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Abstract.  A significant problem met in engineering practice when designing cable-stayed bridges is 
the failure of cables. Many different factors can lead to sudden failure of cables, such as corrosion, 
continuous friction or abrasion, progressive and extended crevice created by fatigue and finally an 
explosion caused by sabotage or accident, are some of the causes that can lead to the sudden failure of 
one or more cables. This paper deals with the sudden failure of cables in a special form of cable-stayed 
bridges with a single line of cables anchored at the central axis of the deck’s cross-section. The analysis 
is carried out by the modal superposition technique where an analytical method developed by the 
authors in a previous work has been employed.  
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1. Introduction 
 

Cable stayed bridges have been known since the beginning of the 18th century, but they have 
been of great interest only in the last fifty years, particularly due to their special shape and also 
because they can serve as an alternative solution to suspension bridges for long spans. The main 
reason for this delay in their use was the difficulties in their static and dynamic analysis, the 
involvement of various types of nonlinearities, the absence of computational capabilities, and the 
lack of high strength materials and construction techniques. Numerous studies exist concerning the 
static behavior, such as the works of Bruno and Grimaldi (1985), Fleming (1979), Khalil (1999), 
Kollbruner et al. (1980), Gimsing (1997), Michaltsos et al. (2003), Virgoreux (1999), the dynamic 
analysis, such as the works of Freire et al. (2006), Chatterjee et al. (1994), Nazmy and 
Abdel-Ghaffar (1990), Abdel-Ghaffar and Khalifa (1991a,b), Fleming and Egeseli (1980), Bruno 
and Golotti (1994), Achkire and Preumont (1996), Michaltsos (2001), Konstantakopoulos et al. 
(2002), Wang et al. (2010), and the stability of cable-stayed bridges, such as the works of 
Ermopoulos et al. (1992), Bosdogianni and Olivari (1997), Michaltsos (2005), Michaltsos et al. 
(2008). 

A significant problem arising from the engineering practice is the failure of cables. There are 
many factors that can lead to sudden failure of stay cables. Corrosion, continuous friction or 
abrasion, progressive and extended crevice created by fatigue, and finally an explosion caused by  
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Photo 1 The tallest bridge of the world: Bridge of 
Millau over the Tarn valley 

Photo 2 The Cantenario Bridge in Panama 

 
 

sabotage or an accident are some of the causes that can lead to the sudden failure of one or more 
cables. 

The failure of one or more cables causes a redistribution of forces and stresses not only on the 
remaining stay cables, but also on the bridge-deck and onto the pylons. Existing codes and 
recommendations such as SETRA (2001) and PTI (2007) confront this accidental stress state by 
applying a dynamic amplification factor (DAF) to the forces and stresses, which can be obtained 
by the static analysis of the bridge. Nevertheless, these regulations after experimental testing 
(Mozos 2007) and FEM analyses (Mozos and Aparicio 2010a, b) have been proved inadequate 
(Del Olmo and Bengoechea 2006).  

Both SETRA and PTI recommendations propose a dynamic amplification factor equal to 2.0 
(maximum value), that is also recommended in many classical references (as for example in 
Mozos and Aparicio 2009). These values are valid for a single degree-of-freedom system subjected 
to a rectangular pulse. Mozos and Aparicio (2009) proved that under certain conditions the DAF 
factor can reach values larger than 2.0 for a multiple degree-of-freedom system under a pulse of 
infinite duration. The above recent publications along with the ones by Ruiz-Teran and Aparicio 
(2007), Wolff and Starossek (2009), Starossek (2009) have proven that the proposed DAF factors 
are unsafe. 

This paper deals with the sudden failure of cables in a special form of cable-stayed bridges like 
the one shown in Photos 1 and 2, where a single line of cables is anchored at the central axis of the 
deck’s cross-section. The analysis is carried out by the modal superposition method using the 
analytical process presented in Konstantakopoulos (2004), Petalas and Konstantakopoulos (2005), 
Konstantakopoulos et al. (2002). Characteristic examples are solved and useful diagrams and plots 
are drawn, while interesting results are obtained. 
 
 
2. Analysis 
 

The following analysis concerns a cable-stayed bridge with a single line of cables anchored at 
the central axis of the deck’s cross-section. 

 
2.1 Stress state of the pylon 
 
The deformation f(z) at the random point A(z) of a pylon with height h (see Fig. 1) is given by  
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Fig. 1 The deformed pylon 
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where Ep and Ip are the elasticity modulus and the moment of inertia of the pylon, respectively. The 
boundary conditions are: f(0) = f ’(0) and Eq. (1a) give 
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2.2 The isolated cable 
 
Let us consider the bridge shown in Fig. 2, with one line of cables anchored at the center of the 

deck’s cross-section.   
 The bridge is stayed by ρ-cables at the left, and κ-cables at the right of pylon a, and by 

κ-cables at the left and ρ-cables at the right of pylon b.  
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Fig. 2 A three-span cable-stayed bridge 

 
 
For the cable “i” of Fig. 2, we get: iiiiii fswss  sincos   or 

iiii wfs  cossin                           (2a) 

And because of iciii AEPss / , the above Eq. (2a) becomes 

iii
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ii wf
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Ps  cossin                          (2b) 

where Ec is the modulus of elasticity of the cables and Ai is the cross-sectional area of the cable 
“i”. 

 
2.2.1 Thin arrangement of cables 
The total deformation at the top of the pylon due to the acting horizontal forces is 
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Applying Eq. (2b) on both sides of the pylon, we obtain 
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Fig. 3 Notations and symbols right and left of the pylon 
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Multiplying the first of Eq. (3b) by ajsin , adding the ρ - equations, and then multiplying the 

second of Eq. (3b) by aisin  and adding the κ-equations, we obtain the following relations 
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Subtracting the above equations from each other, we finally obtain 
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From Eq. (3b) one can easily obtain the cables’ stresses, which are 

a
ai

ai
o

ai

ai
ai

a
aj

aj
o

aj

aj
aj

b
fw

b
P

b
fw

b
P









sincos

sincos

2

1

                     (3e) 

h

h0

α1

α

αj 
αi

α +1

α +

φ i
φ j

αρ+κ

left side right side 

Pi Pj  

Pj  Pi 

349



 
 
 
 
 
 

I. G. Raftoyiannis, T.G. Konstantakopoulos and G.T. Michaltsos 

 
Fig. 3 Notations and symbols right and left of the pylon 

 
 
2.2.2 Dense arrangement of cables 
Let us consider next that the cables are in a dense arrangement and that the distances δj and δi 

between two neighboring cables satisfy the conditions 

11     ij and                   (4a) 

In this case, we may consider an equivalent distributed load  qz(x), applied from position α1 to 
αρ and from αρ+1 to αρ+κ , which for instance at position “i” will be 
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and through a similar process like the one of §2.3.1, we get for pylon a 
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Similarly, for pylon b we get 
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2.3 The static problem 
 
The equilibrium equation of the deck of a cable-stayed bridge loaded symmetrically is the 

following 

                        )()( xpxwIE totobb                            (5a) 

where  
Eb is the modulus of elasticity of the bridge deck, 
Ib is the moment of inertia of the cross-section of the bridge deck,       

wo(x) is the total vertical displacement of the deck under the static loads g and p. 

               cos/),()()( wxqxpxgptot                       (5b) 

In the last equation      
g(x) is the dead load of the bridge, 
p(x) is the live load 
q(x,w) are the forces due to the cables  
Therefore Eq. (5a) becomes 
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We are searching for a solution of the form 
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where ci are unknown coefficients under determination and Zi(x) are arbitrarily chosen functions of 
x, which must satisfy the boundary conditions of the deck. In this case, the shape functions of the 
corresponding continuous beam were chosen (which has the same characteristics with the bridge 
deck but without cables).   

Introducing the above into Eq. (5c), and taking into account Eqs. (4d) and (4e), we get 
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where Z1n, Z2n, Z3n are the nth shape functions of the first, second and third span.  
Multiplying the above equation by Zρ, integrating, and taking into account the orthogonality 

condition, we get 
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and n = 1,2,3,… , n              
Applying the first of Eqs. (6.b) for n = 1, 2, …, n  we get a linear homogeneous system, from 

which the solution for the unknown c1, c2, …, cn.  are obtained. 
 
2.4 The dynamic characteristics of the bridge 

 
The equation of motion of a free vibrating bridge is 

sy qtxwmtxwctxwEJ  ),(),(),(                     (7a) 

We are searching for a solution in the form of separate variables such as 
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In order for us to apply Galerkin’s procedure, we set 

 )()()()( 2211 xcxcxcxZ nn                   (7d) 

where ci are unknown coefficients, under determination, and )(xi  are functions of x  
arbitrarily chosen, that satisfy the boundary conditions, of the static system of bridge-deck. As 
such, the functions we choose for the shape functions of the corresponding static system of 
beam-deck (a continuous beam or a set of three single-span beams) have the same characteristics 
with the bridge-deck without cables. 

Introducing Eq. (7d) into (7a), multiplying the outcome  successively by Ψ1, Ψ2, ....,Ψn , and 
integrating the results from 0 to L, we obtain the following homogeneous linear system of  
n-equations, with unknowns  c1, c2, …., cn 
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In order for the above system to have non-trivial solutions, the determinant of its coefficients 
must be zero, i.e. 

ijijijij BAandnjiwith 4,,2,1,0             (7g) 
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where Xn(x) are the shape functions of the bridge with combined cable system. 
 

2.5 Failure of cables 
 
The following analysis concerns a cable-stayed bridge with a single line of cables anchored at 

the center of the deck’s cross-section. The problem of the failure of cables can be studied as 
follows.  

Let us consider the bridge of Fig. 5(a), which is at rest under the loads g (dead load) and p (live 
load). Thus, one can determine the deformations of the deck wo(x), applying § 2.3. 

Suddenly, at time t = 0 the hatched cables of Fig. 5(b) failed. The static system of the bridge 
changes to another that is like the initial one but without the failed cables. One can determine the 
dynamic characteristics of this new static system (i.e., eigenfrequencies and shape functions) by 
applying § 2.4.   

The equation of motion of the bridge after the failure of “s” cables is 

),()()( wxqtPxpgwmwcwIE sy                   (8a) 

We are searching for a solution under the form 


n

nn tTxZtxw )()(),(                           (8b) 

where Tn(t) are unknown time functions (under determination) and Zn(x) are arbitrarily chosen 
functions of x, which must satisfy the boundary conditions of the deck. In the present case, the 
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Fig. 5 Initial and damaged bridges 

              

shape functions of the damaged cable-stayed bridge are chosen as those determined by applying § 
2.4. 

Introducing Eqs. (8b) into (8a), we get 
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Remembering that Zn satisfies the equation of the free motion of the wounded bridge 
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the above (8c) becomes 
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Multiplying the above by Zk, integrating from 0 to L, and remembering the orthogonality 
condition, we finally obtain 
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The solution of the above is given by the Duhamel integral 
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Therefore the general solution of Eq. (7b) is given by 
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The constants An and Bn are determined from the time conditions 
0),()(),(  ooo txwandxwtxw   

as follows 
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3. Numerical results and discussion 

 
In order to study the influence of the sudden failure of cables on the bridge’s behavior and 

static adequacy, we consider a bridge with the following data: L1=150 m, L2=350 m, L3=150m, g = 
7000dN/m, (m=700 gr/m), Ib = 0.50 m4, IP =1000 Ib, α1 = 20 m, αρ =130 m, αρ+1 = 30 m, αρ+κ=170 m, 
β1 = 180 m, βκ = 320 m, βκ+1 = 20 m, βκ+ρ = 130 m, and live load p = 7000dN/m. The distance 
between two neighboring cables is 5 m. 

Five cases are studied: the non-damaged bridge, a bridge under the sudden failure of 15 cables, 
a bridge under the sudden failure of 10 cables, a bridge under the sudden failure of 5 cables, a 
bridge under the sudden failure of 1 cable.  

 
3.1 The non-damaged bridge 
 
Considering the complete bridge (without failed cables) and applying the formulae of §2.3, we 

get the plots of Fig. 6, where the deformations of the bridge are shown, and also the plots of Fig. 7, 
where the cables’ stresses are shown. The dimensions in these as well as the following figures 
given are in meters and kN. 
 

3.2 The damaged bridge 
 
Applying the formulae of §2.5, we get the following plots concerning the three first time 

functions Tg1, Tg2, Tg3 and Tgp1, Tgp2, Tgp3 for action of the dead loads and for simultaneously action 
of dead and live loads, respectively.  

One can easily see, that after 10 seconds the bridge becomes at rest, while the maximum 
excitation happens at t = 0.9 sec after the sudden failure of cables.  

 
3.2.1 Failure of 15 cables 
For the case of a sudden failure of 15 cables, we get the following plots of Figs. 9 to 12, at time 

0.9 sec and 20 sec. We see that both deformations and cables’ stresses at both instants are 
unacceptable.  

 

356



 
 
 
 
 
 

Dynamic response of cable-stayed bridges subjected to sudden failure of stays – The 2D problem 

100 200 300 400 500 600
x

0.2

0.4

0.6

0.8

1

Wo
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Fig. 8 The time functions Ti (i = 1, 2, 3), for dead and dead+live loads 
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Fig. 9 Deck’s deformations at t = 0.9____ dead load _ _ _ dead and live loads 
 

Fig. 10 Deck’s deformations at t = 20____ dead load _ _ _ dead and live loads 
 

Fig. 11 Stresses of cables at t = 0.9____ dead load _ _ _ dead and live loads 
 

 

Fig. 12 Stresses of cables at t = 20____ dead load _ _ _ dead and live loads 
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Fig. 13 Deck’s deformations at t = 0.9____ dead load _ _ _ dead and live loads 
 

Fig. 14 Deck’s deformations at t = 20____ dead load _ _ _ dead and live loads 
 

Fig. 15 Stresses of cables at t = 0.9____ dead load_ _ _ dead and live loads 
 

Fig. 16 Stresses of cables at t = 20____ dead load _ _ _ dead and live loads 
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Fig. 17 Deck’s deformations at t = 0.9____ dead load_ _ _ dead and live loads 
 

Fig. 18 Deck’s deformations at t = 20____ dead load _ _ _ dead and live loads 
 

Fig. 19 Stresses of cables at t = 0.9____ dead load _ _ _ dead and live loads 
 

Fig. 20 Stresses of cables at t = 20____ dead load _ _ _ dead and live loads 
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Fig. 21 Deck’s deformations at t = 0.9____ dead load _ _ _ dead and live loads 
 

Fig. 22 Deck’s deformations at t = 20____ dead load _ _ _ dead and live loads 
 

Fig. 23 Stresses of cables at t = 0.9____ dead load _ _ _ dead and live loads 
 

Fig. 24 Stresses of cables at t = 20____ dead load _ _ _ dead and live loads 
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Fig. 25 Cable stresses developed due to failure of one cable 

 
 

3.2.2 Failure of 10 cables 
For the case of a sudden failure of 10 cables, we get the following plots of Figs. 13 to 16, at 

time 0.9 sec and 20 sec. We see that both deformations and cables’ stresses are unacceptable 
(except the deck’s deformations of Fig. 14 at t = 20 sec, that however are very great).  

 
3.2.3 Failure of 5 cables 
For the case of a sudden failure of 5 cables, we get the following plots of Figs. 17 to 20, at time 

0.9 sec and 20 sec. We see that at t = 0.9 sec we have very large deformations and unacceptable 
cables’ stresses, while when the bridge becomes at rest both deformations and cables’ stresses are 
acceptable. 

 
3.2.4 Failure of 1 cable 
For the case of a sudden failure of 1 cable, we get the following plots of Figs. 21 to 24, at time 

0.9 sec and 20 sec. We see that both deformations and cables’ stresses are acceptable although the 
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cables’ stresses at t = 0.9 sec are greater than the designed ones. 
 
3.2.5 A more detailed observation of the cables’ stresses 
Let us see now the cables’ stresses at different instants.  Studying the behavior of the bridge in 

connection with time, we get the following Fig. 25, showing the cables’ stresses time history. 
We see the passage of the stresses of some cables from their maximum (at t = 0.9 sec, 

immediately after fracture) to negative stresses (i.e., unstressed cables). 
 
 
4. Conclusions 
 

A simple approach for studying the response of cable-stayed bridges due to sudden failure of 
one or more cables is presented.  The numerical results have been obtained by closed-form 
analytical solutions. On the basis of the representative cable-stayed bridge models analyzed herein, 
the following conclusions can be drawn: 

- One must distinguish between the case of a sudden failure of one or more cables caused by 
an accident or an unexpected incident, and the case of a scheduled (or planned) replacement of 
some cables.  In the first case, even if only one cable has failed, the developed stresses are 
significant, especially for a traffic-loaded bridge. In the second case where the bridge is at rest, one 
can replace a big number of cables (preferably unloaded bridge). 

- The sudden failure of cables induces unexpected, violent and unforeseen oscillations of high 
amplitude to the bridge. Therefore, it is obvious that SETRA and PTI codes cannot confront or 
predict such an incident by simply recommending a maximum dynamic amplification factor equal 
to 2.      

- The consequences of a violent cable failure are so intense, that unexpected phenomena 
appear as for example instantaneously relaxed (unstressed) cables. 

- The deformations of the deck can be amplified from 1.05 to 2.5 times relative to the ones of 
the same bridge at rest, while the cable stresses can be higher from 1.1 to 3.3 times, respectively. 

- The proposed dynamic amplification factor by SETRA and PTI recommendations (with 
maximum value equal to 2.0) is sufficient for a sudden failure of up to 5 cables. Given thought that 
such a failure of more than one or two cables is due to an accident or explosion and that additional 
distress is produced by the accident or explosion itself, it is obvious that the above factor must take 
significantly higher values than 2.0. 
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