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Abstract.  In this paper, an improved theoretical interfacial stress analysis is presented for simply supported 
composite aluminum- sandwich honeycomb beam strengthened by imperfect FGM plateusing linear elastic theory. 
The adherend shear deformations have been included in the present theoretical analyses by assuming a linear shear 
stress through the thickness of the adherends, while all existing solutions neglect this effect. Remarkable effect of 
shear deformations of adherends has been noted in the results. It is shown that both the sliding and the shear stress at 
the interface are influenced by the material and geometry parameters of the composite beam. This new solution is 
intended for applicationto composite beams made of all kinds of materials bonded with a thin plate. Finally, 
numerical comparisons between the existing solutions and the present new solution enable a clear appreciation of the 
effects of various parameters. 
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1. Introduction 
 

An existing metal beam (for example steel or aluminum) can be retrofitted by bonding by 
composite materials plate to its soffit. This plate bonding technique has been used widely to 
retrofit steel beams, and has also been used to retrofit beams of other materials. The technique has 
numerous advantages such as increasing the strength and stiffness of an existing beam with 
minimal interference to the surrounding environment. Consequently, many studies have been 

carried out on the behavior and strength of such plated beams (Rabahi et al. 2023, Smith and Teng,  
2002, Hassaine Daouadji et al. 2022, Benferhat et al. 2021,Hassaine Daouadji et al. 2020, Tounsi 
et al. 2008, Khadimallah 2020, Rabahi et al. 2021d, Mahmoud 2023, Yu-Hang 2020, Zine et al. 
2020). In such retrofitted beams, debonding of the soffit plate from the beam is an important 
failure mode as it prevents the full ultimate flexural capacity of the retrofitted beam from being 
achieved. It is thus important to be able to predict the debonding failure load. Debonding failures 
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depend largely on the interfacial shear between the beam and the bonded plate. The determination 

of interfacial stresses has thus been researched for over the last few years for beams bonded with 

either steel or FRP plates. In particular, several relatively simple approximate closed-form 

solutions for interfacial stresses have been developed (AlFurjan 2021, Haytham et al. 2023a, 

Hassaine Daouadji 2017, Aman 2023, Benachour et al. 2008, Bentrar et al. 2023, Rabahi et al. 

2022a, Rabahi et al. 2022b, Cuong-Le 2022, Khorasani et al. 2023, Katiyar 2022, Abdelhak et al. 

2023, Bouakaz et al. 2014, BenHenni et al. 2021, Tlidji et al. 2022, Bensatallah et al. 2023, 

Benferhat et al. 2023, Kablia et al. 2023) based on a simple assumption for the adhesive layer as 

discussed later. Despite all of these studies, one striking fact is that the relationship between these 

existing solutions has not been established clearly in the existing literature (Benferhat et al. 2019, 

Hassaine Daouadji 2013, Rabahi et al. 2021b, Rabahi et al. 2021c).  

With increasing demand and decreasing availability of resources in today’s industrialized 

world, it is becoming increasingly necessary to explore opportunities for new sustainable building 

materials. The use of composite aluminum- sandwich honeycomb beam in civil engineering 

applications is limited due to its flexibility, shape, and the difficulties associated with establishing 

structural connections. Being an industrial product, composite aluminum- sandwich honeycomb 

exhibits variations of its mechanical properties more than other building materials, steel, concrete, 

or construction wood and may thus require a greater safety factor. Nonetheless, there are many 

researchers (Draiche et al. 2019, Hamrat et al. 2020, Rabahi et al. 2020, Rabahi et al. 2021a, 

Hassaine Daouadji et al. 2021, Haytham et al. 2023b, Addou et al. 2023, Alsubaie et al. 2023, Al-

Osta et al. 2021, Belabed et al. 2024, Liu et al. 2022, Benferhat et al. 2018, Mesbah et al. 2023, 

Tounsi  et al. 2023, Xia et al. 2023, Hassaine Daouadji et al. 2019, Van Vinh et al. 2022, Hakim et 

al. 2023, Kaddari et al. 2020) actively involved in overcoming these challenges, which confirms 

the potential of composite aluminum- sandwich honeycomb as a new structural material. 

Composite aluminum- sandwich honeycomb has excellent mechanical properties, including high 

tensile strength, toughness, and low weight, and has a shorter growth period with characteristics of 

large yield. Therefore, composite aluminum- sandwich honeycomb is considered a very suitable 

building material. Modern aluminum and sandwich honeycomb-based engineering materials can 

meet the current specifications of structural engineering, which enables large-scale applications of 

composite aluminum- sandwich honeycomb structures. Thus, there is a growing global interest and 

research in the use of sandwich honeycomb for various applications in engineering and 

construction. This work is focused on analytical and numerical solution on the static behavior of 

composite aluminum- sandwich honeycomb beam strengthened by imperfect FGM plate. 

Nowadays in many fields aluminum honeycomb structure is frequently used due to its stiffness to 

weight ratio, in-plane properties and low material and processing cost. 

 

 

2. Theoretical analysis and solutions procedure 
 

2.1 Objective of this present research  
 

We have noticed that there are very few researchers in the world (according to the literature) 

who start the research axis on aluminum composite structures, and as there are industrial demands 

on the use of aluminum composite structures under thermo-mechanical loading. In this context and 

in order to meet the industrial need, we set the objective of treating the analytical analysis of the 

mechanical behavior of an aluminum-sandwich honeycomb composite beam reinforced by an  
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Mechanical behavior of composite beam aluminum-sandwich honeycomb… 

 

Fig. 1 Simply supported composite aluminum- sandwich honeycomb beam strengthened by imperfect FGM 

plate 

 

 

imperfect FGM plate under thermo-mechanical loading. In this paper, it is shown that the stresses 

at the interface are influenced by the material and geometry parameters of the composite beam. I 

think this research is helpful for the understanding on mechanical behavior of the interface and 

design of the hybrid structures. 

 

2.2 Assumptions and approaches 
 

This analysis takes into account the transverse shear stress and deformation in the composite 

aluminum- sandwich honeycomb beam strengthened by imperfect FGM, but ignores the normal 

transverse stress. One of the analytical approaches for sandwich honeycomb slabs glued to the 

aluminum beam strengthened with imperfect FGM plate (Fig. 1) was presented in order to 

compare it with an analytical analysis from the literature (Hassaine Daouadji et al. 2021) for 

aluminum- sandwich honeycomb beam strengthened by imperfect FGM. All existing solutions are 

for linear elastic materials only. The key assumption in all of these solutions is that the adhesive 

layer is subject to shear stress that are constant across the thickness of the adhesive layer. It is this 

key assumption that enables relatively simple closed-form solutions to be obtained, although this 

assumption is somewhat hidden in some of the solutions. 

The analytical approach is based on the following assumptions (Hassaine Daouadji et al. 2021): 

- Elastic stress strain relationship for sandwich honeycomb slab, aluminum, hybrid imperfect 

FGM plate and adhesive; 

- The composite aluminum beam is simply supported and shallow, i.e., plane sections remain 

plane in bending. 

- There is an imperfect bond between the sandwich honeycomb slab and the aluminum beam; 

there will be a possibility of sliding between these two members. 

- There is a perfect bond between the hybrid imperfect FGM plate and the aluminum beam; No 

slip is allowed at the interface of the bond hybrid imperfect FGM plate- aluminum beam (i.e., 

there is a perfect bond at the adhesive aluminum or imperfect FGM plate interface). 

- The adhesive is supposed to play only one role in the transfer of stresses at a time: from the 

sandwich honeycomb slab to the aluminum beam, of the imperfect FGM plate and the 

aluminum beam. 

- The stresses in the adhesive layer do not change through the direction of the thickness. 

- The shear stress analysis assumes that the curvatures in the composite aluminum beam and  
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Fig. 2 Forces in infinitesimal element of a composite aluminum- sandwich honeycomb beam strengthened 

by imperfect FGM plate 

 

 

imperfect FGM plate are equal (since this allows the shear stress and peel stress equations to be 

uncoupled). However, this assumption is not made in the normal stress solution, i.e., when the 

beam is loaded, vertical separation occurs between composite aluminum beam and imperfect 

FGM plate. 

- A parabolic shear deformation distribution, through the depth of both the composite aluminum 

beam and the bonded imperfect FGM plate is assumed. 

- Bending deformations of the composite aluminum beam and imperfect FGM plate are 

assumed. 

A differential section dx, can be cut out from the composite aluminum- sandwich honeycomb 

beam strengthened by imperfect FGM plate, as shown in Fig. 2. The composite beam is made from 

four materials: imperfect FGM composite material, sandwich honeycomb, adhesive and aluminum 

beam. In the present analysis, linear elastic behavior is regarded to be for all the materials; 

136



 

 

 

 

 

 

Mechanical behavior of composite beam aluminum-sandwich honeycomb… 

sandwich honeycomb, imperfect FGM composite material and aluminum beam, which must share 

in resisting the forces and moments caused by the transverse uniformly, distributed loads q. In the 

general case, the deformations that result must accommodate any interface slip in addition to the 

usual flexural and axial strains. Since sandwich honeycomb, composite laminate is an orthotropic 

material, its material properties vary from layer to layer. In analytical study (Hassaine Daouadji et 

al. 2021), the laminate theory is used to determine the stress and strain behaviors’ of the externally 

bonded imperfect FGM plate in order to investigate the whole mechanical performance of the 

composite- strengthened structure.  

The laminate theory is used to estimate the strain of the symmetrical sandwich honeycomb 

composite plate. In what follows, the stiffness of the reinforcement plate is significantly superior 

to that of the composite aluminum-sandwich honeycomb beam bonded by an imperfect FGM 

plate. The bending moment in the imperfect FGM plate can be neglected to simplify the shear 

stress derivation operations. On the other hand, the laminate theory is used to determine the stress 

of the externally bonded imperfect FGM plate in order to investigate the completely mechanical 

performance of the composite strengthened structure.  

 

Properties of the FGM constituent materials 

 

In this study, we consider an imperfect FGM plate with a volume fraction of porosity  (<<1), 

with different form of distribution between the metal and the ceramic. The modified mixture rule 

proposed by Benferhat et al. (2023) is 

𝑃 = 𝑃𝑚(𝑉𝑚 −
𝛿

2
) + 𝑃𝑐((

𝑧

ℎ
+
1

2
)𝑘 −

𝛿

2
)
                                                  

(1) 

The modified mixture rule becomes 

𝑃 = (𝑃𝑐 − 𝑃𝑚)(
𝑧

ℎ
+
1

2
)𝑘 + 𝑃𝑚 − (𝑃𝑐 + 𝑃𝑚)

𝛿

2
                                          

(2) 

Where, k is the power law index that takes values greater than or equals to zero. The FGM plate 

becomes a fully ceramic plate when k is set to zero and fully metal for large value of k. The 

Young’s modulus (E) of the imperfect FG plate can be written as a function of thickness 

coordinate, z (middle surface). The material properties of a perfect FGM plate can be obtained 

when the volume fraction of porosity α is set to zero. Due to the small variations of the Poisson 

ratio ν, it is assumed constant. Several forms of porosity have been studied in the present work, 

such as uniform distribution “O”, X”, “V” and Inverted “V” as follows (Kablia et al. 2023), 

including the deferent’s distribution forms of porosity which come in the forms below 

- Uniform distribution shape of the porosity 

𝐸2(𝑧) = (𝑒𝑐 − 𝑒𝑚)((
𝑧

𝑡2
+ 0.5))𝑘 + 𝑒𝑚 − (𝑒𝑐 + 𝑒𝑚)

𝛿

2
                                       

(3) 

- Form “X” distribution shape of the porosity 

𝐸2(𝑧) = (𝑒𝑐 − 𝑒𝑚)((
𝑧

𝑡2
+ 0.5))𝑘 + 𝑒𝑚 − (𝑒𝑐 + 𝑒𝑚)

𝛿

2
(2

𝑧

𝑡2
)

                                   

(4) 

- Form “O” distribution shape of the porosity 

𝐸2(𝑧) = (𝑒𝑐 − 𝑒𝑚)((
𝑧

𝑡2
+ 0.5))𝑘 + 𝑒𝑚 − (𝑒𝑐 + 𝑒𝑚)

𝛿

2
*(1 − 2

|𝑧|

𝑡2
)

                                

(5) 

- Form “V” distribution shape of the porosity 
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𝐸2(𝑧) = (𝑒𝑐 − 𝑒𝑚)((
𝑧

𝑡2
+ 0.5))𝑘 + 𝑒𝑚 − (𝑒𝑐 + 𝑒𝑚)

𝛿

2
(
1

2
+

𝑧

𝑡2
)

                           

(6) 

- Inverted Form “V” distribution shape of the porosity 

𝐸2(𝑧) = (𝑒𝑐 − 𝑒𝑚)((
𝑧

𝑡2
+ 0.5))𝑘 + 𝑒𝑚 − (𝑒𝑐 + 𝑒𝑚)

𝛿

2
(
1

2
−

𝑧

𝑡2
)

                            

(7) 

Being given that E2(z) is determined according to the form of distribution of the porosity in the 

imperfect FGM plate, given by the Eqs. (3), (4), (5), (6) and (7), the linear constitutive relations of 

a FGM plate can be written as 

{
 
 

 
 
𝜎𝑥
𝜎𝑦
𝜏𝑦𝑧
𝜏𝑥𝑧
𝜏𝑥𝑦}

 
 

 
 

=

[
 
 
 
 
 
 
 
 
𝐸2(𝑧)

1−𝜈2
𝜈𝐸2(𝑧)

1−𝜈2
0 0 0

𝜈𝐸2(𝑧)

1−𝜈2
𝐸2(𝑧)

1−𝜈2
0 0 0

0 0
𝐸2(𝑧)

2(1+𝜈)
0 0

0 0 0
𝐸2(𝑧)

2(1+𝜈)
0

0 0 0 0
𝐸2(𝑧)

2(1+𝜈)]
 
 
 
 
 
 
 
 

{
 
 

 
 
𝜀𝑥
𝜀𝑦
𝛾𝑦𝑧
𝛾𝑥𝑧
𝛾𝑥𝑦}

 
 

 
 

                                   

(8) 

Where (x, y, xy, yz, yx) and (x, y, xy, yz, yx) are the stress and strain components, 

respectively, and Aij, Dij are the plate stiffness, defined by 

𝐴𝑖𝑗 = ∫ 𝑄𝑖𝑗𝑑𝑧
ℎ/2

−ℎ/2

                

𝐷𝑖𝑗 = ∫ 𝑄𝑖𝑗𝑧
2𝑑𝑧

ℎ/2

−ℎ/2

                                         

(9) 

Where A’ij, D’ij are defined 

𝐴11
' =

𝐴22

𝐴11𝐴22−𝐴12
2

          

𝐷11
' =

𝐷22

𝐷11𝐷22−𝐷12
2

                                            

(10) 

 

2.3 Stress analysis at interface 1: Aluminum beam- sandwich honeycomb slab 
 

2.3.1 Shear stress distribution along the Aluminum-sandwich honeycomb interface 
The governing differential equation for the interfacial shear stress is expressed as (Bensatallah 

et al. 2020)  

𝑑
2
𝜏(𝑥)

𝐾𝑠∙𝑑𝑥
2−𝑘1𝑏2 [

(𝑦1+𝑦2)(𝑦1+𝑦2+𝑡𝑎1)

𝐸1𝐼1+𝐸2𝐼2
+ 1

𝐸1𝐴1
+ 1

𝐸2𝐴2
(𝛼2−𝛼1)∆𝑇] 𝜏(𝑥)+𝑘1

(𝑦1+𝑦2)

𝐸1𝐼1+𝐸2𝐼2
∙ 𝑉𝑇(𝑥) = 0  

(11) 

Where  

𝑘1 = [
𝑡𝑎1

𝐺𝑎1
+

𝑡1

4𝐺1
+

5𝑡2

12𝐺2
]
−1

                                                     (12) 

For simplicity, the general solutions presented below are limited to loading which is either 

concentrated or uniformly distributed over part or the whole span of the composite aluminum 

beam, or both. For such loading, 
𝑑2𝑉𝑇(𝑥)

𝑑𝑥2
= 0, and the general solution to Eq. (11) is given by 

simplified form 

𝜏(𝑥) = 𝜙1𝑒
𝜆⋅𝑥 + 𝜙2𝑒

−𝜆⋅𝑥 +
𝑘1

𝜆2
(

1

𝐸1𝐴1
+

1

𝐸2𝐴2
). 𝑉𝑇(𝑥)

                                   

(13)   
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𝜏(𝑥) = 𝜙1𝑒
𝜆⋅𝑥 + 𝜙2𝑒

−𝜆⋅𝑥 + 𝜂. 𝑉𝑇(𝑥)                                                    
(14)   

Where 

𝜆2 =
𝑏2[

(𝑦1+𝑦2)(𝑦1+𝑦2+𝑡𝑎1)

𝐸1𝐼1+𝐸2𝐼2
+

1

𝐸1𝐴1
+

1

𝐸2𝐴2
+(𝛼2−𝛼1)Δ𝑇]

𝑡𝑎1
𝐺𝑎1

+
𝑡1
4𝐺1

+
5𝑡2
12𝐺2

                                             

(15) 

And 

𝜂 =

1

𝐸1𝐴1
+

1

𝐸2𝐴2

𝑏2[
(𝑦1+𝑦2)(𝑦1+𝑦2+𝑡𝑎1)

𝐸1𝐼1+𝐸2𝐼2
+

1

𝐸1𝐴1
+

1

𝐸2𝐴2
+(𝛼2−𝛼1)Δ𝑇]

                                            

(16) 

𝜏(𝑥) = 𝜙1𝑒
𝜆⋅𝑥 + 𝜙2𝑒

−𝜆⋅𝑥 +

1

𝐸1𝐴1
+

1

𝐸2𝐴2

𝑏2[
(𝑦1+𝑦2)(𝑦1+𝑦2+𝑡𝑎1)

𝐸1𝐼1+𝐸2𝐼2
+

1

𝐸1𝐴1
+

1

𝐸2𝐴2
+(𝛼2−𝛼1)Δ𝑇]

𝑉𝑇(𝑥)

                    

(17) 

1 and 2 are constant coefficients determined from the boundary conditions.  

𝜙1 = −𝜙2 =
𝐾1

𝜆
⋅ [
(𝑦1+𝑦2)(𝑦1+𝑦2+𝑡𝑎1)

𝐸1𝐼1+𝐸2𝐼2
+

1

𝐸1𝐴1
+

1

𝐸2𝐴2
+ (𝛼2 − 𝛼1) ⋅ Δ𝑇] −

𝜂⋅𝑞

𝜆
                    (18) 

 

2.3.2 Slip distribution along the Aluminum– sandwich honeycomb interface 
The following governing differential equation for the slip strain at the interface of uniformly 

distributed load is calculated as (Bensatallah et al. 2020) 

𝑠 = (𝑞 + (𝛼2 − 𝛼1) ⋅ Δ𝑇)(
𝜂

𝜆

𝑒−𝜆𝑥−𝑒𝜆𝑥

𝑒
𝜆
𝑙
2+𝑒

−𝜆
𝑙
2

+ 𝜂 ⋅ 𝑥)

                                            

(19) 

𝑠 =

(𝑞+(𝛼2−𝛼1)⋅Δ𝑇)(𝜆
𝑒−𝜆𝑥−𝑒𝜆𝑥

𝑒
𝜆
𝑙
2+𝑒

−𝜆
𝑙
2

+𝑥)(
1

𝑏2𝐸1𝐴1
+

1

𝑏2𝐸2𝐴2
)

(𝑦1+𝑦2)(𝑦1+𝑦2+𝑡𝑎1)

𝐸1𝐼1+𝐸2𝐼2
+

1

𝐸1𝐴1
+

1

𝐸2𝐴2
+(𝛼2−𝛼1)Δ𝑇

                                            

(20) 

 

2.4 Shear stress analysis at interface 2: Aluminum beam-imperfect FGM composite 
 

The governing differential equation for the interfacial shear stress is expressed as (Hassaine 

Daouadji et al. 2021) 

𝑑2𝜏(𝑥)

𝑑𝑥2
−
𝑏2[

(𝑦2+𝑦3)(𝑦2+𝑦3+𝑡𝑎2)

𝐸2𝐼2+𝐸3𝐼3
+

1

𝐸2𝐴2
+

1

𝐸3𝐴3
]

𝑡𝑎2
𝐺𝑎2

+
𝑡2
4𝐺2

+
5𝑡3
12𝐺3

𝜏(𝑥) +
[

𝑦2+𝑦3
𝐸2𝐼2+𝐸3𝐼3

]

𝑡𝑎2
𝐺𝑎2

+
𝑡2
4𝐺2

+
5𝑡3
12𝐺3

𝑉𝑇(𝑥) = 0

                       

(21)

 
For simplicity, the general solutions presented below are limited to loading which is either 

concentrated or uniformly distributed over part or the whole span of the beam, or both. For such 

loading, d2VT(x)/dx2=0, and the general solution to Eq. (21) is given by 

𝜏(𝑥) = 𝜙3 cosℎ( 𝜉𝑥) + 𝜙4 sinℎ( 𝜉𝑥) +
(𝑡2+𝑡3)

2𝜉2(
𝑡𝑎2
𝐺𝑎2

+
𝑡2
4𝐺2

+
5𝑡3
12𝐺3

)(𝐸2𝐼2+𝐸3𝐼3)
𝑉𝑇(𝑥)

                   

(22) 

Where 

𝜉 = [
𝑏2[

(𝑡2+𝑡3)(𝑡2+𝑡3+2𝑡𝑎2)

4(𝐸2𝐼2+𝐸3𝐼3)
+

1

𝐸2𝐴2
+

1

𝐸3𝐴3
+(𝛼3−𝛼2)Δ𝑇]

𝑡𝑎2
𝐺𝑎2

+
𝑡2
4𝐺2

+
5𝑡3
12𝐺3

]

1

2

                                   

(23) 
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Fig. 3 Geometric characteristic of a composite aluminum- sandwich honeycomb beam strengthened by 

imperfect FGM plate 

 

 

Fig. 4 Geometric characteristic of Honeycomb sandwich 

 

 

In addition, 3 and 4 are constant coefficients determined from the boundary conditions. In the 

present study, a simply supported beam has been investigated which is subjected to a uniformly 

distributed load. For our case of a uniformly distributed load, the formula of the shear stress is 

given by the following equation 

𝜏(𝑥) = [
1

𝜉
(
𝑡𝑎2

𝐺𝑎2
+

𝑡2

4𝐺2
+

5𝑡3

12𝐺3
) (

𝑦2𝑀𝑡(0)

𝐸 𝐼2 2
− (𝛼3 − 𝛼2)Δ𝑇)] 𝑒

−𝜉𝑥 +
(𝑡2+𝑡3)(𝑎.𝑞+𝑥−

𝑒−𝜉𝑥

𝜉
𝑞)

2𝜉2(
𝑡𝑎2
𝐺𝑎2

+
𝑡2
4𝐺2

+
5𝑡3
12𝐺3

)(𝐸2𝐼2+𝐸3𝐼3)
  

0 ≤ 𝑥 ≤ 𝐿𝑃                                                                  (24) 

 

 

3. Results: Discussion and analysis 
 

3.1 Material used 
 

A computer code based on the preceding equations was written to compute the interfacial 

stresses in a composite aluminum- sandwich honeycomb beam strengthened by imperfect FGM 

plate under thermo-mechanical loading. The hybrid composite material was selected in the present 

examples as a bonded plate. However, the analysis is equally applicable to other types of 

composite material.  

The material used for the present studies is a composite aluminum- sandwich honeycomb beam 

strengthened by imperfect FGM plate. The composite aluminum -sandwich honeycomb beam is 

subjected to a thermo-mechanical loading. A summary of the geometric and material properties is 

given in Table 1; Figs. 3 and 4 illustrates the dimensions of this composite wooden-concrete beam. 
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Table 1 Geometric and mechanical properties of the materials used 

Component Width (mm) Depth (mm) Young’s modulus (MPa) 

Adhesive layer ba1=ba2=50 ta1=ta2=2 Ea1=Ea2=3000 

Aluminum Beam b2=50 t2=200 E2=65300 

CFRP for honeycomb b1=250 t1=70 E1=140000 

GFRP for honeycomb b1=250 t1=70 E1=50000 

KFRP for honeycomb b1=250 t1=70 E1=106000 

Paper for honeycomb b1=250 t1=70 E1=50 

FGM materials b3=50 t3=4 

Ceramic: E3=380000 

FGM: E3: Variable between ceramic and 

metal (see equation 1 to 7) 

Metal: E3=70000 
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Fig. 5 Load-slip curves of composite aluminum- sandwich honeycomb beam strengthened 

by imperfect FGM plate: Experimental and analytical comparison of results 

 
 
3.2 Validation of analytical model at both interfaces (Interface 1 and Interface 2) 

 

3.2.1 Interface 1 
To test and validate our proposed analytical model, we compared our results of slip with those 

of the experimental dada given by Bouazaoui et al. (2007) in Reims University and Bensatallah 

(2020), for a simply supported of a new mode of assembly of composite aluminum-sandwich 

honeycomb beam reinforced by imperfect FGM plate. Whose dimensions of the composite 

aluminum-sandwich honeycomb beam reinforced by imperfect FGM plate are shown in Figs. 3 

and 4, the material properties of the composite beam are listed in Table 1. Fig. 5 shows (interface 

1) the curves Load-slip of composite aluminum-sandwich honeycomb beam reinforced by 

imperfect FGM plate: Experimental and analytical comparison of results, the comparison of the 

results obtained with those of the two comparison models in the elastic domain shows a good 

agreement between the curves. This confirms the validation of our model. We can say that the 

predicted theoretical results are in reasonable agreement with the experimental results. 
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Table 2 Comparison of shear stress for the present method with results known in literature in Composite 

beam aluminum-sandwich honeycomb strengthened by imperfect FGM plate with thermo-mechanical effect 

Composite beam aluminum-sandwich honeycomb strengthened by FGM porous with thermo-mechanical 

effect 

Theory Composite Aluminum beam 
Shear Stress 

q=30 kN/mlT=0° q=0T=30° q=30 kN/mlT=30° 
 Rabahi model (2023) 11,495920   
 Benachour model (2008) 11.8138   

Present model 

with =0 

Aluminum beam strengthening with 

perfect FGM plate (Ceramic; k=0) 
11.43060 4.953929 16.38454 

Aluminum beam strengthening with 

perfect FGM plate (k=5) 
7.733758 3.513739 11.24750 

Aluminum beam strengthening with 

perfect FGM plate (k=10) 
6.620790 3.056179 9.676972 

Aluminum beam strengthening with 

perfect FGM plate (Metal; k=) 
6.519407 3.013866 9.533276 

Present model 

with =0,2 

Aluminum beam strengthening with 

imperfect FGM plate (Ceramic; k=0) 
11.10335 4.830804 15.93416 

Aluminum beam strengthening with 

imperfect FGM plate (k=5) 
7.368513 3.364949 10.73347 

Aluminum beam strengthening with 

imperfect FGM plate (k=10) 
4.876623 2.312116 7.188742 

Aluminum beam strengthening with 

imperfect FGM plate (Metal; k=) 
4.056951 1.949610 6.006563 

 

 

3.2.2 Interface 2 
A comparison of the shear stresses at the interface (interface 2) of the various existing closed-

form solutions and the new current solution is undertaken in this section. A Composite beam 

aluminum-sandwich honeycomb reinforced by imperfect FGM plate with thermo-mechanical 

loading is considered. A summary of the geometric and material properties is given in Table 1. The 

table 2 shows the comparison of shear stresses at the interface near the end of the plate for the 

example composite beam bonded to an imperfect FGM plate for the thermo-mechanical loading 

load case. Overall, the predictions of the different solutions agree closely with each other theories 

from the literature. 

 

3.3 Parametric studies 
 

3.3.1 Effect of stiffness of sandwich honeycomb plate of the strengthened composite 
aluminum beam 

Fig. 6 gives Distribution of interfacial slip mid along the span of composite aluminum-

sandwich honeycomb beam strengthened by imperfect FGM under thermo-mechanical loading 

with porosity, a CFRP plate, a GFRP plate and a third in KFRP, which demonstrates the effect 

properties of the plate material on the sliding stresses. The results show that as the plate material 

becomes softer (from CFRP to KFRP to GFRP), interfacial slip decreases, as expected. Indeed, 

under the same load, the tensile force developed in the plate is lower, which leads to reduced 

interfacial slip. 
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Fig. 6 Distribution of interfacial slip mid along the span of composite aluminum- sandwich 

honeycomb beam strengthened by imperfect FGM under thermo-mechanical loading with porosity 
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Fig. 7 Effect of adhesive thickness on the sliding of the composite aluminum- sandwich 

honeycomb beam strengthened by imperfect FGM under thermo-mechanical loadingwith porosity. 

 

 

3.3.2 Effect of adhesive thickness of the strengthened composite aluminum beam 
Shown in Fig. 7 the Effect of adhesive thickness on the sliding of the composite aluminum- 

sandwich honeycomb beam strengthened by imperfect FGM under thermo-mechanical loading 

with porosity and Table 3 the Effect of adhesive thickness on interfacial shear stress of the 

composite aluminum- honeycomb beam sandwich. The sliding and the shear interfacial stress is 

increased because of an increase in the plate thickness. This effect is similar to that of an increase 

in the plate elastic modulus, it can be seen from figure that the thickness of adhesive layer affects 

only the sliding and shear stress concentrations, hardly the stress levels. However, design of the 

properties and thickness of the adhesive is a difficult problem. An optimization design of the 

adhesive is expected. 
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Table 3 Effect of adhesive thickness on interfacial shear stress of the composite aluminum- sandwich 

honeycomb beam strengthened by imperfect FGM under thermo-mechanical 

 Shear Stress (MPa) 
 ta (mm) Q=30 KN/m² ΔT=0° Q=0 KN/m² ΔT=30° Q=30 KN/m² ΔT=30° 

Porosity 

α=0 

1 7,5055 3,5134 11,0189 

2 6,6208 3,0562 9,6770 

3 6,0080 2,7400 8,7480 

4 5,5509 2,5046 8,0555 

Porosity 

α=0,1 

1 6,4960 3,0776 9,5737 

2 5,7231 2,6776 8,4007 

3 5,1880 2,4010 7,5891 

4 4,7892 2,1951 6,9843 

Porosity 

α=0,2 

1 5,5425 2,6571 8,1996 

2 4,8766 2,3121 7,1887 

3 4,4159 2,0736 6,4895 

4 4,0726 1,8961 5,9687 
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Fig. 8 Young’s effect modulus of adhesive for different Poisson’s ratio on the slip of the composite 

sandwich beam strengthened by imperfect FGM under thermo-mechanical loading with porosity 

 

 

3.3.3 Effect of Young’s modulus of the adhesive on the strengthened composite 
aluminum beam 

The adhesive layer is a relatively soft, isotropic material and has a smaller stiffness. The six 

sets of Young’s moduli are considered here, which are 1, 2, 3, 6, 10 and 30 GPa. The Poisson’s 

ratio of the adhesive is also variable from the value 0.3; 0.35; 0.4; 0.45 and 0.5. As shown in Fig. 8 

and Table 4, Young’s effect modulus of adhesive for different Poisson’s ratio on the slip and the 

interfacial shear stress of the composite sandwich beam strengthened by imperfect FGM under 

thermo-mechanical loading with porosity. The numerical results show that the property of the 

adhesive hardly influences the level of the sliding and interfacial shear stresses, whether shear 

stress, but the stress concentrations at the end of the plate increase as the Young’s modulus of the 

adhesive increases. 
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Table 4 Young’s effect modulus of adhesive on the interfacial shear stress of the composite aluminum- 

sandwich honeycomb beam strengthened by imperfect FGM under thermo-mechanical 

Porosity 
Shear Stress (MPa) 

Ea (MPa) q=30 kN/m², ΔT=0° q=0 kN/m², ΔT=30° q=30 N/m², ΔT=30° 

Porosity 

α=0 

1000 4,92008 2,17827 7,09835 

2000 6,01332 2,74218 8,75551 

3000 6,62079 3,05618 9,67697 

6000 7,49889 3,51058 11,00947 

10000 7,97852 3,75897 11,73749 

30000 8,57659 4,06884 12,64542 

Porosity 

α=0,1 

1000 4,23533 1,90845 6,14378 

2000 5,19153 2,40251 7,59405 

3000 5,72311 2,67761 8,40072 

6000 6,49172 3,07573 9,56745 

10000 6,91161 3,29335 10,20496 

30000 7,43525 3,56483 11,00008 

Porosity 

α=0,2 

1000 3,59356 1,64795 5,24151 

2000 4,41807 2,07457 6,49264 

3000 4,87662 2,31212 7,18874 

6000 5,53979 2,65589 8,19568 

10000 5,90213 2,84381 8,74593 

30000 6,35404 3,07823 9,43228 

 
Table 5 Effect of the variation of the distribution forms of porosity on the slip of the composite aluminum-

sandwich honeycomb beam strengthened by imperfect FGM under thermo-mechanical 

 
Composite beam aluminum-sandwich honeycomb strengthened by imperfect FGM with 

thermo-mechanical effect-k=10 

Distribution forms 

of Porosity 
Porosity 

Slip: δ(x=0) mm Deflection: Δ(x=L/2) mm 

q=30 kN/ml 

T=0° 

q=0 

T=30° 

q=30 kN/ml 

T=30° 

q=30 kN/ml 

T=0° 

q=0 

T=30° 

q=30 kN/ml 

T=30° 

Homogeneous 

Shape 

=0 4.164 2.505.10-8 4.175 4.555 2.733.10-8 4.555 

=0,01 4.186 2.516.10-8 4.194 4.572 2.743.10-8 4.572 

=0,02 4.204 2.530.10-8 4.216 4.589 2.753.10-8 4.589 

Form “V” 

Shape 

=0 4.164 2.506.10-8 4.175 4.555 2.733.10-8 4.555 

=0,01 4.179 2.514.10-8 4.190 4.567 2.740.10-8 4.567 

=0,02 4.193 2.523.10-8 4.205 4.579 2.748.10-8 4.579 

Form Inverted 

“V” Shape 

=0 4.164 2.505.10-8 4.175 4.555 2.733.10-8 4.555 

=0,01 4.168 2.507.10-8 4.178 4.558 2.735.10-8 4.558 

=0,02 4.175 2.512.10-8 4.186 4.562 2.737.10-8 4.562 

Form “X” 

Shape 

=0 4.164 2.505.10-8 4.175 4.555 2.733.10-8 4.555 

=0,01 4.175 2.512.10-8 4.186 4.562 2.737.10-8 4.562 

=0,02 4.186 2.516.10-8 4.194 4.572 2.743.10-8 4.572 

Form “O” 

Shape 

=0 4.164 2.505.10-8 4.175 4.555 2.733.10-8 4.555 

=0,01 4.168 2.507.10-8 4.186 4.558 2.735.10-8 4.562 

=0,02 4.175 2.512.10-8 4.194 4.562 2.737.10-8 4.572 
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Table 6 Effect of the variation of the distribution forms of porosity on the interfacial shear stress of the 

composite aluminum-sandwich honeycomb beam strengthened by imperfect FGM under thermo-mechanical 

 
Composite beam aluminum sandwich honeycomb strengthened by imperfect FGM with 

thermo-mechanical effect-k=10 

Distribution forms 

of Porosity 
Porosity 

Shear stress (x) MPa 

q=30 kN/ml, T=0° q=0, T=30° q=30 kN/ml, T=30° 

Homogeneous 

Shape 

=0 6.620790 3.056179 9.676972 

=0,1 5.723107 2.677612 8.400722 

=0,2 4.876623 2.312116 7.188742 

Form “V” Shape 

=0 6.620790 3.056179 9.676972 

=0,1 6.032282 2.809007 8.841292 

=0,2 5.347879 2.516659 7.864540 

Form Inverted “V” 

Shape 

=0 6.620790 3.056179 9.676972 

=0,1 6.393750 2.961269 9.355022 

=0,2 6.359837 2.947045 9.306885 

Form “X” Shape 

=0 6.620790 3.056179 9.676972 

=0,1 6.426958 2.975186 9.402147 

=0,2 6.390036 2.959712 9.349750 

Form “O” Shape 

=0 6.620790 3.056179 9.676972 

=0,1 6.359837 2.947045 9.306885 

=0,2 8.281186 3.734361 12.01555 

 

 

3.3.4 Effect of the variation of the distribution forms of porosity on the interfacial 
stresses of the Composite beam aluminum-sandwich honeycomb strengthened by FGM 
porous with thermo-mechanical effect 

Tables 5 and 6. Show the effect of the variation of the distribution forms of porosity on the slip 

and interfacial shear stress of the composite aluminum-sandwich honeycomb beam strengthened 

by imperfect FGM under thermo-mechanical, which demonstrate the effect of material properties 

on shear stress. Taking into account the variation in the forms of porosity distribution and the 

index of this porosity. The results show that, as the material becomes softer (from the least porous 

material to the most porous material), the sliding and shear stress interface becomes smaller, 

unexpected. Same load, the reinforced resistance developed in the smaller plate, which made it 

possible to reduce the interfacial stresses. Interfacial shear peak plate becomes less stiff. 

 

3.3.5 Effect of the variation of the degree of homogeneity of the FGM material as a 
function of distribution forms of porosity on the Composite beam aluminum-sandwich 
honeycomb strengthened by FGM porous with thermo-mechanical effect 

The variation of the degree of homogeneity of the FGM material plate is an important design 

variable in practice. Table 7. Effect of the variation of the degree of homogeneity of the FGM 

material as a function of distribution forms of porosity on the interfacial shear stress of the 

composite aluminum-sandwich honeycomb beam strengthened by imperfect FGM under thermo-

mechanical. For this problem, the rigidity of the soffit plate is of much greater significance than in 

the beam problem. The effects of bending deformations in the plate and axial deformations in the 

beam are therefore expected to become significant. It is shown that the level and concentration of 

interfacial stress are influenced considerably by the degree of homogeneity of the FGM material  
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Table 7 Effect of the variation of the degree of homogeneity of the FGM material as a function of 

distribution forms of porosity on the interfacial shear stress of the composite aluminum- sandwich 

honeycomb beam strengthened by imperfect FGM under thermo-mechanical 

Composite beam aluminumsandwich honeycomb strengthened by imperfect FGM 

with thermo-mechanical effect 

Degree of homogeneity 

of FGM material 

Distribution forms of Porosity 

Homogeneous 

Shape =0,2 

Form “O” 

Shape =0,2 

Form “V” 

Shape =0,2 

Form Inverted “V” 

Shape =0,2 

Form “X” 

Shape =0,2 

 

 

 

 

 

k (x)MPa (x)MPa (x)MPa (x)MPa (x)MPa 

0 (ceramic) 15.9340 15.9559 16.1736 16.1736 16.4008 

2,5 12.9686 14.2722 12.6305 13.6481 12.6898 

5 10.7334 13.5619 9.87733 11.7254 10.2688 

7,5 8.64390 12.8078 8.33716 10.1951 9.44449 

10 7.18869 12.0155 7.86447 9.30683 9.34970 

20 6.01782 9.61409 7.90805 8.61761 9.58032 

 (metal) 6.00652 8.39951 8.33220 8.33220 10.0492 

 

 

plate. The results show that, as the plate material becomes softer (from ceramic, FGM (different 

value of the index k) to metal), the interfacial shear stress becomes smaller, as expected. This is 

because, under the same load, the tensile force developed in the plate is smaller, which leads to 

reduced shear stresses. We recorded a maximum value of the shear stress for form “X” of porosity 

distribution. Finally, we found that it is indeed a very logical statement. 

 

 

4. Conclusions 
 

The Interfacial shear stress analysis of composite beam aluminum-sandwich honeycomb 

strengthened by imperfect FGM plate under thermo-mechanical loading (shear lag effect) were 

investigated by an improved theoretical method. The adherend shear deformations have been 

included in the theoretical analyses by assuming linear shear stress distributions through the 

thickness of the adherends. The classical solutions which neglect the adherend shear deformations 

over-estimate the non-uniformity of the adhesive stresses distributions and maximum interfacial 

stresses. The new solution is general in nature and may be applicable to all kinds of materials. In 

the final part of this paper, extensive parametric studies were undertaken by using the new solution 

for composite beam aluminum-sandwich honeycomb strengthened by imperfect FGM with various 

ratios of design parameters. Observations were made based on the numerical results concerning 

their possible implications to practical designs. Finally, we can conclude that, the new solution 

methodology is general in nature and may be applicable to the analysis of other types of composite 

structures. 
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