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Abstract.  The unsteady flow past a circular cylinder which starts rotating or rotary oscillating impulsively 
from rest in a viscous fluid is investigated for Reynolds numbers Re = 200 and 1000, rectilinear speed ratios 
α between 0.5 and 5.0, and forced oscillating frequencies fs between 0.1 and 2.0. Numerical solutions of the 
Navier-Stokes equations are obtained by using a finite volume method on an unstructured colocated grid. 
The objective of the study is to examine the effect of the rotating and rotary oscillating circular cylinder on 
the flow patterns and dynamics loads. The numerical results reveal that the Kármán vortex street vanishes 
entirely behind the rotating cylinder when the ratio α exceeds the critical value, and the vortex shedding 
behind the rotary oscillating cylinder undergoes mainly three modes named ‘synchronization’, ‘competition’ 
and ‘natural shedding’ with the increase of fs. Based on the amplitude spectra analysis of the lift coefficients, 
the regions of the classification of flow structure modes are presented, which provide important references 
for the flow control in the ocean engineering. 
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1. Introduction 

 
The viscous flow interaction with a moving circular cylinder exists widely in the ocean 

engineering, aircraft and heat energy engineering, which has applications in active or feedback 

control of vortex shedding, with consequences for the wake modification and the reduction of flow 

induced vibrations (Mittal 2001). It is also of importance in the investigation of the unsteady flow 

separation and the boundary layer control. Therefore, the study of the wake behind the moving 

circular cylinder and the dynamic features of the flow field has attracted a great deal of attention. 

For the flow associated with a circular cylinder of radius a, which starts its motion impulsively 

from rest with a uniform rectilinear velocity U∞ and an invariant angular velocity Ω in the 

counterclockwise direction, the flow field depends mainly on two parameters. The first is the 

Reynolds number 
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Re

U a


  (1) 

where υ is the kinematic viscosity of the fluid. The second is the rectilinear speed ratio 

a

U





  (2) 

In the aspect of experimental studies on this problem, Prandtl (1925) carried out the earliest 

visual experiments of flow past a rotating cylinder. After that, Swanson (1961) measured the lift 

and drag forces directly. In the early 1980s several experimental studies were reported, for 

example Taneda (1980), Koromilas and Telionis (1980), and Diaz et al. (1983). Among those 

works, Matsui (1982) found that when the ratio α is moderately high, a Kármán vortex street, 

Gôrtler-type vortices and Taylor vortices are generated at the same time. In particular, Coutanceau 

and Menard (1985) investigated the early phase of the establishment of the flow for Re = 200, 0.5 

≤ α ≤ 3.25 by visualizing the flow patterns with solid tracers, and reported that Kármán vortex 

street disappeared entirely during the early stage of their experiment when the ratio α is greater 

than a certain limiting value. In addition, the experimental flow visualization was also conducted 

by Badr et al. (1990) for Re = 1000 and 0.5 ≤ α ≤ 3.0, Lam (2009) for 3600  Re  5000 and α ≤ 

2.5. 

The solutions of the Navier-Stokes equations using computational methods provide an excellent 

alternative description of the viscous fluid motions. Badr and Dennis (1985) and Badr et al. (1990) 

investigated the flow past a circular cylinder which begins translational and rotational motion 

impulsively from rest using the Fourier analysis, and compared the numerical and experimental 

results for 200 ≤ Re ≤ 10
4
 and 0.5 ≤ α ≤ 3.0. For 10

3 
≤ Re ≤ 10

6
 and 0 ≤ α ≤ 2.0, the initial stage of 

the flow has been studied by Cheng and Chern (1991) using a hybrid vortex method. In addition, 

Chen et al. (1993) computed numerically a velocity-vorticity formulation of the Navier-Stokes 

equations for Re = 200 and 0.5 ≤ α ≤ 3.25, and Chew et al. (1995) obtained the flow structure, the 

force coefficients and the Strouhal number for Re = 1000 and 0 ≤ α ≤ 6 by a hybrid vortex scheme. 

The more recent numerical works include the study of a rotating cylinder with cross flow 

oscillation by Nobari and Ghazanfarian (2009), two rotating side-by-side circular cylinders by 

Yoon et al. (2009), rotating cylinders next to a wall by Rao et al. (2011), and a rotating cylinder in 

turbulent flows by Karabelas (2010).  

For the uniform flow of velocity U∞ associated with a circular cylinder of radius a which starts 

its forced oscillating motion impulsively from rest with a sinusoidal variant angular velocity, the 

flow structure depends mainly on three parameters. The first two are the Reynolds number Re and 

the rectilinear speed ratio  as discussed before, and the third one is the forced oscillating 

frequency 

s
s

f a
f

U

  (3) 

where fs̃ is the dimensional forced oscillating frequency. In this case, the forced oscillating 

frequency and the natural shedding frequency have great influences upon the flow development all 

together. The competitive relationship between these two frequencies results in the complex 
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unsteady features of the wake flow, which are still not fully understood. 

Most of the prior studies on the effect of cylinder oscillation were made experimentally. 

Okajima et al. (1975) examined the forces acting on a rotary oscillating cylinder for 40 ≤ Re ≤ 

6000, 0.2 ≤ α ≤ 1.0, and 0.025 ≤ fs ≤ 0.15. When the oscillating frequency is close to the natural 

vortex shedding frequency, he noted a ‘synchronization’ similar to that observed, for example, by 

Bishop and Hassan (1964) and Koopman (1967). Tokumaru and Dimotakis (1991) investigated the 

effect of the rotary oscillating cylinder on the wake structure for Re = 1.5×10
4
 by visualizing the 

flow patterns, and reported that vortex shedding behind the cylinder undergoes mainly three 

modes, named ‘synchronization’, ‘competition’, and ‘natural shedding’. At lower oscillating 

frequency, the wake structure is synchronized by the forced cylinder oscillation. With increasing 

the forced frequency, the wake pattern turns to be transitional mode due to the competition 

between the forced oscillating frequency and the natural shedding frequency. At higher oscillating 

frequency the vortex shedding pattern is similar to that of flow past a stationary circular cylinder, 

and alternate shedding vortex forms Kármán vortex street. Moreover, the transition between 

‘synchronization’ and ‘natural shedding’ modes occurs gradually through ‘competition’ mode. 

However, a relatively smaller number of researchers have simulated numerically the effects of 

rotary oscillation of the cylinder. Lu and Zhuang (1994) investigated the flow structures of viscous 

flow past a rotary oscillating circular cylinder in a uniform stream at Re = 1000. They adopted the 

finite difference method to calculate a stream-vorticity formulation of the Navier-Stokes equations 

in frame of the polar coordinate system. They also presented a parameter map in the 

frequency-amplitude plane for indicating the classification of vortex structures in the near wake. 

Moreover, Baek and Sung (1998) utilized a fractional-step method to solve the Navier-Stokes 

equations with a generalized coordinate system.  

In this paper, the numerical calculation is performed to simulate the flow past a rotating and 

rotary oscillating circular cylinder. Unlike the numerical methods used before, a finite volume 

method based on unstructured colocated meshes is adopted here to solve the Navier-Stokes 

equations with original variables. Most previous methods for this problem are constructed in frame 

of the nonorthogonal coordinate system, and the viscous vorticity function is introduced as the 

unknown variable. They are not robust enough to be suitable for arbitrary computational 

boundaries, and it is also difficult to define the boundary conditions exactly. However, the 

unstructured grids in the Cartesian coordinate system used here are efficient for arbitrary complex 

domains, and they are clear and straightforward from the physical point of view. Numerical results 

include the vortex shedding and the full development of the wake behind the rotating and rotary 

oscillating cylinder. The main effort of this paper is devoted to analysis the global characteristics 

of the flow, such as the lift and drag coefficients at different values of the rotational parameters and 

the amplitude spectra analysis of the lift coefficients based on which the regions of the 

classification of flow patterns are provided for both the rotating and rotary oscillating cylinders. 

 

 

2. Governing equations and boundary conditions 
 

To describe an unsteady, incompressible two-dimensional viscous flow, a right-handed 

Cartesian coordinate system Oxy is defined as shown in Fig. 1. Based on the dimensionless 

variables defined according to 
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the continuity and Navier-Stokes equations can be expressed in dimensionless form as 

0
u v

x y

 
 

 
 (5) 

 

2 2

2 2

2

Re

u u u p u u
u v

t x y x x y

      
      

      
 (6) 

 

2 2

2 2

2

Re

v v v p v v
u v

t x y y x y

      
      

      
 (7) 

where the tilde denotes the dimensional variables. x = (x, y) is the position vector, u = (u, v) are the 

velocity components in the Cartesian directions x and y respectively,  is the fluid density, p 

denotes the pressure and t is the time. 

In addition the boundary conditions must be satisfied on the boundary surfaces of the 

computational domain. On the inlet boundary, the fluid velocity equals to the prescribed inlet 

velocity uin. The slip boundary condition is applied on two sidewalls, in order to eliminate the 

boundary influence on the numerical results. In the computations generally a very wide 

computational domain is chosen so that the effect of the sidewalls is negligible. However, the 

non-slip condition must be specified on the cylinder surface. On a rotating circular cylinder the 

boundary condition can be given as 

,   u y v x     (8) 

while the boundary condition on a rotary oscillating circular cylinder becomes 

   sin 2 ,   sin 2S Su y f t v x f t       (9) 

 

 

 
 

Fig. 1 The sketch of definition 

x 
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On the outlet boundary the condition should make the boundary “transparent”, i.e., the 

numerical solutions in the computational domain would not be affected by the outlet boundary, 

wherever it is placed. The outlet boundary condition will be discussed in detail later.  

 

 

3. Discretization of momentum equations 
 

The present numerical method is developed on an unstructured triangular grid. It is known that 

the unstructured grid is very suitable for complicated computational domains and the Delaunay 

triangulation technique is a popular method to generate the triangular grid, which is adopted here. 

In the Delaunay triangulation method the first step is to generate the initial triangles, based on the 

given points on the known computational boundaries. Once the coarse Delaunay initial triangles 

are generated a certain amount of points can be inserted in the domain to form the final grid. The 

number of the inserted points is defined by users, but the position of the inserted points is 

determined by the Delaunay triangulation method. In addition, if local refinement is demanded 

some representative points on the boundary of the refined region can be specified in accompany 

with the boundary points. These representative points are used as part of the prescribed boundary 

points in the generation of the initial triangles, as shown in the regions around the cylinder as well 

as behind it in Fig. 2(a). Fig. 2(b) shows the results of the Delaunay triangulation method 

generated for the exterior flow around a circular cylinder. It should be noted that for moving 

bodies, the boundary points will be updated every time step, therefore, the abovementioned mesh 

generation procedure can be implemented every time step in order to accommodate the change of 

the computational domain. 

On the unstructured triangular grid, the cell-centered Finite Volume Method (FVM) is used 

here to obtain the Navier-Stokes solutions. For each triangular Control Volume (CV) P0, the 

momentum equation in integral form is 

0 0 0

0

3

1

2
d

Re
j

P P P

jP

V V p
t


 



   
         

   
 

S

u S  (10) 

 

 

  

(a) Initial triangles (b) Final mesh 

Fig. 2 An example mesh generated for a flow past a circular cylinder for illustration of the   

mesh generation 
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(a) The area vectors (b) The parameters on the cell face 

Fig. 3 Definition of geometrical parameters in a control volume 

 

 

where  is the general variable denoting u or v in the corresponding directions respectively, VP0 is 

the volume of CV P0, S is the area vector pointing out of CV P0 (see Fig. 3(a)). The discretization 

of each term in Eq. (10) is discussed in the following. 

 

3.1 The convective fluxes 
 

The convective fluxes on the jth face of CV P0 is defined by Cj, 

   d

j

j j j j j j jj
C F         

S

u S u S u S  
(11) 

where Fj is the mass fluxes on the jth cell face, and the cell face velocity uj can be determined by 

the momentum interpolation method, 

   0

0 0

0
0 0

1 1 1

2 2 2

j

j j

j

P P j j

j P P P P

j j jP P

p pV V
p p

a a

      
             
         

d S
u u u

d d S
 (12) 

where Pj is the jth CV adjacent to the CV P0, a0 denotes the diagonal coefficient in the discretized 

momentum equation discussed below in Eq. (22), and dj is the distance vector between the nodes 

P0 and Pj (see Fig. 3(b)). The above equation shows that the cell face velocity consists of three 

terms. The first term is the linear interpolation of the velocity, the second term is the pressure 

gradient under the linear assumption of the pressure and the third term is the averaged pressure 

gradient over the two adjacent cells. This momentum interpolation equation is used only in 

discretizing the momentum equations, while the linear interpolation is adopted to discretize the 

continuity equation. The practice indicates that the unphysical pressure field can be avoided if this 

pressure-velocity coupling is introduced in any step of the computational procedure. 

Different approximations of the cell face variables j will introduce different convective 

schemes. By using the simplest first-order upwind difference scheme (UDS), Eq. (11) can be 

expressed as 

0
max ,0 min ,0

jj j P j PC F F          (13) 

S1 

S1 S2 

S2 

S3 

S3 

 P0 P0 

Pj 

c1 

j 

dj 

Nj 

Sj 

c2 
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However, it is well known that the serious numerical diffusion appears when UDS is adopted. 

Therefore, the second-order upwind difference scheme (SUDS) is implemented here to discretize 

the convective fluxes, 

 

 
0 00

,

,

          0

          0
j jj

P j P jP

j

P j P jP

F

F

 


 

    


 
   

r

r
 (14) 

where ∆rj,p0 and ∆rj,pj are the distance vector between the midpoint j on the cell face and the nodes 

P0, Pj respectively. After modified by the deferred correction method, Eq. (11) can then be written 

as 

 
1n

UDS SUDS UDS

j j j j j jC F F  


    (15) 

where the superscripts UDS and SUDS stand for the variables approximated by the first-order and 

second-order upwind difference schemes respectively, and the superscript n1 denotes that the 

terms in the bracket are calculated using the values obtained from the previous iteration. The 

second-order approximation in the bracket is added to the source term, and the first-order scheme 

is adopted to compute the coefficient matrix. When the calculation is convergent, the contribution 

of the first-order scheme will vanish and the second-order accuracy can be achieved. 

 

3.2 The diffusive fluxes 
 

By assuming that the diffusive fluxes on the jth cell face of CV P0 is Dj, we have 

2 2
d

Re Re
j

j j jD         
S

S S  (16) 

Dj can be further decomposed into the normal diffusion Dj
n
 and the cross diffusion Dj

c
, 

0 2 1

1 2,

2 2

Re Re

jP P c cj jn c

j j j j j

c cj j j

D D D
l

       
         
   
   

d N
S S

d d N
 (17) 

where Nj is the conjugation of dj, lc1, c2 is the distance between the vertexes c1 and c2 on the jth cell 

face of CV P0, as shown in Fig. 3(b). c1, c2 are the  values on c1, c2 obtained by the following 

interpolation, 

1 1

N N

c i i i

i i

  
 

   (18) 

where N is the number of neighboring triangles around the vertex, and i is the weight factor taken 

as the reciprocal of the distance between the vertex and the neighboring cell center. 

It should be mentioned that the triangles generated by the Delaunay triangulation method are 

almost regular, NjSj is thus close to zero, and Dj
c
 is usually much smaller than Dj

n
. In discretizing 

the equations, Dj
n
 is treated implicitly as the unknown and Dj

c
 is considered explicitly. 
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3.3 The other terms 
 

The evaluation of the pressure gradient is needed in Eqs. (10), (12) and (14). Using the Gauss’ 

Theorem, we can obtain the following formulation to calculate the pressure gradient, 

0 0

3

1

P P j j

j

V p p


  S  (19) 

where pj is the pressure on the jth cell face of CV P0, predicted by the linear interpolation of the 

pressure in two adjacent cells. 

An implicit three-level scheme of second-order accuracy is adopted here to approximate the 

unsteady term in Eq. (10), 

1 2
3 4

2

n n n

t t

    
  


 

 (20) 

where ∆t is the time interval, the superscripts n, n1, and n2 denote the values at three time 

levels, tn, tn1, and tn2 respectively. At the first time step, only the results at the previous time level 

are known, so the first-order implicit Euler scheme is introduced. Therefore, the universal equation 

for the discretization of the unsteady term is 

    1 21 0.5 1 0.5n n n

t t

    
    


 

 (21) 

where  = 1 corresponds to the implicit three-level scheme, and  = 0 indicates the implicit Euler 

scheme. 

 

3.4 Establishment of the discretized momentum equations 
 

Substituting all the discretization schemes into Eq. (10) results in the final discretized 

momentum equation of CV P0, 

0

3

0 0

1
jP j P

j

a a b 


   (22) 

where 

2

2
min ,0

Re

j j

j j

j

a F


    

d S

d
 (23) 

 

 0

3

0

1

1 0.5
P

j

j

V
a a

t





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

  (24) 
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 
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
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



 

  
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  
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N

S S
N

 (25) 

The under-relaxation technique is always used in the numerical computation in order to ensure 

the convergence of the iterative procedure. For the momentum equations the under-relaxation 

factor is considered directly in assembling the coefficient matrix, and the complete algebraic 

equation adopted in the present numerical simulation is 

 
0 0

3
10 0

0

1

1
j

n

P j P P

j

a a
a b 

 

   
 





 
     

 
  (26) 

where  is the under-relaxation factor for the variable , which is taken as 0.7 in this study. 

 

 

4. The pressure correction equation  
 

The velocity obtained from the solution of the momentum equations cannot be guaranteed to 

satisfy the continuity equation, which needs to be corrected subsequently by an appropriate 

algorithm. Here the SIMPLE algorithm is adopted, in which the cell face velocity correction u'j is 

defined in terms of the pressure correction p'; more details about the SIMPLE algorithm can be 

found in many textbooks, such as Ferziger and Perić (1999). 

0

0

' '

'

0 0

1

2

j

j

P P j

j u u

j jP P

p pV V

a a

      
        

        

S
u

d S
 (27) 

where p'P0 and p'Pj are the pressure corrections in CV P0 and CV Pj respectively, and a0
u
 is the 

diagonal coefficient in the discretized momentum equations. 

Substituting Eq. (27) into the continuity equation leads to the discretized pressure correction 

equation for p'P0, 

0

3
' '

0 0

1
j

p p p

P j P

j

a p a p b


   (28) 

where the superscript p denotes that the corresponding coefficients are of the pressure correction 

equation. The coefficients are given by 

0
0 0

1

2
j

jp

j u u

jP P

V V
a

a a

    
     
     

S

d
 (29) 
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p p

j

j

a a


  (30) 

 

3

0

1

p

j

j

b F


   (31) 

After obtaining the pressure correction p'P0, the pressure and the velocity can be corrected by 

0 0 0

'

P P Pp p p   (32) 

 

0

0 0 0 0

'3
'

10 0

P j j

P P P Pu u
j

V p
p

a a

 



    
S

u u u  (33) 

 

 

5. The outlet boundary condition 
 

The implementation of an appropriate outlet boundary condition is an important issue in CFD, 

which could affect directly the accuracy and the simulating time in a reasonably sized domain. 

There are many types of the outlet boundary conditions, each of which has its own feature and 

advantage. The outlet boundary condition applied in this paper is that the normal velocity satisfies 

the local mass conservation and the tangent velocity is subject to the Neumann condition (Li and 

Tao 1993). In order to illustrate conveniently, we only consider the outlet boundary surface 

perpendicular to the x–axis, where the normal and tangent velocities are the components u and v 

respectively. 

Firstly, the v component satisfied the Neumann condition is written easily as 

0

1n

j Pv v   (34) 

where vj is the v component of the boundary node j, vP0 is the v component of CV P0 adjacent to 

the boundary node j. The application of the local mass conservation in CV P0 yields 

3

1

0i i

i

 u S  (35) 

Consequently, we can find the normal velocity of the boundary node j, 

2

1

1
j i i j jy

ijx

u v S
S 

 
    

 
u S  (36) 

where (Sjx, Sjy) = Sj are the area vector components in the x and y directions respectively. As the 

distribution of the normal velocity still needs to satisfy the global mass conversation, a constant C 

is introduced to correct the normal velocity uj, which is defined by 
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 
1

M

j jx

j

u C S Flowin


   
(37) 

where M is the number of nodes on the outlet boundary surface and Flowin is the mass fluxes 

through the inlet boundary surface. 

 

 

6. Numerical results 
 

In this section, the numerical results of the flow past a rotating and rotary oscillating circular 

cylinder for Re = 200, 500 and 1000, 0.5 ≤ α ≤ 5.0, and 0.1 ≤ fs ≤ 2.0 are presented and discussed. 

Table 1 shows the parameters for different computational cases in the investigation of the flow past 

a rotating circular cylinder, from which we can see in total 42 examples have been conducted. As 

the emphasis of this paper is to define the flow regime precisely, therefore, several cases in 2.0 ≤ α 

≤ 3.0 have been chosen. We expect that the complete vortex suppression will occur in this range of 

, and through the FFT analysis a certain critical value can be obtained to separate different flow 

regimes for each Re number. The center of the circular cylinder stands on the origin of the 

coordinate system, and the distances from the inlet boundary, outlet boundary, upper wall 

boundary and lower wall boundary to the origin are 10a, 30a, 10a and 10a respectively. 8840 

triangular elements generated by the Delaunay triangulation method are adopted here, which are 

refined locally near the cylinder in order to ensure the accuracy of the numerical simulation. It 

should be mentioned that the mesh convergence test has been carried out for the flow past a fixed 

circular cylinder, and the convergent results have already been achieved at the meshes adopted 

here. The algebraic equation system is solved by the Gauss-Seidel method. The estimated 

convergence error of the inner iteration is the max relative error between two sequent iterations. 

The convergence criterion is 110
-6

 and the max iterative number is 50. The estimated 

convergence error of the outer iteration is the global mass flux residual, and the convergence 

criterion is 110
-5

. The time step ∆t is set to be 0.01 in all cases discussed below. 

We can define the lift and drag coefficients by making use of the numerical solutions, 

2 2
,   L D

L D
C C

U a U a  

   (38) 

where L and D are the lift and drag forces on the cylinder. It is known that the lift and drag 

coefficients consist of the components due to the friction force and the pressure, 

2.0

Re
b b

L x y

S S

C S dS pS dS    (39) 

 

2.0

Re
b b

D y x

S S

C S dS pS dS     (40) 

where  is the viscous vorticity function, Sb denotes the cylinder surface and Sx and Sy are the area 

vector components in the Cartesian directions x and y respectively. 
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Table 1 Details of numerical examples for flow past a rotating circular cylinder 

Re number  Number of cases 

200 0.5, 1.0, 2.07, 2.1 3.1 (every 0.1), 3.25, 4.0 16 

500 2.0  3.0 (every 0.1) 11 

1000 0.5, 1.0, 2.0  3.0 (every 0.1), 4.0, 5.0 15 

 
 

  

(a) x-component velocity (b) y-component velocity 

Fig. 4 Time development of velocity profile on the x-axis behind the circular cylinder and 

comparison with the experimental results of Coutanceau and Menard (1985) for Re = 

200, α = 1 

 
 
6.1 Comparison of result for flow past a rotating cylinder at Re = 200 
 

To demonstrate the validity of the present numerical results the initial velocity profiles are 

compared with the experimental results reported by Coutanceau and Menard (1985). Fig. 4 shows 

the temporal evolution of the velocity profile along the x-axis behind the circular cylinder for α = 

1.0 and t  5. Good agreement with the experimental data has been achieved. The figure also 

indicates the growth of the attached vortex with respect to the time t, during which the u and v 

components approach to the free-stream value and zero respectively with increasing x. It should be 

noted that the lines in Fig. 4 are not very smooth. The reason is that the computational nodes may 

not locate exactly on the x-axis because of the asymmetrical distribution of the unstructured 

triangular elements adopted here. Therefore, a small distance to the x-axis may results in a small 

discrepancy to the desired smooth value. 

As the ratio  increases, the vorticity layer generated at the upstream-moving side of the 

cylinder intensifies and as a consequence it becomes more difficult to maintain accuracy, as 

pointed out by Badr and Dennis (1985). However, the present numerical model is able to obtain 

the accurate numerical results by using the finer grids near the cylinder. Fig. 5 shows the 

instantaneous streamlines in the near wake for α = 2.07 and 5  t  17. Figs. 5(a) and 5(b) show 

that the first vortex grows gradually and moves in the downstream direction during the early stage 

of the flow. At the same time, the second vortex emerges at t = 9.0 in Fig. 5(b). It grows at t = 13.0 
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and 17.0 in Figs. 5(c) and 5(d). From the figure, it can be seen that the present numerical results 

validate the conclusion given by Coutanceau and Menard (1985) that no eddies appear in the lower 

wake for α = 2.07. In addition, based on the comparison of the streamline pattern, the present 

numerical results calculated for the long dimensionless time are visually identical to that in Chen 

et al. (1993) for the same case. 

 

6.2 Global characteristics of flow past a rotating cylinder 
 

One of the central problems in Computational Fluid Dynamics is the accurate prediction of 

dynamic loads. The time histories of total lift and drag coefficients CL and CD for Re = 200 are 

shown in Fig. 6. Comparisons of the behavior of the lift and drag at small and large α show that 

when α = 2.07, the lift and drag coefficients show regular fluctuations with a constant amplitude 

except during the initial stage of the flow. It is clear that the periodic fluctuation is related to the 

alternate vortex shedding. When α = 3.25, the lift and drag coefficients become non-periodic. They 

tend to steady constant values after the steady state has been reached, which indicates that the 

vortex shedding may not be associated with the cylinder undergoing a high speed rotation. In 

addition, when α = 0 corresponding to flow past a fixed cylinder we know that the drag coefficient 

fluctuates at twice the frequency of the lift coefficient, because the vortex in the wake is just 

oscillating across the symmetric centerline periodically. However, the lift and drag forces fluctuate 

at the same frequency when α  0 as shown in Fig. 6(a). When the cylinder is rotating, the vortex 

in the wake behind the cylinder is asymmetric and the different location of the vortex will result in 

a different drag force. Moreover, the difference in the amplitude of the drag coefficient is due to 

the location of the vortex in relation to the rear of the cylinder, which also causes the mean lift 

coefficient to move away from zero.  

 

 

  
(a) t = 5.0 (b) t = 9.0 

  
(c) t = 13.0 (d) t = 17.0 

Fig. 5 Streamline pattern for Re = 200, α = 2.07 

203



 
 
 
 
 
 

Wei Bai 

 

 
(a) α = 2.07 

 

(b) α = 3.25 

Fig. 6 Variation of the lift and drag coefficients with α and time for Re = 200 

 

 

The shedding frequencies and the fluctuating amplitudes at various α for Re = 200 are obtained 

by the amplitude spectra analysis of the lift coefficients, as shown in Fig. 7. It is clearly seen that 

only one peak is observed in the amplitude spectrum with a particularly dominant frequency at all 

α. When α > 2.07, the vortex shedding frequency decreases with the increase of α, and gradually 

moves away from the natural shedding frequency. At the same time, the fluctuating amplitude 

reduces rapidly and it is very small at α = 2.6. This indicates that for α  2.6, any vortex shedding 

will disappear, the lift and drag forces become non-periodic and the flow structure turns to be 

steady.  

 

 

  

(a) α = 2.07 (b) α = 2.6 

Fig. 7 Amplitude spectra of the lift coefficients at different α for Re = 200 
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The mean values of the lift and drag coefficients are shown in Fig. 8. The lift coefficients 

determined by the present method are similar to the results reported by Tokumaru and Dimotakis 

(1993) for Re = 3800, as both of them exceed the limiting magnitude of 4. The existence of a 

limiting lift coefficient is proposed by Prandtl (1925) based on the theoretical analysis, and implies 

that the Magnus effect is only effective up to a certain α. However, in a real flow, the Gôrtler or 

Taylor vortices in the re-circulating region enclosed by the dividing closed streamline can alter the 

limiting lift coefficient phenomenon as observed in the present flow. It can be seen that the lift 

coefficient increases at a fast rate and the drag coefficient varies in a small range with the increase 

of α. When α  2 ~ 3, the higher the α, the smaller is the drag coefficient because the location of 

the vortex behind the cylinder moves to the top of the cylinder, and the flow field changes to be 

symmetric between the upstream and downstream of the cylinder gradually. With the 

disappearance of Kármán vortex street, the drag coefficient increases and tends to approach an 

asymptotic value. 

 

 

  
(a) Re = 200 (b) Re = 1000 

 
(c) Comparison of the Strouhal number with other results 

Fig. 8 Variation of the mean lift and drag coefficients, and the Strouhal number with α 
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For the purpose of comparison, the lift coefficients reported by Tokumaru and Dimotakis 

(1993) for Re = 3800 are also included in Fig. 8(b). We can notice that our lift coefficients are 

over-predicted. However, it should be noted that we are comparing the results at different Re 

numbers (the present results are given for Re = 1000). Nevertheless, they follow the same trend 

and a higher Re number will generally lead to a smaller lift force. This conclusion can be also 

drawn from the comparison of the lift coefficients at Re = 200 and Re = 1000. The comparison is 

also made for the Strouhal number when α  2 with the results report by Dol et al. (2008) for Re = 

9000, Lam (2009) for Re = 5000, Chew et al. (1995) for Re = 1000 and Kang et al. (1999) for Re 

= 160, as shown in Fig. 8(c). The Strouhal number is determined by means of the FFT analysis 

which is known to be sensitive to the sample chosen. Time interval, sample duration and beginning 

point are the factors influencing the FFT results. However, it can be seen that the present Strouhal 

numbers fall into the range of others’ results. From the comparisons of the lift coefficient and 

Strouhal number, the present numerical model is well validated.  

The amplitude spectra analysis of the lift coefficients shows that when the fluctuating 

amplitude is small enough to be ignored, the Kármán vortex street vanishes. It is necessary to 

notify that this critical value of α is the same with that at which the minimum drag coefficient is 

obtained. Using the critical value of α for variant Reynolds numbers, we give the regions of the 

classification of vortex shedding patterns behind the cylinder in Fig. 9. In the figure, only three 

points are available at three different Re numbers. However, a fitting curved line is also drawn in 

the figure to clearly indicate the separation of different regions. Region R1 represents the wake of 

the cylinder is steady and no vortices are shed, and Region R2 denotes the alternating vortices are 

shed from the upper and lower sides of the cylinder. This figure can provide important references 

for the reduction of flow-induced vibrations in ocean engineering. 

 

 

 
 

Fig. 9 The regions of the classification of vortex shedding pattern behind the rotating cylinder 
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6.3 Global characteristics of flow past an oscillating cylinder 
 

In this section, 92 cases are chosen to investigate the flow past a rotary oscillating circular 

cylinder, and the detailed information for those cases can be found in Table 2. Before the dynamic 

loads on a rotary oscillating cylinder are discussed, we will now show how the flow evolves when 

Re and α remain fixed at 200 and 2 respectively. Fig. 10 gives the patterns of instantaneous 

streamlines for fs = 0.2 over one period of vortex shedding, which have turned to be periodic after t 

= 20. It can be seen clearly that the vortex shedding and the forced oscillation of the cylinder finish 

the variation over one period at the same time. The flow evolution is similar to that in the early 

stage of the wake development. An eddy emerges on the upper or lower side of the cylinder per 

half-cycle. Then, it separates from the cylinder and moves in the downstream direction. Lastly, the 

eddy decreases, splits and vanishes gradually with increasing time. The evolution indicates the 

vortex shedding is synchronized by the cylinder oscillation. 

 

 

  
(a) t = 50.0 (b) t = 51.0 

  
(c) t = 52.0 (d) t = 53.0 

  
(e) t = 54.0 (f) t = 55.0 

Fig. 10 Patterns of instantaneous streamlines for Re = 200, α = 2, fs = 0.2 
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Table 2 Details of numerical examples for flow past a rotary oscillating circular cylinder 

Re number  fs Number of cases 

200 

0.5 0.1 2.0 (every 0.1) 20 

2.0 0.1 2.0 (every 0.1) 20 

4.0 0.1 2.0 (every 0.1) 20 

1000 

0.5 0.1 1.0 (every 0.1) 10 

2.0 0.1 1.0 (every 0.1), 1.5 11 

4.0 0.1 1.0 (every 0.1), 1.5 11 

 

 

 
(a) fs = 0.2 

 

(b) fs = 0.5 

 

(c) fs = 1.5 

Fig. 11 Variation of the lift coefficients with fs and time for Re = 200, α = 2 
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constant amplitude like a sinusoid at the forced oscillating frequency owing to the results of the 

‘synchronization’ effect. With increasing fs, the lift coefficients tend to oscillate at the natural 

shedding frequency as a whole, but some fluctuations at the forced oscillating frequency appear. 

The amplitude at the higher frequency is comparable with that at the lower frequency fs = 0.5, and 

it becomes much smaller for fs = 1.5 indicating the natural shedding frequency occupies an 

important place. 

Fig. 12 is the variation of the drag coefficients with fs for Re = 200 and α = 2. At fs = 0.2, the 

drag and lift forces fluctuate at the same frequency, but we can observe some nonlinear influences 

at higher harmonics. As shown in Fig. 12(b), the drag coefficient becomes irregular, fluctuating at 

neither the forced frequency nor the natural frequency. This case is the best example to illustrate 

the competitive relationship between the frequencies. When fs = 1.5, the drag coefficient fluctuates 

at twice the frequency of the lift coefficient, which is similar to the case of flow past a stationary 

cylinder. Furthermore, the amplitude at the higher frequency is almost equal to that at the lower 

frequency, which shows that the cylinder oscillation has more effect on the drag coefficient. 

 

 

 

(a) fs = 0.2 

 

(b) fs = 0.5 

 

(c) fs = 1.5 

Fig. 12 Variation of the drag coefficients with fs and time for Re = 200, α = 2 
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(a) fs = 0.2 (b) fs = 0.5 

 

(c) fs = 1.5 

Fig. 13 Amplitude spectra of the lift coefficients at different fs for Re = 200, α = 2 

 

  
(a) Re = 200 (b) Re = 1000 

Fig. 14 Variation of the mean drag coefficients with α and fs 
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(a) α = 0.5 

  

(b) α = 2.0 

  

(c) α = 4.0 

Fig. 15 Variation of the amplitudes of the lift coefficients corresponding to natural shedding 

frequency A(fe) and oscillating frequency A(fs) with α and fs for Re = 200 (left) and Re = 

1000 (right) 
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natural shedding frequency. From the comparison of amplitudes in Figs. 13(b) and 13(c), we 

observe that the fluctuating amplitude at the forced oscillating frequency reduces, while the natural 

shedding frequency increases with the increase of fs. 

The mean values of the drag coefficients are shown in Fig. 14. The present results are 

qualitatively similar to the figure given by Tokumaru and Dimotakis (1991) for Re = 1.510
4
 who 

reported that when fs is less than a certain value, the drag coefficient initially decreases with 

increasing fs and then it increases. When the oscillating frequency is equal to the natural shedding 

frequency at 0.1, the maximum drag coefficient is obtained due to the effect of resonance. The 

drag coefficient reduces rapidly in the ‘synchronization’ region. It comes to the minimum value 

when the flow structures begin to show the ‘competition’ mode for Re = 200. However for Re = 

1000, it seems that the appearance of the minimum value is deferred a little from the starting point 

of the ‘competition’ mode. With the appearance of Kármán vortex street, the drag coefficient 

increases and tends to approach an asymptotic value which agrees with the force of flow past a 

fixed cylinder. The relatively smaller drag coefficients obtained in the ‘competition’ region 

indicate the cylinder oscillation is an efficient measure to reduce the flow-induced force. 

 

 

 

(a) Re = 200 

 

(b) Re = 1000 

Fig. 16 The regions of the classification of vortex shedding pattern behind the rotary oscillating cylinder 
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Fig. 15 is the fluctuating amplitudes at different frequencies determined by the amplitude 

spectra analysis of the lift coefficients, where A(fe) is the amplitude at the natural shedding 

frequency, and A(fs) denotes the amplitude at the forced oscillating frequency. It illustrates clearly 

the frequency-coupling feature of the flow, and the criterion for classifying the flow modes into 

three types. When A(fe) = 0, because only the oscillating frequency exists and controls the vortex 

shedding in the wake, we define the flow as in the ‘synchronization’ mode. As A(fe) becomes 

larger from zero and A(fs) decreases from the maximum value, the two frequencies influence the 

flow structure together and we thus define the flow as in the ‘competition’ mode. When A(fe) and 

A(fs) tend to approach an asymptotic value at the same time, moreover A(fs) is much smaller 

compared with A(fe), we define the flow as the ‘natural shedding’ mode. It also can be seen that the 

fluctuating amplitudes are reduced by the cylinder oscillation. 

Using the classification criterion discussed above, we give the regions of the classification of 

vortex shedding pattern behind the cylinder in Fig. 16. Regions R1, R2, and R3 represent the 

‘synchronization’, ‘competition’, and ‘natural shedding’ modes respectively. For larger Re, the 

‘competition’ region becomes narrower, and the ‘natural shedding’ mode occurs earlier. This figure 

is proposed to be the guidance for new studies and realistic engineering problems. 

 

 

7. Conclusions 
 

In this paper, a FVM based on the unstructured triangular colocated grids is adopted to 

investigate the flow development around a rotating and rotary oscillating circular cylinder at Re = 

200 and 1000 by solving numerically the Navier-Stokes equations. For the flow past a rotating 

cylinder, the present numerical computation confirms the flow features in the near wake at the 

initial stage observed in the experiments and other numerical studies. A critical value of α is 

determined by the amplitude spectra analysis of the lift coefficient, above which the vortex 

shedding ceases. The paper presents the regions of the classification of vortex shedding pattern 

behind the cylinder, predicting the domain in which the steady wake can be achieved. For the flow 

past a rotary oscillating cylinder, the mean drag coefficient decreases with increasing fs up to a 

critical value which almost corresponds to the starting point of the ‘competition’ mode, and then 

increases and tends to approach an asymptotic value. The results indicate that the cylinder 

oscillation is an efficient measure to reduce the flow-induced force and flow-induced vibration. 

After determining the fluctuating amplitudes at different frequencies by the amplitude spectra 

analysis of the lift coefficients, the regions of the classification of vortex shedding pattern behind 

the cylinder are presented, which is an important reference for the similar problems in ocean 

engineering. 
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