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Abstract.  The coupled free vibration of flexible structures and on-board liquid in zero gravity space 
was analyzed, considering the spacecraft main body as a rigid mass, the flexible appendages as two 
elastic beams, and the on-board liquid as a “spring-mass” system. Using the Lagrangians of a rigid 
mass (spacecraft main body), “spring-mass” (liquid), and two beams (flexible appendages), as well as 
assuming symmetric motion of the system, we obtained the frequency equations of the coupled system 
by applying Rayleigh-Ritz method. Solving these frequency equations, which are governed by three 
system parameters, as an eigenvalue problem, we obtained the coupled natural frequencies and 
vibration modes. We define the parameter for evaluating the magnitudes of coupled motions of the 
added mass (liquid) and beam (appendages). It was found that when varying one system parameter, the 
frequency curves veer, vibration modes exchange, and the significant coupling occurs not in the region 
closest to the two frequency curves but in the two regions separate from that region. 
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1. Introduction  
 

Space structures such as satellites vibrate easily at low frequencies because these structures 
have low structural rigidity resulting from the need for being lightweight. Owing to attitude 
control or orbit modification through thruster injection, flexible appendages such as antennas and 
solar arrays, as well as the liquid fuel or wastewater at the space station, may vibrate and develop 
strong coupled vibrations having a complex effect on the dynamic behavior of the main body. This 
would be a major concern for high-attitude-accuracy satellites such as those used for particularly 
precise astronomical photography. Therefore, it is essential to clarify in advance the dynamic 
interaction behavior of a flexible space structure with onboard liquid for improving the stability 
and reliability of space structures.  

Many researchers have theoretically studied the sloshing of liquids in containers in low-gravity 
environments. For example, Abramson (1996) organized the studies undertaken until 1966. Bauer 
et al. (1990a and b) have conducted free vibration analysis of a liquid in a rectangular or 
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cylindrical vessel considering the liquid meniscus due to surface tension; furthermore, they carried 
out response analysis for a container under horizontal excitation. Agrawal (1993) analyzed the 
dynamic behavior of liquid in a rotating space vehicle using the boundary-layer model. Komatsu 
(1999) theoretically investigated the sloshing frequency in a space vehicle tank using a mechanical 
model and furthered the study using potential flow models to obtain the natural frequencies via a 
semi-empirical formula. Chiba et al. (2002) investigated the coupled natural vibration of an elastic 
membrane bottom and a liquid in a cylindrical container with a rigid wall, considering two types 
of free surface boundary conditions at the wall, i.e., the slipping condition and the anchored 
condition. Utsumi (2004) proposed mechanical models for sloshing in a tear-shaped axisymmetric 
tank, which is often used in spin-stabilized satellites, and showed the effects of the liquid-filling 
level and the Bond number on the parameters governing the sloshing characteristics. He et al. 
(2007) carried out a nonlinear analysis of liquid sloshing in a cylindrical container considering the 
static meniscus shape in low-gravity environments using the energy method under pitching 
excitation around the cylinder’s center of gravity. Berglund et al. (2007) controlled the sloshing of 
liquid propellant in a Delta IV rocket following the pulse suppression approach and summarized 
the analytical results related to liquid behavior in a potential flow model. 

However, there are only a few experimental studies that focus on resolving the sloshing that 
occurs in low-gravity environments. In 2005, the Netherlands Agency for Aerospace, NIVR, 
launched a 130-kg miniature satellite called “Sloshsat Flevo” with an 87-L tank including 33.5 L 
of water for investigating the effect of sloshing behaviors on the satellite’s motion, see Vreeburg 
(2008). Experiments were carried on the satellite to observe the behavior of the internal liquid due 
to thruster injection. 

Then, with regard to the effects of sloshing motion on spacecraft motion, McIntyre and 
McIntyre (1982) revealed the relationship between the balance and stability of flat rotating 
spacecraft with on-board liquid fuel. Santini and Barboni (1978, 1983) analyzed the influence of 
motion around the center of gravity on sloshing in on-orbit space structures through force balance 
and argued about its stability. Lü et al. (2005) analyzed the vibration due to liquid motion in a 
rectangular tank with flexible appendages subjected to pitching excitation using the energy method 
under conditions of microgravity and gravity; they clarified that coupling between the liquid and 
 
 

 
Fig. 1  Flexible spacecraft with liquid tank 
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rigid tank under low gravity would be a serious problem. Buzhinskii (2009) studied the effect of 
sloshing on the rocket motion modelling it as a thin-walled structure with a liquid. Recently Farhat 
et al. (2013) investigated fuel sloshing effect on the spacecraft and its flutter characteristics. 

In the present study, as the first step toward clarifying the fundamental vibration characteristics 
of flexible space structures with on-board liquid, we propose a mechanical model and theoretically 
analyze the axisymmetric coupled vibrations of a flexible structure with on-board liquid in zero 
gravity environments. In the proposed model, the main body is modeled as a rigid mass, the 
flexible appendages as two elastic beams, and on-board liquid as a “spring-mass” system 
(mechanical model). In the mechanical model, as we adopt single liquid sloshing mode, i.e., 
fundamental sloshing mode, we can grasp just broad vibration characteristics of the coupled 
system, i.e., main body-flexible appendages-liquid system. The present paper is a basic study of 
the foregoing one in which liquid is considered as an ideal liquid with meniscus of free surface 
which will be presented as Part II of the paper. 

 
 

2. Basic equation and boundary condition 
 
2.1 Analytical model 
 
We shall consider the free vibration of a spacecraft, as shown in Fig. 1, which has flexible 

appendages such as solar arrays on both sides of the main body and liquid on board. The 
spacecraft’s main body is modeled as a rigid mass, the flexible appendages as two elastic beams, 
and the on-board liquid as a “spring-mass” system.  

The beams are uniform Euler-Bernoulli beams with cross-sectional area A, density b , Young’s 
modulus E, second moment of area I, while the “spring-mass” system, which represents liquid on 
board, has mass m (hereafter, we call it added mass) and spring constant k. We assume that two 
beams are arranged symmetrically with respect to the rigid mass and the mass center of rigid mass 
lies in the mid-surface of two beams, which enable axisymmetric in-plane motion, i.e., movement 
along only the upward and downward directions in the plane of the figure. 

The displacements of the main rigid mass M and the added mass m  are MY  and mY , 
respectively. Additionally, the beams are clamped with the rigid mass M, and their displacements 
are ),( 11 txW  and ),( 22 txW , respectively, at 1x  and 2x  from the clamped origin. 
 

2.2 Basic equation  
 

The kinetic energy T  of the system consists of the kinetic energies of the two beams, added 
mass, and main rigid mass as follows 

     2 2 2 2
1 1 1 2 2 20 0

1 1
, d , d

2 2 2 2

l l
b b

m M

A A
T W x t x W x t x mY MY

 
         (1)

And the potential energy U consists of the beams’ bending strain energies and the 
“spring-mass” system’s strain energy. 

     
2 22 2

21 1 2 2
1 22 20 0

1 2

, , 1
d d

2 2 2

l l

m M

W x t W x tEI EI
U x x k Y Y

x x

    
             

   (2)

305



 
 
 
 
 
 

Masakatsu Chiba, Shinya Chiba, Kousuke Takemura 

Therefore, the Lagrangian of the system is as follows 

L T U   

(3)
     2 2 2 2

1 1 1 2 2 20 0

1 1
, d , d
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l l
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W x t x W x t x mY MY

 
         

     
2 22 2

21 1 2 2
1 22 20 0

1 2

, , 1
d d
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    
             

   

Assuming that the system undergoes a small-amplitude harmonic motion with circular 
frequency   as follows 

  ttY mm cosy)(   

(4)ttY MM cosy)(   

,cos)(w),( txtxW iiii   i = 1, 2 

Here, the following non-dimensional parameters are introduced, 
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where M is the ratio of mass M to the mass of two beams Alb2 , “mass ratio,” m is the ratio of 
the added mass m to the mass of two beams Alb2 , “added mass ratio,”   is the ratio of spring 
constant k  to the bending rigidity of the beams, “spring rigidity.” 
Using Eqs. (4) and (5), Eq. (3) can be written as follows 









EI

l
LL

2
 

(6)

Integrating this equation with respect to non-dimensional time   for one period of vibration, 
/2~0   

2 2
2 2

0 0
sin d cos d

         
   (7)

we obtain the Lagrangian of the system as 
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   

     
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(8)
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(9)

 
2.3 Method of solution 

 
Firstly, beam deflections are assumed to be of the following form 

       1 1 1 1 2 2 2 2,m m n n
m n

w a w w b w        (10)

where ma  and nb  are unknown constants and 2,1:)(~ iw iim   is an eigenfunction of the beam 
with “mass-free” boundary conditions, i.e., at 0x , the shearing force of the beam is balanced 
with inertia force of mass 2/M , and the deflection angle is zero, and at lx  , the shearing force 
and bending moment are zero as follows 

     
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 (11)

In the non-dimensional form 
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3 2
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i i
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 

 
   

 

 
  

 

 (12)

The eigenfunction that satisfies the above boundary conditions is written as follows 
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   

 

 
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   
      

   

  
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       
  





 (13)

where m  is a parameter that satisfies the following frequency equation and is presented in 
Appendix A. 

 sinh cos cosh sin 1 cos cosh 0m m m m m m mM           (14)

Eigenfunction  im iw   has following characteristics in its integration 
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(15)
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0
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

  
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

 

 
 (16)

Substituting Eq. (10) into Eq. (9), we obtain the following 

       
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 (17)

Using Eqs. (15) and (16), we get the following expression 

 

2 00 2 22 2 2 2 2

222 22

2 2m n mn m n mn
m n m n

m n mn m n mn
m n m n

L a a X b b X m M

a a X b b X

 

  
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

 (18)

Here, assuming that the two beams are identical, i.e., mm ab   

 22 00 2 2 2 2 222 2 2 2m n mn m n mn
m n m n

L a a X m M a a X               (19)

308



 
 
 
 
 
 

Coupled hydroelastic vibrations of a liquid on flexible space structures under zero-gravity 

Displacements of the main body and the clamped ends of the beams must be equal 

 0 : 1, 2M iy w i 
 (20a)

in the non-dimensional form. 

 0 : 1, 2iw i    (20b)

From Eqs. (10) and (20b),  can be represented in terms of ma as follows 

 0m m
m

a w    (21)

Substituting this into Eq. (19), we get the following expression 
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(22)

Thus far, the Lagrangian L
~

 can be represented in terms of ma  and  . 
Here applying Rayleigh-Ritz method, we obtain the following minimalized condition for L

~
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The above equation can be represented as the following matrix form 
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where 

   22 22 1
0 0

2mn mn m nX X w w     
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)0(~)0(~0000

nmmnmn wwMXX   

Eq. (24) is a coupled equation in terms of ma  and  , and the problem can be reduced into an 
eigenvalue problem from which one can obtain the coupled natural circular frequencies as 
eigenvalues and the vibration modes as eigenvectors. 

 
 

3. Numerical results 
 

Currently, coupled dynamic systems are represented by three system parameters, i.e., the mass 
ratio M , added mass ratio m , and spring rigidity parameter  . Variation ranges of the former 
two system parameters, M and m , were analogized as 2001M  and 1005.0 m    
considering the specifications of some application satellites (see Appendix B). 
 

3.1 “Spring-two masses” system  
 

First, before proceeding to the coupled vibration system consisting of three elements, i.e., the 
rigid mass (main body), spring-added mass (liquid), and elastic beams (flexural appendages), we 
consider a “spring-two masses” system in which the flexible beams are assumed to be rigid beams, 
as shown in Fig. 2(b). The “spring-two masses” system can be regarded as a satellite when its 
paddles are folded. A comparison of the natural frequencies of the original coupled system and 
those of the “spring-two masses” system indicates that the “spring-two masses” system has 
significance in demonstrating the effect of beam flexibility. 

Equations of motion for mass m and lAM 2 , shown in Fig. 2(b), are as follows 

  0m m MmY k Y Y     (25a)

   2 0M M mM AL Y k Y Y      (25b)

From these equations, we obtain the natural circular frequency, hereafter, we simply call it 
“natural frequency” of the “spring-two masses” system, i.e., two masses bounded with a spring 
and freely floating in space.  

 
 

2

2

k m M Al

m M Al





 




 (26)

The non-dimensional form of Eq. (26) is as follows 

 
 

1

2 1

m M

m M

  



 (27)

The natural frequencies of the “spring-two masses” system are shown in Figs. 3 and 4. Fig. 3(a) 
shows variations in the natural frequency   with variations in the added mass ratio m ; in the 
figure, the black, blue, and brown lines represent situations in which spring rigidity is 1 , 

10 , 100 , respectively, while the dotted, broken, and solid lines represent situations in 
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which mass ratio is 1M , 10M , 100M , respectively. From the figure, we find that as m  
increases, the natural frequency decreases gradually and approaches a value that depends on the 
mass ratio M . In contrast, as m  decreases, the natural frequency increases and approaches a 
value that is not dependent on M  but dependent on  . 

Fig. 3(b) shows variations in   with the mass ratio M , and the results corresponding to 
m = 1, 10m , and 100m  are represented by the single-dotted, dashed, and solid lines, 
respectively. As M  increases, the natural frequency decreases and approaches a value that 
depends on   and m , and the natural frequency with larger m  is lower compared to that with 
the same value of M . 
 
 

 
(a) (b) 

Fig. 2 (a) Mechanical model; (b) Spring-two masses model 
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Fig. 4 Natural frequency of “spring - two masses model”: Influence of spring rigidity  ; (a) 1M ; (b) 

10M ; (c) 100M  
 
 

Fig. 4 shows that the natural frequency is proportional to  , and with an increase in m , the 
natural frequency decreases; this tendency is stronger for lager values of M . 
 

3.2 Free-free beam with central mass 
 

Next, we consider a free-free beam with a mass at its center, as shown in Fig. 5(b). This model 
does not include the added mass and spring, which represent the on-board liquid. This is a model 
of the satellite main body with flexural appendages and an empty fuel tank and has potential for 
demonstrating the effect of liquid sloshing. 

In this case, neglecting the term concerned with the added mass (liquid) from Eq. (24), one 
obtains the following expression 
 

  22 2 00
mn bMb mn X X a 0  (28)

 
 

 

 (a) (b) 

Fig. 5 (a) Mechanical model; (b) Elastic beam with central mass model  
 

312



 
 
 
 
 
 

Coupled hydroelastic vibrations of a liquid on flexible space structures under zero-gravity 

10−4 10−2 100 102 104100

101

102

1st

2nd

3rd

4th

5th

M
−−


b

M
b

−1 0 1
−1

0

1

 

 

−1 0 1
−1

0

1

−1 0 1
−1

0

1

 −1 0 1
−1

0

1

−1 0 1
−1

0

1

 −1 0 1
−1

0

1

−1 0 1
−1

0

1

 −1 0 1
−1

0

1

−1 0 1
−1

0

1

 −1 0 1
−1

0

1

Fig. 6 Variations in natural frequencies and vibration modes of a beam with central mass M  
 
 

Given that these are the uncoupled frequency equations, one can obtain the natural frequency 

bMb  as follows 
2

bMb k   (29)

Variation in bMb  with variations in M  corresponding to the vibration modes when 
44 10and10M  are shown in Fig. 6. As M  tends to zero )0( M , bMb  approaches the 

natural frequencies of the odd mode of the free-free beam having a non-dimensional length of 2, 

FF2  (see Table A3 in Appendix C), which is represented by two dotted lines in the figure. 
Corresponding vibration modes are presented in the left hand side of the diagram. In contrast, as 
M  tends to infinity )( M , deflection of the beam center decreases and bMb  approaches 
the natural frequencies of a cantilever beam, CF  (see Table A4 in Appendix C), which is 
represented by dotted lines in the figure. Corresponding vibration modes are presented in the right 
hand side of the diagram. From these, the correctness of the present results can be verified in some 
parts. 

Fig. 7 shows variations of the vibration mode when 100,10,1,0M . From this figure, one 
can see that with an increase in M , deflection at the beam center decreases to zero. In other 
words, when the main mass M  is small, the influence of beam vibration on the main body is 
significant, and the motion of the main body is not zero. 
 

3.3 Coupled system 
 

3.3.1 Effect of spring rigidity   
Finally, we consider a coupled system. Fig. 8 shows variations of the coupled natural 

frequencies with m  for 10M  and .100,10,1,1.0 In the figure, the coupled frequencies 
are represented by solid lines, those of the “spring-two mass” system obtained in 3.1 are 
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represented by dashed lines, and those of the beam with central mass obtained in 3.2 are 
represented by single-dotted lines. Detailed relationships among these three frequencies are 
discussed in the next section. 

When 1.0 , as shown in Fig. 8(a), one can find two types of coupled natural frequencies, 
one of which decreases with m , and the other nearly constant with m . The former follows 
frequency curves of the “spring-two masses” system, indicated by dashed lines, in which the added 
mass (liquid) motion is predominant. The latter follows the frequency curves of “the beam with 
central mass,” represented by single-dotted lines, in which the beam motion is predominant. 
Hereafter, we shall call the former coupled frequency as “coupled added mass frequency” and the 
latter as “coupled beam frequency,” respectively. In this case, there seems to be no crossing or 
veering of the frequency curves in this region of m , i.e., there is no coupling between these two 
types of vibrations. 

When the spring rigidity increases to 1 , as shown in Fig. 8(b), compared with 1.0  
case, the coupled added mass frequency increases over the m  range, and the frequency curve of 
this mode crosses that of the first coupled bending mode of the beam near the m =0.03 region. In 
this region, coupling between the first bending motion of the beam and the added mass motion 
seems to be strong. However, it should be noted here, that although the two curves appear to 
intersect, they are actually simply veering toward each other, and the two frequency curves in 
which the beam notion and the added mass motion are predominant become interchanged, as is 
shown later. 

When 10 , as in Fig. 8(c), the coupled added mass frequency increases further, and this 
frequency curve approaches that of the coupled second beam mode near the 01.0m  region. In 
comparison with the case in which 1 , the value of m  at which coupling occurs with the 
beam mode increases. 

When 100 , as in Fig. 8(d), any further increase in the coupled added mass frequency leads 
to coupling with the third beam mode in the 01.0m  region. In addition, the value of m  at 
which coupling with the second beam mode takes place increases to 1.0m , and that at which 
coupling with the 1st beam mode takes place increases to 4m . In each case, as m  increases, 
the lowest coupled natural frequency, indicated by red curve, separates from that of the 
“spring-two mass” system, which is represented by the dashed line. This is because in the former 
case, we assume that the beam is elastic, whereas, in the latter case, we assume that it is rigid; 
therefore, the coupled natural frequency of the former case is lower than that of the latter case. 

Thus far, the followings are summarized. 
 

  There are two vibration types in the coupled system: that in which beam motion is 
predominant and that corresponds to the motion of the added mass (liquid). 

  As m  increases, the coupled added mass frequency decreases. 
  As   increases, the coupled added mass frequency increases over the parameter range of 

m , which leads to increases in the number of couplings with the beam modes as well as in 
the value of m . 

  In actual spacecraft, as fuel is consumed step by step, i.e., m  decreases gradually, at some 
fuel mass m , the sloshing frequency approaches one of the flexural structure frequencies 
and strong coupled motion is expected to occur. For lower m , coupling occurs with the 
structural modes of higher orders. 
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Fig. 8  Coupled natural frequencies with added mass ratio m : 10M ; (a) 1.0 ; (b) 1 ; (c) 
10 ; (d) 100  

 
 

3.3.2 Effect of main mass ratio M̅ 
Next, we examine the effect of the main mass ratio M . The coupled natural frequencies are 

shown in Fig. 9 for 100,10,1,0M  and 100 . As mentioned above, when sets m  as the 
abscissa, there are two types of coupled frequency curves: the one in which liquid motion is 
predominant, represented by the curve that slopes downward with m , and the other in which the 
beam motion is predominant, represented by the curve that is nearly constant with m . As shown 
in Fig. 6, for the uncoupled natural frequency variations with M  of the latter type, the natural 
frequency decreases gradually and the rate of decrease is large in the 10~01.0M  region; 
however, this frequency variation is very small and cannot be recognized in Fig. 9. 
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For the former type of coupled frequency, given that the liquid motion influences the main 
body when M  is small, vibration is generated easily in the beams that are rigidly connected to 
the main body, and the coupling region in the figure widens, as shown in Figs. 9(a) and (b). As M  
increases, i.e., the mass of the main body increases, the influence of the liquid motion on the main 
body decreases gradually, which ensures that the beam is not excited and the coupling region 
becomes narrower, as shown in Figs. 9(c) and (d). 

From these results, one can deduce the situation in the actual spacecraft 
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Fig. 9  Coupled natural frequencies with added mass ratio 100: m ; (a) 0M ; (b) 1M ; (c) 
10M ; (d) 100M  
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  When the mass of the main body is small, the influence of liquid sloshing motion on the 
main body is significant. Therefore, vibration in the appendages connected to the main body 
is generated easily, thus leading to a wider coupling region, as shown in Figs. 9(a) and (b). 

  When the mass of the main body is large, the influence of the liquid sloshing motion is 
small; then, it is difficult to generate vibration in the appendages, and the coupling region 
becomes narrow, as shown in Figs. 9(c) and (d). 

Here, we consider the relationship between the natural frequencies of the uncoupled system and 
those of the coupled system. In Fig. 9(a), one can see the coupled (or uncoupled) added mass 
frequency region with downward sloping in the m  plane, in regions of smaller m  than that 
of this region, i.e., 01.0m . In addition, one can see that the coupled natural frequencies of the 
first and second modes, indicated by the red and blue curves, respectively, are slightly lower than 
those of uncoupled beam frequency values, which are indicated by dotted lines. In the region with 
larger m , i.e., 100m , the coupled natural frequencies of the second and third modes, indicated 
by blue and green lines, respectively, are slightly higher than the uncoupled values. This means 
that the magnitude relationship of the uncoupled and coupled natural frequencies depends on 
whether a region with smaller or larger m  crosses the added mass frequency region. 
 

3.4 Coupled vibration modes 
 

3.4.1 Influence of added mass ratio m̅ 
The coupled natural frequency curves and the corresponding vibration modes are shown in Fig. 

10 for 0M , 100 , and 0.100,0.10,0.1,01.0m . In this case, for 0M , the influence of 
liquid motion on the main body and the beams is significant. In the figures of vibration mode, 

 
 

 

(a) 

Fig. 10 Coupled vibration modes with m : 0M , 100  
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deflections of the beams and the added mass are both shown from zero; the added mass position is 
marked with a green circle, and the amplitudes of the beams and the added mass are normalized 
such that the maximum of either is unity. 

When 01.0m , as in Fig. 10(b), the beam motion is predominant in the coupled first, second, 
and fifth modes, whereas the added mass motion is predominant in the third and fourth modes. As 
m  increases to 1m , as in Fig. 10(c), the added mass motion is predominant in the first and 
second modes. For further increase to 100,10m , as in Figs. 10(d) and (e), for modes higher 
than the second mode, the added mass motion is nearly zero. 
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Fig. 10  Coupled vibration modes with m : 0M , 100 ; (b) 01.0m ; (c) 1m ; (d) 
10m ; (e) 100m  
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Comparing the vibration modes and the coupled natural frequency curves, we find that the 
added mass motion is predominant in the regions where the coupled natural frequencies are close 
to the uncoupled natural frequency curve of the added mass. In contrast, beam motion is 
predominant in the region in which the coupled natural frequencies are near the uncoupled natural 
frequency curve of the beam, except for the first mode, when 100,10m , which comes from the 
assumption 0M . Variations of the coupled added mass mode can be recognized clearly. That is, 
with an increase in m , the coupled added mass mode couples with lower beam mode, and the 
displacement of added mass decreases in the coupled beam modes. 
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(d) 100M  

320



 
 
 
 
 
 

Coupled hydroelastic vibrations of a liquid on flexible space structures under zero-gravity 

3.4.2 Influence of main mass ratio M̅ 
Next, we discuss the influence of M . Variations of the coupled vibration modes with M are 

shown in Fig. 11 for 100,10,1,0M ; 10m ; and 100 . In the figure, positions of the 
added mass and the main body are indicated by green and blue circles, respectively. In Fig. 11(a), 
because 0M , the beam center moves in all modes, and the coupled first mode is the coupled 
added mass mode. 

For 1M , as in Fig. 11(b), the displacement of the beam center decreases to be less than that 
for 0M . For 10M , as in Fig. 11(c), the displacement of the beam center becomes nearly 
zero, even in the coupled added mass mode. At last, for 100M , as in Fig. 11(d), in the coupled 
added mass mode, i.e., the lowest mode, beam vibration disappears. 

 
 

3.5 Coupling strength 
 

Here, we introduce the parameter EV (Evaluation Value), which quantitatively estimates the 
coupling strength between the beam and added mass motions and is a product of the absolute value 
of the displacement of the beam tip )1(w  and the added mass (liquid)  . A large EV value 
represents stronger coupling between the beam and the added mass motion. 

 1EV w  
 

The coupled natural frequency curves of the first and second modes for 100,10  M , and 
50~1m ; coupling strength EV; and variations of the vibration mode with m  are shown 

Fig.12. In Fig. 12(a), EV values are indicated on the curves by circles, the diameters of which are 
proportional to the respective EV values. 

At first, looking at the EV curve for the first mode, indicated in Fig. 12(b) by the red curve, as 
m  increases from 1m , the curve reaches its maximum value close to 8m , and decreases 
with any further increase in m . One can see from the vibration modes shown in the left-hand side 
of the figure that at its peak near 8m , both the displacement of the added mass and that of the 
beam tip reach their respective maximum values. However, in the EV curve of the second mode, 
indicated in blue, reaches its maximum value at 5.2m . Furthermore, contrary to the first mode 
case, the motions of the added mass and the beam are out of phase, as can be seen in the vibration 
modes shown in the right-hand side of the figure. 

In the coupled frequency curves shown in Fig. 12(a), since the two curves are the most nearest 
in the neighborhood of 4m , one usually presumes that the coupling is the largest in this region. 
It should be noted, however, that the coupling strength increases in the regions corresponding to 

0.8,5.2m , crossing the region with 4m , as shown in Figs. 12(a) and (b). Thus, from the 
variations in the vibration mode, it is clear that in this region, the frequency curves veer. In 
addition, in the region with larger and smaller values of 4m , the phases of the added mass 
motion and the beam motion are inverted, and in the transition region, where the two 
aforementioned phases are inverted, the amplitude of either the added mass or the beam becomes 
zero. 

Next, at the beginning, when 1m , the coupled first mode is the first beam mode, whereas the 
coupled second mode is the added mass mode. As m  increases, the natural frequency curves 
asymptotically close each other and veer instead of crossing; the exchange of vibration modes 
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occurs, i.e., the coupled first mode tends toward the added mass mode, and the coupled second 
mode tends toward the beam mode. 
  In actual satellites, as operations proceed, i.e., as time passes, m  decreases gradually, whereas 
the fuel sloshing frequency increases gradually and approaches that of the flexible appendages. 
This generates the possibility of strong coupled motion in two regions of m  instead of one. 
 
 
4. Conclusions  
 

The coupled free vibration analysis of flexible structures and on-board liquid in zero-gravity 
space was conducted. The spacecraft main body was modeled as a rigid mass, flexible appendages 
as two elastic beams, and on-board liquid as a “spring-mass” system. Currently, coupled dynamic 
systems are represented by three system parameters, i.e., mass ratio M , added mass ratio m , and 
spring rigidity parameter  . 
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The obtained results are summarized as follows: 
 
Types of coupled natural vibration 
  There are two types of vibration in the coupled system: one in which the beam (appendages) 

motion is predominant and the other in which the added mass (liquid) motion is 
predominant. 

  As m  increases, the frequency of the former type of vibration remains nearly constant, 
whereas that of the latter type of vibration, i.e., coupled added mass, decreases. 

  As   increases, the coupled added mass frequency increases over the parameter range of 
m , which leads to an increase in the number of the coupling regions with the beam modes 
as well as in the value of m . 

 
Influence of added mass 
  In actual spacecraft, as fuel is consumed step by step, i.e., m  decreases gradually, at some 

fuel mass m , the sloshing frequency approaches that of the beam (flexural appendages), 
and a strong coupled motion is expected to occur. For lower m  values, coupling occurs 
with higher-order structural modes. 

 
Influence of main body mass 
  When the mass of the main body is small, the influence of liquid sloshing on the main body 

is significant. Therefore, vibrations can be generated in the elastic appendages that are fixed 
to the main body, and the region in which the liquid motion and appendage motion couple 
widens. In this case, even when the fuel tank is empty, the influence of beam motion on the 
main body is significant. 

  When the mass of the main body is large, the influence of liquid sloshing motion on the 
main body is small. Then, it is difficult to generate vibrations in the appendages, and the 
coupled region is narrow. In this case, the influence of beam motion on the main body is 
small, and it is difficult to generate vibration in the liquid. 

 
Mode exchanges and coupling strength 
  When a system parameter, i.e., m , varies, two coupled natural frequency curves 

asymptotically close each other and veer instead of crossing. At that time, vibration modes 
are exchanged, which reverses the phases of the directions of liquid motion and beam 
motion. The strength of the coupling is large not at closest region of the two frequency 
curves, but at two regions separate from this region. 
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Appendix A. Parameter m  
 

Parameter )10~1( mm  that satisfies the frequency eq. (14) is presented in Table A1. When 
0M , m  tends to the eigenvalue of a free-free beam of length 2l, whereas when M , 

m  tends to the eigenvalue of a cantilever beam of length l. 
 
 
Table A1 m  as a function of M   

0M  0.5 1 2 3 4 5 10 M
2.3650 2.1362 2.0540 1.9851 1.9546 1.9374 1.9263 1.9022 1.8751 
5.4978 4.9820 4.8686 4.7916 4.7618 4.7459 4.7361 4.7156 4.6941 
8.6394 8.0509 7.9657 7.9140 7.8952 7.8854 7.8795 7.8673 7.8548 
11.7810 11.1465 11.0782 11.0388 11.0249 11.0177 11.0134 11.0045 10.9955
14.9226 14.2596 14.2029 14.1712 14.1602 14.1545 14.1511 14.1442 14.1372
18.0642 17.3816 17.3330 17.3068 17.2977 17.2930 17.2902 17.2845 17.2288
21.2058 20.5090 20.4669 20.4442 20.4364 20.4324 20.4300 20.4252 20.4204
24.3473 23.6398 23.6026 23.5827 23.5759 23.5724 23.5704 23.5662 23.5619
27.4889 26.7729 26.7396 26.7219 26.7159 26.7128 26.7110 26.7073 26.7035
30.6305 29.9077 29.8775 29.8616 29.8562 29.8534 29.8518 29.8485 29.8451

 
 
Appendix B. System parameter ranges  
 

Typically, in liquid-fuel rockets, the liquid propellant and liquid oxidant constitute about 60% 
to 90% of the rocket’s launch mass, see Komatsu and Shimizu(1989); this figure is about 10% for 
satellites. For a satellite equipped a liquid apogee motor, the liquid fuel constitutes about half of its 
mass. Then, liquid mass Fm  is assumed to be 10%–50% of the dry mass Dm  of satellites. 

Here, because launch mass Lm  is the sum of Fm  and Dm , i.e., FDL mmm  , the ratio of 
liquid mass to launch mass, )/( LFF mm , is 

45.0~07.0
)5.0~1.0(1

5.0~1.0








FD

F

L

F
F mm

m

m

m  (A1)

As the dry mass includes the mass of the solar paddles, we estimate the mass of the solar 
paddles. Under the assumption that power generated per unit mass of solar paddle is 20–100 W, 
the presumed paddle mass to the launch mass ratios are summarized in Table A2. From the table, 
the ratio of the paddle mass to the launch mass is estimated as follows 

( )P P Lm / m  = 0.006〜0.13 (A2)

Using parameters employed in the present analysis, i.e., mass of main body M, mass of solar 
paddles lA2 , mass of liquid m, Lm  is expressed as follows 

2L D Fm m m M Al m      
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Table A2 Presumed paddle mass ratio [2] 

Satellite Mass [kg] Power [W] Presumed paddle mass [kg] Paddle mass ratio [%] 

ETS-VIII 2800 7500 75 ～ 375 2.68 ～ 13.4 

DRTS 2800 2100 21 ～ 105 0.75 ～ 3.75 

TRMM 3620 3300 33 ～ 165 0.91 ～ 4.56 

EOS-PM1 3100 4860 48.6 ～ 243 1.57 ～ 7.84 

ALOS 4000 7000 70 ～ 350 1.75 ～ 8.75 

GOSAT 1650 3300 33 ～ 165 2 ～ 10 

WINDS 2700 5200 52 ～ 260 1.93 ～ 9.63 

OICETS 570 1220 12.2 ～ 61 2.14 ～ 10.7 

SWAS 102 59 0.59 ～ 2.95 0.58 ～ 2.89 

 
 
and using the liquid mass ratio F  and the paddle mass ratio P , 

L P L F Lm M m m     

From above two equations, one obtains the following 

(1 )F P LM m     (A3)

2L L Fm m M Al m      (A4)

Normalizing with the paddle mass, one obtains the following parameter ranges 

154~20.3
1





P

PF

LPm

M
M





 

0.90~54.0
P

F

LPm

m
m





 

Then, we use the main mass ratio M as 1–200 and the added mass ratio m  as 0.5–100 for the 
numerical calculations. 
 
 

Appendix C. Non-dimensional natural frequency FF2  of free–free beam with 
non-dimensional length 2 

 
Frequency equation of a free-free beam with length l  is as follows 

2 2cos cosh 1 0, FF
n n n FF

b

A
l

EI

   


 
     

 
 (A5)

where n  is a parameter listed in Table A3. From Eq. (A5), the natural circular frequency is as 
follows 
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2

2
n

FF

EI

l A




  (A6)

Substituting the length as l → 2l, one obtains the following   

2

2 2

1

2
n

FF

EI

l A




   
 

 (A7)

In the non-dimensional form 

2

2
2 2

nFF
FF

b




     
 

 (A8)

The non-dimensional natural circular frequency FF2  of a free–free beam with a non 
-dimensional length of 2 is found to be a square of 2/n  and is listed in Table A3. 
 
Table A3. Eigenvalues and non-dimensional natural frequencies FF2 : free-free beam (non-dimensional 

length is 2) 

 

 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 

n  4.73 7.85 11.0 14.1 17.3 20.4 23.6 26.7 29.8

2/n  2.37 3.93 5.50 7.07 8.64 10.2 11.8 13.4 14.9
2

2 )2/( nFF   5.59 15.4 30.2 50.0 74.6 104 139 178 223 
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