulas (22) and (23) for determining the 

friction coefficient are also credible and reliable. 

 

 

3. Experiment study 
 

3.1 Conditions of the experiment 
 

● The objective function is the friction coefficient  . The latter was calculated by (22), where 

the deflection  w  is experimentally determined for each point of the experimental plan and the 

component (23) is a function of the burnishing force bF . The deflection  w  is an average 

value of the measured dynamic deflection  t,w  , which is a function of time. Fig. 7 shows a 

typical graphic of the function  t,w   and its averaged value - in the case of point №9 from the 

experimental design. 

● The governing factors are: radius r  of the spherical tip of the deforming element, made of 

synthetic diamond; burnishing force bP ; burnishing feed rate f ; burnishing feed v . The 

varying levels of the governing factors are shown in Table 1. The factors measured in natural 

physical units are marked with ix~ . During the experiment each of the factors ix~  alters in a given 

interval max,iimin,i x~x~x~  . The lower limit min,ix~  of this interval is called lower level, the 

upper one max,ix~  is upper level and the middle 0,ix~  of this interval is the factor’s basic level. 

The factors used in the experiment have different dimensions. In order to eliminate the 

experimental plan’s dependence from the dimensions, the factors ix~  are transformed into a coded 
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form ix  through dependence 

  0,imax,i0,iii x~x~/x~x~x                       (26) 

● The specimens material is an unhardened low-alloy constructional steel 37Cr4 with hardness 

of 220 HB. The carried out indentation test (about the nature of such a test see for example 

Sartkulvanich et al. 2007) showed that the behavior of the surface layer of this steel is similar to 

that of the rail steels R260 and 76. In this experiment steel 37Cr4 is used, since it is more prevalent 

in the form of rolled metal, which is suitable for producing axisymmetric samples. The latter have 

a diameter of 36 mm. The initial roughness of the samples is in the range m4.22.1   under 

criterion Ra , according to recommendations given by Korzynski (2013). 

● Synthetic deforming diamond with spherical tip is used. The experiment is carried out on a 

conventional lathe C11. A lubricant-cooler Hakuform 70-19 is used. 

 

 
Table 1 Governing factors and their levels 

  Levels of the factors 

Coded (Dimensionless) 

Governing factors  -1 0 +1 

Natural ix~  Coded ix  
 Natural  

Diamond radius,  mmr , 1x~  1x  1 3 5 

Burnishing force,  NFb , 2x~  
2x  100 300 500 

Burnishing feed,  rev/mmf , 3x~  3x  0.075 0.15 0.225 

Burnishing speed,  min/mv , 4x~  4x  80 110 140 

 

 

 

Fig. 8 Experimental setup 
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● The experimental setup is shown in Fig. 8. In order to measure the deflection of the beam, 

strain gauges connected in a “full bridge” type of circuit are used. The connected scheme does not 

account the compressive force in the beam and has the highest sensitivity regarding the bending 

moment. A flexible adhesive is selected, which provides an opportunity for dynamic measurements 

through the constructed measuring system. The signal is proportional to the beam deflection and is 

fed to the analog input of USB DAQ board, from where the signal enters in a purposely created 

virtual instrument which is developed using Labview. The basic characteristic of the virtual 

instrument is the ability to record and visualize the measured deflection in real time. The signal 

sampling frequency is 50 Hz, which is chosen in accordance with the theorem of sampling of 

signals (Nyquist-Shannon sampling theorem). 

 

3.2 Experimental design 
 

An optimal composed second-order design with 24 experimental points is expanded to 55 

experimental points in order to conduct preliminary experiments using the one-factor-at-the time 

method with at least three experimental points. By means of QstatLab (Vuchkov and Vuchkov 

2009) a regression analysis of the obtained experimental results is carried out. For the objective 

function (friction coefficient  ) 

3231
2
4

2
2

2
14321

xx0078.0xx0233.0x0065.0

x008.0x0319.0x0041.0x0109.0x0087.0x0426.00541.0




 (27) 

is obtained, where ix  is determined by the dependence (26). 
 

 

 

Fig. 9 Graphics of the main effects of the factors 
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Fig. 10 Sections of the hyper-surfaces of the friction coefficient model with different hyper-planes 
 

 

Eq. (27) has an empirical nature since it is obtained by an experimental way and a regression 

analysis on the basis of an experimental design. It is not obtained by analytical approach on the 

basis of physical laws. 

In order to estimate the significance of the governing factors as well as the interaction between 

them, the factors are presented in coded mode (dimensionless) in the regression model in 

accordance with Eq. (26). Each factor is changed in the interval 1x1 i  . Then the 
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coefficients in Eq. (27) have the dimension of the objective function, and the absolute values of 

these coefficients are a measure of the importance of the factors as well as the interaction between 

them. For instance, the interaction between the factors 1x  and 3x  is most greatly expressed. 

Analysis of variance (ANOVA) has been conducted by means of QStatLab package in order to 

estimate in qualitative aspect the factors significance on the friction coefficient model. When the 

experimental approach for investigation of a given process is used, this is a generally accepted 

practice. The main effects of the factors have been shown in Fig. 9. Obviously, the most significant 

factor is the diamond radius 1x , and the feed rate 3x  has the least importance. In order to obtain 

the minimum values of the friction coefficient, it is necessary the diamond radius to be maximum 

and the remaining factors to have values around the middle of the range of variation of the 

corresponding parameter. 
Fig. 10 shows sections of the hyper-surfaces of the friction coefficient model with different 

hyper-planes. From the four factors, of biggest influence on the friction coefficient has the radius 

of the diamond. Increasing of the radius from 1 to 5 mm, ceteris paribus, leads to a reduction of the 

friction coefficient by 4 times. From physical point of view this fact is expected since with 

increasing the radius, the depth of penetration of the diamond decreases, which leads to a reduction 

of both components, and hence of the overall friction coefficient. Fig. 10 confirms that the 

correlation between the diamond radius and the feed rate is most significant, as the trend is more 

pronounced for small feed rates. 

 

 

4. Conclusions 
 

A theoretical-experimental approach has been developed for modeling the coefficient of sliding 

friction in the dynamic system tool-workpiece in slide diamond burnishing of low-alloy 

unhardened steels. The designed experimental setup includes a nonlinear cantilever 

Bernoulli-Euler beam. An analytical relationship between the beam deflection and the sought 

friction coefficient has been obtained. From this relationship, after experimentally determining the 

beam deflection, the dependence of the friction coefficient on the diamond burnishing governing 

parameters has been obtained. The influence of the burnishing parameters on the friction 

coefficient has been established using sections of the hyper-surface of the friction coefficient 

model with the hyper-planes. It has been ascertained that the deforming diamond radius has the 

biggest influence and the feed rate has the smallest. 
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