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Abstract.  A closed-form solution for a fluid-structure system is presented in this article. The closed-form is 
used to evaluate the finite element method results through a numeric example with consideration of high 
frequencies of excitation. In the example, the structure is modeled as a cantilever beam with rectangular 
cross-section including only shear deformation and the reservoir is assumed semi-infinite rectangular filled 
with compressible fluid. It is observed that finite element results deviate from the closed-form in relatively 
higher frequencies which is the case for the near field earthquakes. 
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1. Introduction 

 

Most of physical problems in engineering can be expressed by a boundary value problem 

(BVP). Fluid-structure interaction is one of these problems which have been the subject of many 

researches for decades. There exist numerical methods as well as analytical approaches for the 

solution of the corresponding BVP. However, due to complexity of the mentioned problem, a few 

numbers of analytical solutions to several especial cases are available in contrast to the numerical 

ones. Also, in many cases, simplifications have to be imposed to the original BVP assumptions to 

achieve an analytical solution.  

The first analytical solution considering the effect of incompressible fluid on a rigid dam for 

horizontal excitation was introduced by Westergaard (1933). He proposed the concept of added 

mass as an alternative for dynamic analysis of dams. Brahtz and Heilborn (1933) studied the effect 

of compressibility of fluid as well as flexibility of structure using an iterative process. They 

assumed a linear deformed shape for the dam which accounted for both shear and flexural 

deformation. However, their assumption of a linear deformed shape was a relatively good 

approximation for only the first fundamental frequency. Analytical expression for hydrodynamic 

pressure on gravity dams under the assumption of invariant fundamental flexural modes for 

deformation was proposed by Chopra (1967), where shear deformations were ignored.  

Nath (1971) implemented the finite difference method together with analytical expressions to 
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solve the coupled water-dam equations of motion. In his wok, the structure was assumed a 

cantilever Timoshenko beam considering both shear and bending deflections with viscous 

damping. The radiation damping of the reservoir was neglected under finite reservoir assumption. 

Similarly, an analytic-numeric method was proposed by Liam Finn and Varoglu (1973). They used 

Laplace transformation to find an analytical expression for hydrodynamic pressures on dams. In 

their model, the reservoir was infinite and the pressure term, as an external load, was a function of 

wet surface deflections. They used finite elements to approximate the deflection function. Their 

results were in good agreement with conventional finite element method. Chakrabarti and Chopra 

(1972) offered a frequency response function for vertical excitation of gravity dams with infinite 

reservoir. The deformation of the dam was approximated by its first fundamental mode shape.  

Saini et al. (1978) used finite element combined with infinite fluid elements for evaluation of 

coupled response of gravity dams. They concluded that the radiation damping must be considered 

for high frequencies of excitation. After that, Chwang (1978) derived a closed-form solution for 

distribution of hydrodynamic pressure on rigid dams with constant sloping of wet surface. In his 

study, incompressible fluid and constant horizontal excitation were considered. Chopra and 

Chakrabarti (1981) incorporated water-dam-foundation interaction into their finite element 

analysis and approximated the dam deformation by combination of Ritz vectors. Both vertical and 

horizontal excitations were considered. Humar and Raufaiel (1983) suggested a radiation boundary 

condition for finite element analysis. It was applied to several rigid dams with vertical and sloping 

faces and was concluded that the proposed method covers wider range of excitation frequencies in 

comparison whith Sharan radiation damping. Their results indicated that inclination in the wet 

surface of the dam reduces hydrodynamic pressures. Natural frequencies of a fill dam with a 

wedge section was calculated by Kishi et al. (1987) considering both shear and bending effects. 

They implemented finite difference in their calculations. The shearing behavior was found to be 

dominating in their work. 

Tsai and Lee (1990) determined the hydrodynamic pressure on dams using a semi-analytical 

procedure. An arbitrary slope could be assumed for upstream face of dam and compressibility of 

water was taken into account. However, the flexibility of dam was neglected in his work. Sharan 

(1992) proposed a radiation boundary condition in terms of a series, enabling the application of 

energy dissipation at reservoir bottom in near field. The proposed boundary condition was 

independent from dam-near field characteristics and was implemented for arbitrary shape of 

upstream dam face. However, the dam body and the near field required to be modeled numerically. 

Ghobara et al. (1994) developed a simplified method for analysis of gravity dams considering the 

monolith-contraction joint interaction. They simplified the problem using vertical beam elements 

for the monolith with constant cross section. The monoliths were connected longitudinally by 

shear links. Moreover, Tsai et al. (1992) adopted the exact transmitting boundary condition for 

time domain. They utilized boundary element method for near field part of reservoir to comply 

with its complex geometry. Aviles and Li (1998) suggested a method for evaluation of 

hydrodynamic pressures on non-vertical rigid dams including viscosity and compressibility of 

fluid. They used Trefftz functions and minimized the error function only on the dam-water 

interface to increase accuracy. Nasserzare et al. (2000) approximated the natural frequency of arch 

dams utilizing a cantilever beam. Only flexural deformation was taken into account and mode 

shapes of the beam were applied in the interaction boundary condition. Attarnejad and Farsad 

(2005) presented a closed form solution for dam-reservoir interaction considering a flexural beam 

with variable cross section of the dam. They assumed infinite reflective reservoir and used modal 

decomposition in their solution.  
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A closed-form formulation was presented by Bouannani and Proulx (2003) for evaluation of 

hydrodynamic pressures on rigid dams in frequency domain. The formulation included the effect 

of damping due to reservoir bottom together with infinite reservoir assumption. The effect of ice 

covering of reservoir was investigated by Bouannani and Paultre (2005) using boundary element 

method. They also studied the effect of several reservoir far field boundary conditions including an 

analytical radiation boundary condition. Furthermore, some recent studies have studied the 

hydrodynamic effects on gravity dams using analytical approach which are not discussed here for 

the sake of brevity (Bejar 2010, Bouaanani and Miquel 2010, Bouaanani and Perrault 2010, 

Miquel and Bouaanani 2010). 

  The aim of this paper is to solve the BVP of fluid-structure system by providing a 

closed-form solution. Moreover, closed-form results are used to evaluate the accuracy of the finite 

element method especially for higher frequencies of excitation. Special attention is devoted to 

shear deformation of the structure.  

The first section of this paper is concerned with definition of the governing differential 

equations of fluid-structure system and the corresponding boundary conditions. Subsequent 

sections deal with presentation of closed-form and finite element solutions. Results of a numerical 

example are thoroughly compared, to investigate the accuracy of each method as well as the 

effective parameters. 

 

 

2. Definition of governing BVP 
 

Any boundary value problem consists of one or more differential equations and related 

boundary conditions (BC). In this study, the fluid-structure system consists of two differential 

equations regarding the fluid and the structure. Each domain includes independent boundary 

conditions and one dependent boundary condition, usually referred to as interaction boundary 

condition. In the following, initially, the fluid differential equation and its independent BCs. are 

introduced. Additionally, the structure differential equation and its independent BCs. will be 

presented. Finally, the interaction BC. will be explained and incorporated into the solution. 

 

2.1 Fluid governing equations 
 

Assuming irrotational flow, small amplitude of motion and inviscid fluid, the differential 

equation of the fluid can be derived from the well known Navier-Stokes equation. The resultant 

equation is referred to as wave equation and is given by 

2

2

22

2

2

2 P1PP

tcyx 












 (1) 

where, c  is the wave propagation speed and P is unknown pressure. Apparently, in Eq. (1), 

pressure is a function of coordinates and time. This equation reduces to Laplace equation, for 

incompressible fluid which wave propagation speed is assumed infinity. Alternatively, one may 

solve Eq. (1) in frequency domain. In this case, the following transformation is applied 

* iP( ) P ( )e tx,y,t x, y,   (2) 
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Fig. 1 Fluid-structure system 

 

where,   is the excitation frequency and *P denotes pressure in frequency domain. 

Consequently, the resulting fluid-domain equation is written as 

2 * 2 * 2
*

2 2 2

P P
P 0

x y c

 
  

 
 (3) 

For simplicity, *P will be denoted by P , hereafter. Likewise, all boundary conditions are 

transferred to frequency domain by a similar transformation. These boundary conditions include 

both the specified values of pressure on one side and the flux of the pressure function on the other 

sides, as numbered in Fig. 1. 

The fluid is assumed to have no surface waves. This enforces the relative pressure ( P ) to be 

zero at the surface resulting in the first boundary 

0),H,(P ωx  (4) 

In addition, it can be shown that the flux of the pressure in fluid is equal to negative normal 

acceleration of the boundary multiplied by the fluid mass density. As a result, since only the 

horizontal excitation is considered, the values of normal accelerations on the second boundary are 

zero 

( ,0, )

P
0

( )
x ω

y




 
 (5) 

The third BC is related to the infinite part of fluid region and is defined by 

P( , , ) 0
x
Lim x y 


  (6) 

which states that the hydrodynamic pressure of fluid vanishes in long distances from the excitation 

center. The last boundary condition of the fluid region is the interaction boundary condition. Since 

this is a dependent boundary condition and requires the introduction of governing equations of the 
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structure, it will be discussed in the subsequent sections. 

 

2.2 Structure governing equations 
 

In this study, the structure is considered as a vertical shear beam with uniform rectangular 

cross-section. Also, mass and shear stiffness are constantly distributed along the beam height. For 

the case of a gravity dam with considerable transverse thickness, shearing deformations are more 

significant. Therefore, only shear deformations are considered. Moreover, ignoring rotational 

inertia and considering small amplitude of motion, one can derive the beam equation of motion in 

the form of 

22

T

2 2

uu
GA

y t




 

 (7) 

where, GA ,   and u  are constant shear rigidity, mass density and relative displacement of the 

beam, respectively. Also, 
Tu  is the total displacements of the beam (including the base 

displacements). This equation can be transferred into the frequency domain employing the 

following transformations 

*

g

u ( , ) u ( , )

u ( , ) 1

iωt

iωt

x t x ω e

x ω e

 




 (8) 

In the above relations, *u  and 
gu represent relative and absolute ground displacement in the 

frequency domain, respectively. In addition,   is the frequency of excitation. Thus, incorporating 

these transformations into Eq. (7) yields 

2 *
2 *

2

u
GA (u 1)

y



  


 (9) 

It should be noted that the above equation is written regardless of hydrodynamic pressure. 

However, the beam in Fig. 1 is adjacent to the fluid which exerts a distributed hydrodynamic 

pressure on the beam as shown in Fig. 2. Also, for simplicity in writing, *u will be replaced with u 
u . 

As a result, Eq. (9) should be corrected by adding the hydrodynamic load into the right side 

2
2

(0, , )2

u
GA (u 1) P| y ω

y



   


 (10) 

The related boundary conditions should be expressed in frequency domain. The first boundary 

condition is the zero displacement at the base of the beam ( 0y ) 

0)(0,u   (11) 
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Fig. 2 The pressure of fluid on the structure as an external loading 

 

 

and the zero shear stress at free end of the beam ( Hy ) yields 

(H, )

u
G 0

y






 (12) 

Having introduced two boundary conditions for the structure, only interaction boundary 

condition remains unknown and is explained in the next section. 

 

2.3 Interaction boundary condition 
 

The interaction boundary condition defines a relation between the fluid and the structure; the 

normal acceleration on the wet surface is equal to total acceleration of the adjacent structure, due 

to vertical face of the beam. Therefore, since the outward normal vector of fluid region is in 

positive x  direction, the interaction boundary condition can be written as 

2

T
F 2

(0, , )

uP
( )

y t
x t




 
 

 (13) 

Likewise, we apply the frequency domain transformation to the above equation. The result 

together with the equations of motion and corresponding boundary conditions is summarized 

below. In fact, the following table forms the corresponding BVP. 

 

 

3. Closed-form solution of the fluid-structure system 
 

 To solve the mentioned boundary value problem, alternatively, one may apply separation of 
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variable technique. The first equation to be solved is the fluid governing equation (Eq. (3)). This 

equation is homogenous, thus by introducing XYP  , where )(X x  and )(Y y are single variable 

functions, Eq. (3) reduces to 

Y

Y

X

X
2

2 




c

ω
 (14) 

Since the right and left sides of the above equation are functions with different variables, they 

both should equal to a constant value. Therefore, assuming both sides equal to the unknown 

constant 
2λ results in 








































0YλY

0XλX

λ
Y

Y

λ
X

X

2

2

2
2

2

2

2

2

c

ω
c

ω

 (15) 

The solutions of these equations are 

k kX ( ) A B

Y ( ) A sin (λ ) B cos (λ )

x xx e e

y y y

  


  

 (16) 

where, A B,A,  and 
'B are constants and

2

2

2 2k λ ω

c
  .The three of these constants which satisfy 

the first three boundary conditions of the fluid domain may directly be calculated 

 

( ,0, )

j

P ( , y , ) 0 A 0

P
0 Y (0) 0 A 0

2 j 1
P ( , H , ) 0 Y(H) 0 B 0 & λ : j 1,2,...

2H

x

x ω

Lim x ω

y

x ω 




   



     



       



 
(17) 

Substituting these constants into Eq. (16) and forming pressure function, the pressure can be 

written in the form of an infinite series 

jk

j j

j 1

P( , , ) B cos (λ )
x

x y e y




  (18) 

To evaluate the last constant jB , the interaction boundary condition is employed. Therefore, 

using Eqs. (13) and (18) at 0x we have 

2

j j j F

j 1

B k cos (λ ) (u 1)y  




   (18) 
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Table 1 Governing equations and boundary conditions of the problem. 

 Fluid Structure 

Unknown function ),,(P yx  u ( , )y   

Governing differential 

equation 

2 2 2

2 2 2

P P
P 0

ω

x y c

 
  

 
 ),(0,

22

2

2

Pu
u

G  y
y

A 



  

Boundary conditions 

0),H,(P x  

u (0, ) 0   

( , 0, )

P
0

x ω
y





 

P( , y, ) 0
x
Lim x t


  

(H, )

u
0

y






 

2

F

(0, , )

P
(u 1)

y ω

ω
x




 


 

 

 

However, calculation of constants are 
jB  requires determination of unknown values of 

displacement function. Thus, the displacement function ( u ) should be obtained by solving Eq.  

(10). In order to solve Eq. (10), the pressure term in the right side of the equation is replaced by 

Eq. (18) at 0x  

)cos(BuuGA
1

j
22 yj

j

 




  (20) 

This equation is a second order non-homogenous differential equation which includes two 

types of particular solutions together complimentary solution. The complimentary solution of the 

homogenous form can be easily calculated by 

2
'' 2

c 1 2

u u 0
GA

u cos ( ) sin ( )c y c y


 

 


    



 

 (21) 

where, 1c  and 2c  are constant that can be obtained from boundary conditions subsequent to 

determination of particular solution. Meanwhile, the first particular solution regarding the first 

term in the right side of Eq. (20) is 

1u     uuGA 1
22  p  (22) 

Moreover, the second term in the right side of Eq. (20) includes a summation of similar cosine 

functions. Therefore, one may solve the following equation to obtain the general form of the 

particular solution 

134



 
 
 
 
 
 

A closed-form solution for a fluid-structure system: shear beam-compressible fluid 

 

2

j j j jGA u u B cos (λ )y    (23) 

The solution of the above equation has the form of 

j j ju D cos (λ )y  (24) 

In which Dj is an unknown constant and is determined by substituting Eq. (24) into Eq. (23) 

)λ-(α

Bα
D

2

j

22

j

2

j


  (25) 

Finally, the general solution of Eq. (20) can be expressed as 

1 2 j j

j 1

u ( ) cos( ) sin ( ) 1 D cos (λ )y c y c y y 




     (26) 

Thereafter, boundary conditions should be applied to evaluate the unknown constants 1c and 

2c . Beforehand, it is convenient to define some parameters 

tan(αH)

1
 

α cos (αH)












 (27) 

Also, additional parameters related to j-counter are introduced 

j 2 2

j

j 1

j j j

1
σ

GA (α -λ )

δ λ (-1) - σ 





    

 (28) 

Applying boundary conditions introduced in Eqs. (11) and (12), the constants 
1c  and 

2c will 

be 





























1j

jj2

1j

jj1

Bδ

Bσ1

c

c

 (29) 

Replacing (29) and (28) into Eq. (26) results in 

j j j j j j j

j 1 j 1 j 1

u ( ) 1 σ B cos ( ) δ B sin ( ) 1 σ B cos (λ )y y y y  
  

  

   
        
   

    (30) 
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In the above equation, the only unknown coefficients are 
jB . In order to determine these 

coefficients, interaction boundary condition denoted by Eq. (19) should be applied. Moreover, 

since both sides of Eq. (19) contain 
jB , a novel technique is employed to extract these unknowns. 

In this technique, both sides are multiplied by 
icos(λ )y and integrated along the beam height 

 
H

2

i i F i
0

H
B u ( ) 1 cos(λ ) d

2
k y y y    (31) 

The left side of Eq. (31) is reduced to a simple form due to orthogonal property of cosine 

functions. However, the coefficients of 
jB , which exist in the definition of u ( )y in the right side, 

are unknown and need to be determined through integration. In the integration process, two 

integrals are encountered which their closed-forms exist and are expressed by 

i
H

i

1 i 2 2 20

H
i

2 i
0

2H[2 H (1 2i) ( 1) sin ( H)]
I sin ( )cos (λ )d

(2 H) (1 2i)

H cos (i H) H cos (i H)
I cos ( )cos (λ )d

2 H (1 2i) 2 H (1 2i)

y y y

y y y

  


 

   


   

  
 

 

 
  

   





 (32) 

Replacing 
i

1I and 
i

2I  in Eq. (31) and using several auxiliary variables introduced in Eq. (32) 

results in a system of equations which 
jB can be calculated from 

i i

ij j 1 j 2

i
i i i i ij j i2

j 1F

i i

i 2 1

δ I σ I

kH
σ B B

2

I I

a

d d a b

b

 







 


 
      

 


   

  
(33) 

Although this system of equations comprise infinite terms, it can be shown that considering 

limited number of terms provides relatively accurate results. Alternatively, one may use more 

terms of series to achieve desired accuracy. 

 
 
4. Finite element method 

 

According to widespread implementation of the finite element method, the methodology and 

corresponding numerical model are briefly presented in this section. 

In the finite element method, a discretization is made over the continuous unknown function of 

the governing differential equations by dividing a region into sub-regions referred to as elements. 

This results in a system of linear equations in which the responses are values of the unknown 

function in finite number of points referred to as nodes. Also, in order to evaluate the function 

value of an arbitrary point in the region, shape functions are employed as means of interpolation. 

For this study, the types of elements used are:  

1-Shear-beam element with one translational degree of freedom at each end. 
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2-Four-node fluid element with one pressure degree of freedom per node. 

3-Fluid hyperelement with two nodes in each sub-layer. 

Accordingly, shear-beam elements are used to model a cantilever beam. The stiffness and mass 

matrices of the beam element are 
























2     1

1     2
L

6

1
  ,

1       1

1    1   

L

GA
MK  (34) 

where  is beam mass density and L denotes the length of each element. 

The fluid domain adjacent to the beam (near field) and the infinite fluid domain (far field) are 

modeled by square and hyperelements, respectively.  

 A typical finite element model is shown in Fig. 3. In addition, since the accuracy of response 

relies on the number of elements, different meshes are investigated in this study. However, a 

10×10 mesh for the near field reservoir and ten elements for the beam and the hyper-element 

provide sufficient accuracy. 

The corresponding finite element matrix equation of fluid-structure system for horizontal 

excitation may be defined by the following equation in frequency domain (Lotfi 2004)  




































g

g

22
h

2

T2

)/( BJa-

MJa-

P

U

GHHB

BMK

FF c 


 (35) 

where, K,M are stiffness and mass matrices of the structure and H,G represent corresponding 

matrices of the fluid domain. Hh is hyper-element contribution part in the far field and B is the 

interaction matrix. Also, Jag is the excitation vector. The finite element matrices of the fluid 

domain are presented in the Appendix. 

The beam displacements and the fluid pressures are obtained by solving Eq. (35) for any 

specified excitation frequency. 
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Fig. 3 A schematic finite element mesh for the beam and reservoir 
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5. Numerical results 
 

Closed-form solution and finite element method for the fluid-structure system were explained 

in the previous sections. Hereafter, a numerical example is presented and the results of the 

mentioned methods are compared. The geometrical and mechanical properties of the model are 

39 2

F

2

3

1000 Kg / mG 8.33 10 N / m

Structure: A 1 20 m      , Fluid: 1400 m / sec.

H 200 m2500 Kg / m

c





  


   
   

 

The model consists of a cantilever concrete beam with 200 meters height and a 20 1   

rectangular cross section which pure shear deformations are considered. It is assumed that the fluid 

is compressible water which fills a semi-infinite reservoir of 200 meter height. Moreover, the 

length of the near field fluid mesh, containing four-node fluid elements, is taken equal to two times 

of its height in the finite element model.  

As for the first response, the frequency response function (FRF) for the acceleration of the 

beam tip is plotted in Fig. 4. The figure represents the closed-form results from Eq. (33), 

considering 5, 10 and 20 terms of the series for harmonic horizontal ground acceleration.  

It is observed that the three curves are in good agreement within the natural frequencies of 0 to 

80 rad/sec. However, the curve with N=5 gradually diverges after this frequency due to insufficient 

number of terms considered in the series. The curves with N=10 and N=20 are in significant 

agreement within the shown range of frequencies. This indicates that, as mentioned before, taking 

only ten terms of the series in Eq. (33) leads to accurate results and the solution can be referred to 

exact response. 

Since the closed-form response for the desired range of frequencies is at hand, the accuracy of 

the finite element method can be readily verified at this stage. As a result, the acceleration of the 

beam tip with a mesh of ten elements in height is shown in Fig. 5, in contrast to the closed-form 

solution. 

 

 

 
Fig. 4 FRF of the beam tip for different number of series terms in closed-form solution 
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Fig. 5 FEM vs. closed-form acceleration of the beam tip (N=10, NE=10) 

 

 
Fig. 6 FEM vs. closed-form acceleration of the beam tip (N=10, NE=20) 

 

 

It is observed that the finite element response begins to deviate from the closed-form response 

at natural frequencies of 25 rad/sec. This deviation considerably develops along with frequency 

increase. To increase accuracy, one may consider mesh refinement in the finite element. This is 

investigated by doubling the number of the beam and the reservoir elements along the height. Fig. 

6 provides a comparison between the refined mesh (NE=20) and the results of the closed-form 

solution. 

The above figure indicates that even with doubling the number of elements, finite element does 

not provide sufficient accuracy for higher range of frequencies. 

Likewise, the frequency response function of the pressure on the beam base (x = 0, y = 0) can 

be determined. This is carried out using finite element (with 10 elements) and the closed-from 

solution (with10 terms) as displayed in Fig. 7. 
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Fig. 7 Pressure frequency response function at base level 

 

 
Fig. 8 FRF of pressure at base level for rigid and flexible cases of structure 

 

     
Fig. 9 FRF of beam tip for full and empty reservoir cases 
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Fig. 10 FRF of acceleration at beam tip for various widths of beam and full reservoir 

 

 

Fig. 11 Normalized hydrodynamic pressure distribution for selected frequencies (closed-from) 

 

 

The loss of accuracy in finite element results has also been observed in Fig. 7 for higher 

frequencies. The overall deviations of the curves and their location of occurrence are similar to 

that of the displacement responses in Fig. 6. Nevertheless, for the pressures, the curves are 

smoother and the picks display relatively blunt changes.  

Moreover, it is convenient to study several special cases. As for the first case, a rigid model of 

the beam is compared with the flexible beam. In practice, rigidity is achieved by assuming GA to 

be infinity (a large numeric value). The effect of structure rigidity on pressure frequency response 

function is shown in Fig. 8. 

Interestingly, it is observed that only the first resonance frequency of the system has been 
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reduced when flexibility is brought into account. In contrast, other resonant frequencies have 

indicated only a very slight reduction. However, the values of pressures at resonance frequencies 

of the rigid structure are considerably higher from the values of flexible structure. 

Another important case to investigate is an empty reservoir against a full reservoir. This can be 

achieved by assigning a small value to fluid density. The effect of damping induced by the 

reservoir can be simply investigated in Fig. 9.  

Fig. 9 shows that imposing the interaction effect decreases the value of the first fundamental 

frequency of the system. Drift of the subsequent resonance frequencies are significant and the 

coupled system is considerably damped. Moreover, additional resonant frequencies are inserted to 

the system. 

It is of interest to investigate the effect of shear stiffness of the structure on the behavior of the 

system. Thus, the FRFs of the beam tip for different widths of the cross sections are plotted in Fig. 

10. In all cases the depth of the beam is assumed unity. It is observed that the position of resonance 

frequencies has slightly been affected by variation of the structure width. However, frequencies in 

all cases are shifted to a greater value. 

Furthermore, the normalized hydrodynamic pressure distribution on the beam wet face is 

shown in Fig. 11. The curves result from closed-from solution and are plotted for several selected 

excitation frequencies corresponding to the peaks of the frequency response functions.  

Although frequency response functions represent the behavior of the system, they are restricted 

to a single point of the system. In contrast, graphical representation of the pressure contours 

provides the ability of investigation of the whole system at a certain frequency. This is an effective  

 

 

 
Fig. 12 Pressure distribution of FEM vs. closed-form for ω = 10 

rad
∕sec 

 

 

Fig. 13 Pressure distribution of FEM vs. closed-form for ω = 40 
rad
∕sec 
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Fig. 14 Pressure distribution of FEM vs. closed-form for ω = 60 
rad
∕sec 

 

 

Fig. 15 Pressure distribution of FEM vs. closed-form for ω = 100 
rad
∕sec 

 

 

way to evaluate the accuracy of two analyses since the results contain the whole concerning region 

and are not restricted to a single point. Accordingly, reservoir pressure contours for closed-form 

and finite element are shown in Figs. 12-15 for several selected frequencies. The pressure values 

of the following figures are normalized to hydrostatic pressure in all cases. 

Figs. 12-15 indicated that in relatively lower frequencies (within the first and second natural 

freq.) FEM and closed-from results are in excellent agreement. However, in higher frequencies of 

excitation, the accuracy of the FEM declines and the corresponding contours deviate from 

closed-from results (Figs. 14 and 15).  

 

 

6. Conclusions 
 

A closed-form solution of the fluid-shear beam differential equation was presented in frequency 

domain under the semi-infinite compressible and irrotational assumptions for the fluid region and 

horizontal ground excitation. The closed-form solution was used to investigate the accuracy of the 

conventional finite element method through a numeric example. The displacement of the beam and 

the pressures of fluid as comparing parameters and special cases such as rigid beam and empty 

reservoir were investigated in the analysis. Also, sensitivity analysis was carried out on several 

effective parameters. The following remarks were drawn: 

 For low frequencies both methods are in good agreement, while for higher frequencies the 

finite element responses are not accurate and considerably deviate from closed-form responses. 
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Moreover, mesh refinement slightly increases the accuracy whereas errors cannot be ignored.  

 The computation time for the closed-form solution is significantly less than finite element 

method. Although one may benefit from efficient storage techniques in finite element method to 

increase time efficiency, a quite fine mesh is required to achieve the same accuracy. 

 For the case of near field earthquakes, where excitation frequencies are high, the closed-form 

solution provides accurate results, on the contrary with finite element method. 

 In many finite element codes, modal analysis is implemented due to efficiency. In such cases, 

number of participating modes needs to be increased to cover higher frequencies of excitation. 

Therefore, the efficiency of the method reduces. In contrast, such difficulty is not encountered for 

closed-from solution, proposed in this study. 
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Appendix 
 

The finite element discretisation of Eq. (1) results in the following matrices 
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where, H,G are stiffness and mass matrices of a typical square element in near-field reservoir. 

Hyperelement matrix regarding the far-field reservoir are given by 

AXKXAHh   (A.2)

 

Where X contains the eigenvectors of the following eigen-problem 

i i iCX AX  (A.3)

 

A,C are defined for each layer of elements of the height h by 

2 1 1 11
,

1 2 1 16

h

h
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(A.4)

 

Also, K is a diagonal matrix, defined by 
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