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Abstract.  The impact of spar-nacelle-blade coupling on edgewise dynamic responses of spar-type 
floating wind turbines (S-FOWT) is investigated in this paper. Currently, this coupling is not 
considered explicitly by researchers. First of all, a coupled model of edgewise vibration of the S-FOWT 
considering the aerodynamic properties of the blade, variable mass and stiffness per unit length, gravity, 
the interactions among the blades, nacelle, spar and mooring system, the hydrodynamic effects, the 
restoring moment and the buoyancy force is proposed. The aerodynamic loads are combined of a 
steady wind (including the wind shear) and turbulence. Each blade is modeled as a cantilever beam 
vibrating in its fundamental mode. The mooring cables are modeled using an extended quasi-static 
method. The hydrodynamic effects calculated by using Morison’s equation and strip theory consist of 
added mass, fluid inertia and viscous drag forces. The random sea state is simulated by superimposing 
a number of linear regular waves. The model shows that the vibration of the blades, nacelle, tower, and 
spar are coupled in all degrees of freedom and in all inertial, dissipative and elastic components. An 
uncoupled model of the S-FOWT is then formulated in which the blades and the nacelle are not 
coupled with the spar vibration. A 5MW S-FOWT is analyzed by using the two proposed models. In the 
no-wave sea, the coupling is found to contribute to spar responses only. When the wave loading is 
considered, the coupling is significant for the responses of both the nacelle and the spar. 
 

Keywords:  wind energy; floating offshore wind turbine; spar-type; edgewise vibration; blade-nacelle-spar 

coupling; hydrodynamic effects; Morison’s equation 

 
 
1. Introduction 

 
The spar-floating offshore wind turbine (S-FOWT) seems to be the most suitable concept for 

deep-water areas because of its lower center of mass, small water plane area and deep-draft (Dinh 

and Basu 2013). For the design of an S-FOWT, the entire system composed of rotor, nacelle, 

tower, platform, mooring system; subjected to wind, wave and hydrodynamic loads should be 

analyzed using integrated models (Nielson et al. 2006). Several integrated modeling and analysis 

procedure for S-FOWTs have been proposed by integrating different codes. SIMO and RIFLEX 
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codes were coupled to enable a FEM formulation and integrated dynamic analysis of the 

HYWIND S-FOWT (Nielsen et al. 2006). In the simulation of the HYWIND S-FOWT (Skaare et 

al. 2007), the hydrodynamic models were offered by SIMO, the structural modeling was 

accomplished by RIFLEX, the rotor and the nacelle were modeled by HAWC2, and the mooring 

lines and the platform were modeled in SIMO-RIFLEX. FAST/ADAMS®  was coupled with 

AeroDyn-HydroDyn-WAMIT in an integrated modeling for S-FOWTs (Jonkman 2007). In the 

complimentary analysis of a S-FOWT (Karimirad and Moan 2011), the HAWC2 code was used for 

aero-hydro-elastics, the mooring system was modeled in SIMO-RIFLEX and applied as nonlinear 

spring stiffness in HAWC2 through a dynamic link library interface; the hydrodynamic loads in 

HAWC2 code were based on Morison’s formula. The coupled wave- and wind-induced motions of 

a 5-MW S-FOWT in harsh and operational environmental conditions were analyzed by using the 

coupled SIMO-RIFLEX-HAWC2 codes (Karimirad and Moan 2012). 

In spite of the availability of a large number of codes which can accurately and in detail analyze 

different elements and components of a floating offshore wind turbine, no single code exists to 

analyze the system considering implicitly the coupling between different elements. In the 

literature, formulation of mass, damping and stiffness matrices and the load vectors of S-FOWT 

systems have rarely been reported. The direct integration of codes conserves the system matrices 

and the load vectors of the blade, nacelle, tower and spar for each component of the codes though 

some effects may be transferred by iteration which can be computationally expensive and 

inconvenient. Sultania (2010) modeled an S-FOWT by direct assembly of the upper wind turbine 

system matrices and the lower platform system matrices whereas the blade-nacelle-spar coupling 

terms were excluded in the assembled matrices and load vectors. Solberg (2011) assumed both 

tower and spar to be rigid and combined them as a structure with new center of gravity whereas 

several components were not considered in that combined structure such as the rotor-nacelle, the 

coupling among the blades, the tower and the spar. No study exists currently which investigates 

how significant the effect of the coupling terms could be. Hence, the coupling of the blades and 

nacelle with the spar vibration and their impact on the response of S-FOWTs needs to be 

investigated. 

Investigation on the impact of blade-nacelle-spar vibration couplings is proposed to be studied 

with simplified models to see if the impact is considerable and to identify which loading 

conditions are critical. Hardly any simplified models have been proposed by researchers for the 

analysis of FOWTs and the S-FOWT in particular. Qualitative analyses of FOWTs under 

aero-hydrodynamic loads were described (Henderson and Patel 2003). Newton–Euler equations 

combined with constraint conditions were employed to analyze a 2-MW downwind S-FOWT in 

steady wind and no waves (Matsukuma and Utsunomiya 2008). There is also a lack of simplified 

models which couple the blades-rotor-tower-spar-mooring of S-FOWT and account for its 

aerodynamic, hydrodynamic and restoring forces. Thus, developing such a simplified coupled 

model and investigating the impact of the coupling on the response of S-FOWTs is the focus of 

this paper. The simplified models could also be used for a preliminary design and analysis tool 

prior to the use of complete coupled codes which could be computationally expensive when 

available by modification/merging of a number existing complicated codes. 

The paper aims to examine the coupling effects by developing a simplified discrete system 

model of the complete system. For the purpose of simplification, the proposed model in this paper 

can be limited to the main modes of blade vibration in a wind turbine. The edgewise vibrations of 

onshore wind turbines are shown to be lightly damped and can lead to violent vibrations and the 

first edgewise mode may exhibit a very low or even negative damping under certain conditions 
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(Staino et al. 2012). The edgewise vibrations of onshore wind turbines were studied (Staino et al. 

2012, Basu et al. 2012). This paper proposes a coupled model describing the dynamics of 

edgewise vibrations of S-FOWTs, considering the aerodynamic properties of the blade, variable 

mass and stiffness per unit length, the effect of centrifugal stiffening, gravity, hydrostatic restoring 

moment, buoyancy; and the interactions among the blades, nacelle, tower and the spar.  

Aerodynamic loads corresponding to a combination of steady wind including the wind shear, and 

the turbulent component are computed by applying the modified Blade Element Momentum 

(BEM) theory (Hansen 2003). Each blade is modeled as a Bernoulli–Euler cantilever beam 

vibrating in its fundamental mode. The mooring cables are modeled using an extended quasi-static 

method (Sannasiraj et al. 1998). The hydrodynamic effects are calculated by using Morison’s 

equation and strip theory, and consist of added mass forces, fluid inertia forces and viscous drag 

forces. The random sea state is simulated by superimposing a number of linear regular waves 

generated from the Pierson-Moskowitz wave spectrum. An uncoupled model is considered where 

the terms that couple the blades and nacelle with the spar vibrations are excluded. Finally, a 5MW 

S-FOWT of NREL is analyzed by using the two proposed models. In the no-wave loading case, 

the blade-nacelle-spar coupling affects the spar responses only. Under wave loading, the impact of 

the coupling on the responses of both the nacelle and the spar is significant. 

 

 

2. Coupled model of spar-floating offshore wind turbine 
 

2.1 Modeling 

 

The spar is assumed to be a rigid body due to its large cross section. The displacement and 

velocity of the FOWT system are assumed to be small. As the spar diameter is small compared to its 

draft and to the wavelength, Morison’s equation can be used to calculate the hydrodynamic loads. 

The proposed coupled model of a three-bladed horizontal-axis S-FOWT is shown in Fig. 1 and the 

definition of the model parameters is given in Table 1. The coupled model aims at representing the 

edgewise vibration responses and the associated coupling of the blades with the motions of the 

tower/nacelle and the spar. In this model, the blades are modeled as Bernoulli–Euler cantilever 

beams of length ‘R’, with variable bending stiffness and variable mass per unit length (r) along the 

length. The blades rotate at a constant speed  (rad/s) and the azimuthal angle i(t) of blade ‘i’ at the 

time instant ‘t’ is given by Eq. (1) 

     
3

2
1


  itt ii  ,    tt 1 ,  i = 1, 2, 3 (1) 

The tower is modeled as a single degree of freedom (SDOF) system with the generalized 

stiffness kt. Only the fundamental mode of the blade is considered in this paper. As the axial 

deformations of the spar and the tower are neglected, and the roll displacement of the spar G is 

small, the absolute vertical displacement of the nacelle is approximated as aG hvv nac  

  GG v cos1 . The absolute horizontal displacement of the nacelle nacu is approximated in 

terms of its horizontal displacement relative to the spar unac, the spar sway displacement uG and the 

spar roll displacement G as GaG huuu  nacnac  where ha is the vertical distance between the 
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tower top and the center of gravity, ha = ht + hG.   

 

 

  

 

 

 

 

 

 

 

 

 (b) Geometry of blade i 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Coupled model (c) Mooring model 

Fig. 1 Edgewise model of S-FOWT 
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Table 1 Notations for edge-wise model of S-FOWT 

B = Center of buoyancy of the S-FOWT. 

G = Center of gravity of the S-FOWT. 

F = Fairlead position at spar centreline. 

Oyz = Global axes, O at mean water level (MWL) 

uG, vG, G =  Sway, heave and roll disp. at G. 

ksH, ksV, ks = Horizontal, vertical and roll stiffness of 

mooring system, respectively. 

Mc = Mass of each mooring cable in water. 

M0 = Mass of nacelle + modal mass of tower 

c = Cable mass per unit length. 

D0 = Diameter of spar above taper. 

D1 = Diameter of spar below taper. 

Ms = Mass of the spar. 

Ms, Is = Moment of inertia of the spar. 

0 = Angle at the anchor points Cl and Cr 

ht = Tower top (yaw bearing) above MWL 

h0 = Depth to top of taper below MWL. 

hc = Height of spar taper 

hs = Height of spar cylinder (from taper bottom to 

spar bottom) 

hd = Depth to spar bottom below MWL 

hG = Depth of G below MWL. 

hB = Depth of B below MWL. 

 

 

 

where the degree of freedom qi(t), i = 1, 2, 3 relates to the fundamental edgewise mode of the blade 

“i”. The variable q4(t) = unac(t) represents the motion of the nacelle in the rotor plane. The edgewise 

displacement along the blade i can be approximated by using its fundamental edgewise mode shape 

1(r) as ui(r,t) = 1(r)qi(t).  

 

 
2.2 System energy 

 

The absolute velocity vector of a point r on the blade i at time t is written as (refer to Fig. 1(b)) 

       jiv ˆ ,sincos ̂,cossin, nacnacnacnac rtruvutruvutr iiiiiibi     (3) 

where î  and ĵ  are the unit vectors along and perpendicular to the blade center line, respectively.  

The total kinetic energy of the whole S-FOWT system is expressed as 

      2222
nac

2
nacnac

3

1 0

2

2

1

2

1

2

1
,)(

2

1
GsGGs

i

R

bi IvuMvuMdrtrrT    


v  (4) 

The total potential energy of whole S-FOWT system is expressed as 

  2222
nac

2
3

1 2

1

2

1

2

1

2

1
cos

2

1
GsGsVGsHti

i
giwe kvkukukqKKKV   



 (5) 

where the parameter Ke is the generalized elastic stiffness of the blade, 2
2mK be  with b being the 

fundamental natural frequency of the blade and kt is the modal stiffness of the tower. The term Kw is 
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the stiffness arising out of gravity effects,   drdgK
R L

r
w

2'
1

0
)(   





 . The term 0,

2
gg KK   

is the geometrical stiffness due to centrifugal force on blade in which   drdK
R L

r
g

2'
1

0
0, )(   





 . 

These blade-related parameters are defined in Staino et al. (2012). 

 

2.3 Generalized loads 
 

The virtual work done by external wind loads acting on the S-FOWT system is 

  



3

1
nacnac0 1wind sincos),(

i
iiiii

R

i vQuQqdrtrpW   (6) 

where 
R

ii drtrpQ
0

),(  is the total wind force acting on blade i in the edgewise direction and pi(r,t) 

(i = 1, 2, 3) is the variable wind load intensity along the blade length in the edgewise direction 

calculated by using BEM theory (Hansen 2003, Staino et al. 2012). The wind load acting on the 

tower is neglected as it is small compared to the load on the rotor. 

The virtual work done due to the gravity on the S-FOWT system is expressed as 

  Gs
i

R

ii

R

iig vgMvgMvudrrqdrrgW  







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
nac0

3

1 0

nacnac

0

1 sincos)()(sin  (7) 

 
2.4 Euler-Lagrange equations and system matrices 

 

Substituting the system kinetic and potential energy into the Euler-Lagrange equations 

extQ
VTT

dt

d

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qqq
 (8) 

the mass, damping and stiffness matrices of the S-FOWT system can be obtained and are shown in 

Eqs. (9), (10) and (11), respectively. 
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0 11 
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2
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R
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,)(3 004 Mdrrm
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22

2 mKKk ge   (12) 

The terms cb and c4 denote the structural and the aerodynamic damping associated with the 

blades and the nacelle, respectively. The term ct is the structural damping coefficient of the tower. 

The terms 
Guc , 

Gvc and 
G

c are respectively the structural damping coefficients in sway, heave and 

roll directions of the mooring system. 

 
2.5 Aerodynamic and gravitational loads 

 

Differentiating the virtual work done due to the wind load (given in Eq. (6)) with respect to the 

generalized coordinates, the generalized aerodynamic load vector is obtained as 

T

bGbbbbbb QhQQQQQQt wind
couple,

wind
couple,

wind
couple,

wind
couple,

wind
3,

wind
2,

wind
1,wind )( Q  (13) 

where the resultant aerodynamic load on blade j, and the aerodynamic loads coupling the blade 

edge-wise vibrations and the tower/spar sway and heave motions are, respectively 

,),(
0 1

wind
, 

R

iib drtrpQ 
 

,cos),(
3

1
0

wind
couple, 
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i
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iib drtrpQ 
 





3

1
0

wind
couple, sin),(

i

R

iib drtrpQ   (14) 

in which the variable wind load intensity along the blade length in the edgewise direction, pi(x,t) (i = 

1, 2, 3) is calculated by using BEM theory (Hansen 2003, Staino et al. 2012).  
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Differentiating the virtual work done due to the gravity (given in Eq. (7)), with respect to the 

generalized coordinates, the generalized gravitational load vector is obtained as 

 
T

vggggg G
QQQQt 000 ,321Q  (15) 

where the generalized gravitational loads on blade i and on the spar are, respectively  

,sin1 igi gmQ 
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sivg MMdrrgQ
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 3,2,1i  (16) 

 

 

3. Hydrostatic and restoring effects 
 

First of all, the initial depth of the top of taper below the mean water level (MWL) h0 is 

re-calculated by using Archimedes’s principle. The total weight of the wind turbine, platform and 

mooring cables in water is equal to the weight of the water volume displaced by the platform.  

,
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where Mall is the total mass of the wind turbine, spar and the mooring cables in water, As0 is the plane 

water area; V2 and V3 are the volume of water displaced by the taper part and by the main cylinder 

below the taper, respectively. The related depths such as hd, hF and hG can then be re-calculated from 

h0 and the fixed dimensions of the spar. 

The vertical distance between the spar center of buoyancy B and center of gravity G is  

321

3322111

VVV

hVhVhV
zdV

V
BG

sVs 


   (18) 

where V1 is the volume of water displaced by the submersed part above the taper and Vs = V1 + V2 + 

V3 . The vertical distances from G to the center of gravity of V1, V2 and V3 are h1, h2 and h3, 

respectively.  

As the spar center of buoyancy B is always above its center of gravity G, the downward distance 

from MWL to the center of buoyancy is BGhh GB  . The magnitude of the buoyancy force 

acting on the spar, and the vertical and roll restoring coefficients are, respectively given by 

,buoy swgVF    ,0
res
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D

VhhK wsGB 
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 









64

2
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 (19) 

where w is the density of sea water. The roll restoring coefficient in Eq. (19) is obtained after 

evaluating the meta-centric height. 

 

 

4. Hydrodynamic effects 
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The hydrodynamic effects on structures having a small dimension relative to the wavelength are 

widely expressed by using Morison’s equation (Jonkman 2007, Karimirad and Moan 2012, Waris 

and Ishihara 2012, Abdel Raheem 2013). In this paper, the hydrodynamic effects on the spar 

expressed by using Morison’s equation consists of (i) the forces related to the added mass associated 

with the spar accelerations su , (ii) the inertia forces associated with fluid accelerations, and (iii) the 

viscous drag forces proportional to the squared relative velocities of the spar and the fluid. In this 

section, those hydrodynamic forces are computed by using strip theory where the draft hd is divided 

into Nz depth intervals zi. Using the assumption of small roll velocity, the spar velocities in the 

horizontal and the vertical directions at a depth z are respectively approximated as  

    GGGs hzuzu   ,   Gs vzv    (20) 

Similar approximations of the spar accelerations in the horizontal and the vertical directions at a 

depth z can be obtained by using an assumption of small roll acceleration
 G . 

 

4.1 Added mass coefficients 

 
The hydrodynamic added mass coefficient matrix of the spar is expressed as 
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in which ayy is the added mass coefficient in sway motion due to sway acceleration, ay is the 

added mass coefficient in sway motion due to roll acceleration, a is the added mass roll moment 

due to spar roll acceleration, CM is the added mass coefficient (= 1.0 for circular cylinder 

(Faltinsen 1990)) and D(zi) is the spar diameter at a discrete depth zi. The vertical hydrodynamic 

added mass coefficient at the base of the spar azz that cannot be predicted by using Morison’s 

equation, is calculated by using the assumption that the volume of the added water under the spar 

is a half sphere (Haslum 1999, Waris and Ishihara 2012). 

 

4.2 Inertia forces of fluid particles 
  

When the waves are considered, the inertia forces are associated with fluid accelerations. These 

forces are larger at the depths closer to the surface. Hence, the total horizontal inertia fluid force 

should be evaluated by using the real shape of the spar as 
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where ),( tzu if
  is the horizontal acceleration of fluid particles at depth zi. The vertical inertia 
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force due to vertical acceleration of fluid particles at the spar bottom ),( thzv df  is expressed as 

  ),(1)( 1 thzvACtF dfswM
f

z    (24) 

where 42
11 DAs  . The fluid inertia forces in Eqs. (23) and (24) are zero in no-wave sea state. 

 

4.3. Viscous drag forces  
 

The viscous drag forces are dissipative and are resulted by the relative velocities of the spar and 

the fluid and exist regardless of the presence of the waves. The total horizontal drag force is 
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where y
DC  is the hydrodynamic viscous drag coefficient of spar sides (= 0.6 for cylindrical object 

(Waris and Ishihara 2012)). The quantity ),( tzi
n
sfq  is the amplitude of the relative normal 

velocity vector at zi and can be expressed as 

    22
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n
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where ),( tzu if
  and ),( tzv f

  are the fluid horizontal and vertical velocity, respectively. 

The total vertical drag force normal to the spar bottom due to its heave velocity can be 

expressed by Eq. (27) (Kallesøe et al. 2011) with z
DC  being the drag coefficient of heave motion 
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5. Uncoupled model 

 
In order to examine the impact of blade-nacelle-spar coupling on the responses of the S-FOWT, 

an uncoupled model is developed by excluding the coupling terms from the mass, damping and 

stiffness matrices of the S-FOWT in Eqs. (9)-(11) that yields 
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In this uncoupled model, the aerodynamic loads coupling the blade edge-wise vibrations and the 

tower/spar sway, heave and roll motions in Eq. (13) are not considered, and the generalized 

aerodynamic load vector is reduced to 

T

bbbb QQQQt 000)( wind
couple,

wind
3,

wind
2,

wind
1,

'
wind Q  (31) 

The generalized gravitational load vector and the gravitational load on the spar are respectively 

given as 

  ,000 '
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'
,  (32) 

The spar-components in the mass, stiffness and damping matrices and load vector of this uncoupled 

model are the same as those in Sultania (2010). 

 

 

6. Equations of motion of the two S-FOWT models 
 

The equations of motion of the coupled model proposed in Section 2 and the uncoupled model 

proposed in Section 5 can be written in a compact form as 

  )()()()( )()()()( drag tttttttt QqKqCCqM    (33) 

For the coupled model 
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,)()( att MMM    ,)()( moor
CCC  tt   res)()( KKK  tt  (34) 

)()()()()( dragbuoywind ttttt fg QQQQQQ   (35) 

For the uncoupled model 
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For both the models, C
moor 

is the structural damping matrix of mooring systems, 
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and the damping matrix C
drag

(t) is defined from the drag forces (in Eqs. (25)-(27)) as 
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In Eqs. (35) and (37), the drag force vector is 
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and the inertia force vector due to fluid particle accelerations is 

T
f

z
f

yf FFt 00000)( Q  (43) 

where f
yF  and f

zF  are defined in Eqs. (23) and (24), respectively. 

Let )(1 tqX   and )(2 tqX  , the equations of motion, Eq. (33) can be expressed in a 

solvable equations of space-state form as 
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7. Model of the mooring cable 
 

The extended quasi-static model of mooring cable that has been applied into moored floating 

breakwaters (Sannasiraj et al. 1998) is used in this paper. In this model, the cable is assumed to be 

perfectly flexible, inextensible, and heavy. The linearized stiffness coefficients are evaluated from 

the cable mass per unit length of the mooring line c, the initial horizontal tension T0 which is 

assumed to be constant along the cable length, the vertical coordinate of the fairlead F with respect 

to the anchor point ZFC, the length L and the angle at the anchor point 0 as shown in Fig. 1(c). 

Neglecting the coupling between vertical and horizontal stiffness, the horizontal, vertical and rolling 

stiffness of the mooring system are respectively expressed as (Sannasiraj et al. 1998) 
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where w is the weight per unit length of the cable in water, l is the imaginary extension length to 

make a zero contact angle (Jain 1980). The term ZFC’ is the vertical distance between the fairlead F 

and the imaginary anchor C’, L is the real length of the cable and L’ = L + l is its total length. The 

notations YFC’ and YFC are the horizontal distances between the fairlead F and the imaginary anchor 

C’ and the real anchor C, respectively. The initial cable tensions at the seabed contact point and at 

the fairlead are denoted by TC and TF, respectively. The parameters in Eqs. (45) and (46) are defined 

by Jain (1980). 

 

 

8. Model of ocean random waves 
 

The physical sea state of ocean waves is random. The random sea state is described in this 

paper by superimposing a number of linear regular waves with different heights, frequencies and 

phase angles. The surface elevation  can be expressed as (Faltinsen 1990) 
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where Aj, j, kj, j are the wave amplitude, circular frequency, wave number and random phase 
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angle of wave component number j, respectively. The random phase angles j are uniformly 

distributed between 0 and 2. The parameters j and kj are related by the approximated dispersion 

relationship gk jj
2 for deep water or by the exact linear dispersion relationship  Hkk jj tanh

gj
2  for any water depth (Sarpkaya and Isaacson 1981).  

The simulation formulas for fluid velocity and acceleration in infinite water depth (Faltinsen 

1990) can be extended to the more general case of finite water depth. The horizontal and the 

vertical velocity, and the horizontal and the vertical acceleration of fluid particles at a depth of z 

(origin at the MWL and positive upward) and horizontal position y are respectively given by 
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where the wave amplitude Aj can be expressed by using a wave spectrum S() as 

    jj SA 2  (52) 

in which  is a constant difference between successive frequencies. The parameter j is defined 

as equal to jt  kjy + j. The Pierson-Moskowitz (PM) wave spectrum defined in the IEC 61400-3 

(2006) design standard for offshore wind turbines and routinely used to describe the statistical 

properties of fully developed seas (Jonkman 2007) is used in this paper. The one-sided PM 

spectrum has a form of 
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where   2pwTc  , Hsw is the significant wave height and Tpw is the spectral period; their 

units must be meter and second, respectively. There is a possibility of correlating wind and wave 

loading conditions on offshore wind turbines (Colwell and Basu 2009). The wind and wave states 

obtained from simultaneous wind and wave measurements at Statfjord site in the northern North 

Sea (Johannessen et al. 2001) and used as an operating condition (Karimirad and Moan 2012) are 

therefore employed in the numerical examples. 
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(a) Surface elevation time history (b) Surface elevation PSD 

  
(c) Horizontal velocity in time-depth axes (d) Horizontal acceleration in time-depth axes 

Fig. 2 Simulated sea profiles 

 

 

9. Numerical examples 
 

The examples assume the properties of the floating platform, mooring systems and tower of the 

OC3 S-FOWT (Jonkman 2010) with ht = 87.6 m, h0 = 4 m, hc = 8 m, hd = 120 m, hF = 70 m, hG = 

89.9155 m, D0 = 6.5 m, D1 = 9.4 m, Ms = 7466.3310
3
 kg, Is = 4229.2310

6
 kg.m

2
, L = 902.2 m, c = 

77.7066 kg/m, 0 = 0
o
, T0 = 100,000 N, w = 1025 kg/m

3
 and H = 320 m. The calculated values of h0 

by using Eq. (22) and hB by using Eq. (24) are 4.85 m and 62.69 m, respectively. The aerodynamic, 

blade, hub and nacelle properties of the NREL 5-MW baseline HAWT (Jonkman et al. 2009) are 

used with R = 61.5 m, the cut-in and with rated rotor speeds as 6.9 rpm and 12.1 rpm, respectively. 

The mass of each blade, hub mass, nacelle mass, and tower integrated mass are 17.7410
3
 kg, 

56.7810
3
 kg, 24010

3
 kg, and 249.71810

3
 kg, respectively. The fundamental frequencies of the 

blade and the tower are 6.81 rad/s and 2.87 rad/s respectively. The modal structural damping ratios 

of the blade and the tower are taken as 0.48% and 1%, respectively (Jonkman et al. 2009). The drag 

coefficient of heave motion 20z
DC (Kallesøe et al. 2011) is initially used but the heave 

displacement of the spar is unrealistically damped out after a few vibration cycles. Hence a smaller 

value of 2z
DC  is assumed and used in this paper. 
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(a) Blade 1, time history (b) Blade 1, FFT 

  

(c) Nacelle, time history (d) Nacelle, FFT 

Fig. 3 Displacements of a 5MW fixed-base WT 

 

 

The wind and wave states used in the numerical examples are assumed to be at operating 

condition (Karimirad and Moan 2012). The mean wind speed at the top of the tower is assumed to be 

at the rated wind speed of 12 m/s. The turbulence intensity is 15%, the significant wave height Hsw is 

3 m and the wave peak period Tpw is 10 s. To simulate the sea profiles by using Eqs. (47)-(51) and to 

calculate the added mass coefficients, drag forces and fluid inertia forces, the draft hd is divided into 

30 intervals of z = 4m along the depth, and the unrealistic high frequency components of waves are 

filtered out. The total simulation time, time step interval and the frequency interval are 80 s, 0.02 s 

and 0.0767 rad/s respectively. The simulated sea surface elevation and the 3-D profiles of horizontal 

velocity and acceleration are shown in Fig. 2. The 3-D sea profiles show that the sea responses are 

largest at surface level and reduce with the increasing depth. These are required for the computation 

of drag and fluid inertia forces by integrating over the depth. 

Five cases are analyzed, namely (i) fixed-base wind turbine (FBWT) having the same 

aerodynamic loads and properties of blades, nacelle and tower as those of the OC3 S-FOWT, (ii) 

S-FOWT by using uncoupled model in no-wave sea, (iii) S-FOWT by using coupled model in 

no-wave sea, (iv) S-FOWT by using uncoupled model with waves, and (v) S-FOWT by using 

coupled model with waves. The displacements of blade 1 and nacelle for case (i) are shown in Fig. 3. 

The displacements of blade 1, nacelle and spar heave for case (ii) are shown in Fig. 4. In case (ii), the 

spar sway and roll displacement are almost zero. Figs. 5-7 show the displacements of blade 1, 

nacelle and spar sway, heave and roll for cases (iii), (iv) and (v) respectively. 

 
 
9.1 Response comparisons of a fixed-base WT and a S-FOWT in no-wave sea 
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(a) Blade 1, time history (b) Blade 1, FFT 

  
(c) Nacelle, time history (d) Nacelle, FFT 

  
(e) Spar heave, time history (f) Spar heave, FFT 

Fig. 4 Displacements of the 5MW S-FOWT by using uncoupled model in no-wave sea 

 
 

The amplitude and fundamental frequency of blade and nacelle displacements of the uncoupled 

S-FOWT in Figs. 4(a)-4(d) are similar to those of the FBWT in Figs. 3(a)-3(d); the impact of spar 

dynamics on the blades and nacelle response in no-wave sea is therefore not significant. There are 

reductions in amplitude at higher frequency for the S-FOWT blade displacements as shown in Fig. 

4(b) and increase in amplitude at lower frequency for the S-FOWT nacelle displacement as shown in 

Fig. 4(d), as compared to the FBWT. These can be attributed to the flexibility of FOWT foundation 

where the lower frequency components of responses are more excited than the higher ones.  

 
9.2 Response comparisons of uncoupled/ coupled models of S-FOWT in no-wave sea 

 

The amplitude and frequency content of blade and nacelle displacements of the uncoupled 
S-FOWT in Figs. 4(a)-4(d) are similar to those of the coupled S-FOWT in Figs. 5(a)-5(d); the 
impact of the coupling with spar motions on quantities such as the blade and nacelle displacements 
in no-wave sea is therefore not significant. There is increase in amplitude at lower frequency 
components of nacelle displacement as shown in Fig. 5(d). 
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(a) Blade 1, time history (b) Blade 1, FFT 

  
(c) Nacelle, time history (d) Nacelle, FFT 

  
(e) Spar sway, time history (f) Spar sway, FFT 

  
(g) Spar heave, time history (h) Spar heave, FFT 

  
(i) Spar roll, time history (j) Spar roll, FFT 

Fig. 5 Displacements of the 5MW S-FOWT by using coupled model in no-wave sea 
 

 

u
1
(R

,t
) 

[m
] 

248



 
 
 
 
 
 

Impact of spar-nacelle-blade coupling on the edgewise response … 

  
(a) Blade 1, time history (b) Blade 1, FFT 

  
(c) Nacelle, time history (d) Nacelle, FFT 

  
(e) Spar sway, time history (f) Spar sway, FFT 

  
(g) Spar heave, time history (h) Spar heave, FFT 

  
(i) Spar roll, time history (j) Spar roll, FFT 

Fig. 6 Displacements of S-FOWT by using uncoupled model with waves, Eqs. (34) and (35) 

 

u
1
(R

,t
) 

[m
] 

249



 
 
 
 
 
 

Van-Nguyen Dinh, Biswajit Basu and Søren R.K. Nielsen 

More attention should be paid at the spar motions. There are considerable sway and roll 
displacements of the coupled S-FOWT model as shown in Figs. 5(e), 5(f), 5(i) and 5(j) even though 
no waves are considered. Especially, the response amplitude and Fourier amplitude of the spar heave 
displacements are much larger than those of the uncoupled S-FOWT model. The blade-nacelle-spar 
couplings are seen to contribute significantly to the spar response in no-wave sea. 

 

9.3 Response comparisons of uncoupled and coupled models of S-FOWT with waves 
 

The amplitude and frequency content of the blade displacements of the uncoupled S-FOWT in 

Figs. 6(a) and 6(b) are similar to those of the coupled S-FOWT in Figs. 7(a) and 7(b); the impact of 

the coupling with spar motions on the blade responses in waves is also not significant. However, 

there are differences in both amplitude and frequency content of the nacelle response. The nacelle 

displacement of the uncoupled model with waves in Figs. 6(c) and 6(d) is as small as 0.02 m; its time 

history and frequency content are similar to those of the response of the model without the wave 

loading. The effect of wave loads on the nacelle is consequently not reflected in the uncoupled 

model. On the contrary, the nacelle displacement of the coupled model with wave loading shown in 

Fig. 7(c) are as large as 2.2 m and contains contribution mainly from with frequency components 

lower than 0.15 Hz. The coupled model is shown to capture the effect of waves on the nacelle 

response. 

There are also significant differences in magnitude of the spar displacements between the 

coupled and uncoupled models. The maximum spar sway of the uncoupled model as shown in Fig. 

6(e) is about 3 m whereas that of the coupled model as shown in Fig. 7(e) is smaller and is about 1.4 

m. The maximum spar heave of the uncoupled model as shown in Fig. 6(g) is about 0.15 m whereas 

that of the coupled model presented in Fig. 7(g) is larger and is about 1.2 m. The maximum spar roll 

of the uncoupled model as shown in Fig. 6(i) is about 0.05 rad whereas that of the coupled model 

shown in Fig. 7(i) is smaller and is about 0.01 rad. The impact of the blade-nacelle-spar coupling is 

therefore seen to be significant for the nacelle and the spar responses under wave loading. 

 
9.4 Response comparisons of S-FOWT in no-wave sea and with waves 

 

The influence of wave loading on the nacelle, spar sway and roll displacements depends on the 

modeling of S-FOWT and is discussed in Sections 9.1-9.3. However, the influence of the wave 

loading simulated in this paper on the blade edgewise displacement and spar heave displacement are 

insignificant. In the numerical examples, the wind conditions corresponding to the no-wave sea and 

to the sea with waves are unrealistically assumed to be identical in order to investigate the effect of 

wave loading on the response of the S-FOWT. 

Comparing Figs. 4(a) and 4(b) with Figs. 6(a) and 6(b), and Figs. 5(a) and 5(b) with Figs. 7(a) 

and 7(b), no difference is observed in the blade edgewise displacements between the two cases of 

wave loading. The spar heave displacement is also not considerably increased when wave loading is 

considered as shown in Figs. 4(e), 4(f), 6(e) and 6(f) for the uncoupled model, and in Figs. 5(e), 5(f), 

7(e) and 7(f) for the coupled model. However, in absence of the wave loading, the spar heave 

displacements are damped out at a slower rate and the peak Fourier amplitudes are slightly larger as 

compared to the responses with wave loading. The faster decay of heave displacement under wave 

loading can be attributed to the larger radiation damping due to fluid motion. 
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Impact of spar-nacelle-blade coupling on the edgewise response … 

  
(a) Blade 1, time history (b) Blade 1, FFT 

  
(c) Nacelle, time history (c) Nacelle, FFT 

  
(e) Spar sway, time history (f) Spar sway, FFT 

  
(g) Spar heave, time history (h) Spar heave, FFT 

  
(i) Spar roll, time history (j) Spar roll, FFT 

Fig. 7 Displacements of S-FOWT by using coupled model with waves, Eqs. (36) and (37) 
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10. Conclusions 
 

The derived formulation of the proposed coupled model for a spar-type floating offshore wind 

turbine shows that the vibrations of the blades, nacelle, tower, and spar are coupled in all degrees of 

freedom and in all components: inertial, dissipative and elastic. The gravitational loads and the 

aerodynamic loads also contain coupling terms between the blades and the spar. The solution to the 

proposed discrete model for the complete system with the coupling is computationally inexpensive 

in time while the key components of the system are accounted for. The numerical examples show 

significant impact of the blade-nacelle-spar coupling on the nacelle and spar responses in several of 

the cases considered.   

Comparing to the fixed-base case, there are reductions in response amplitude at higher frequency 

components of the S-FOWT blade displacements and increase in response amplitude at lower 

frequency components of the S-FOWT nacelle displacement due to the flexibility of the FOWT 

foundation. This is due to the reason that the lower frequency component of the responses is more 

excited than the higher ones. In the case with no wave loading, the coupling contributes significantly 

to the spar response but not to the nacelle response. In the case with the wave loading included, the 

impact of blade-nacelle-spar coupling is significant on the response of both the nacelle and the spar. 

The coupled model is shown to capture the effect of waves on nacelle response whereas the 

uncoupled model does not. 
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