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Abstract.  This study aims to investigate the effect of cavity on electric energy harvesting from cantilever beam 
vibrations under electrostatic actuation. Electrostatic actuation is created by a layer of radioisotope materials that is 
placed on the opposite side of the beam emitting electrons. When the beam is charged, the electrostatic force is 
generated between the beam and the opposite plate and pulls the beam towards itself. After the beam strikes the 
radioisotope, it is electrically discharged and then released. The piezoelectric layer converts the released microbeam 
vibration into electricity. The equations of motion coupled with the electrical effects of the piezoelectric layer are 
extracted using Hamilton’s principle and Gauss’s law. The equations are discretized by Galerkin method. The exact 
mode shape of the cantilever beam with the piezoelectric layer is employed as the comparison function. By identifying 
the relations governing the system, the output voltage and consequently the amount of harvested electrical energy are 
obtained using various parameters such as thickness and position of the cavity and system electrical resistance. The 
results indicates that creating cavity has a significant effect on the energy harvesting. 
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1. Introduction 
 

Energy harvesting from vibrations has recently received great attention from researchers. These 

harvesters are also applied in systems that use batteries as a source of energy and it is impossible or 

expensive to replace the battery (Gurav et al. 2004, Muralt 2000, Roundy et al. 2004, Reddy et al. 

2016). Energy harvesters fall into three general categories of electromagnetic, electrostatic, and 

piezoelectric. Although each of these methods can generate an acceptable amount of electrical 

energy, piezoelectric materials have received more attention than others, the reason for which can 

be attributed to their ability to directly convert strain energy into electrical energy. Another 

advantage is their ability to harvest energy at wider frequency ranges (Sodano et al. 2004, Abdelkefi 

et al. 2012, Priya 2007) as well as their high output power density. Most of the piezoelectric materials 

are brittle and are usually not used alone and are mounted on a flexible structure. If voltage is applied 

to both sides of piezoelectric materials, it causes a strain inside them and, then, they tend to change 

in length. Thus, if piezoelectric materials are bound to another layer, it causes the substrate layer to 

bend. Many formulations have been presented for energy harvesting from piezoelectric materials, 
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the most important of which are discussed below. 

Different designs of beams have been proposed for maximum energy harvesting (Erturk and 

Inman 2008, Erturk and Inman 2009, Usharani et al. 2017, Zhao et al. 2018, Amini et al. 2017, 

Sarker et al. 2019, Pan and Dai 2018, Zhang and Zhu 2012, Brufau-Penella and Puig-Vidal 2009, 

Deepesh et al. 2020, Franco and Varoto 2017, Wang et al. 2009, Kim et al. 2018, Ghodsi et al. 2019, 

Mishra et al. 2020, Dutoit et al. 2005). Juniour et al. (2009) analyzed a plate with a piezoelectric 

layer under base excitation by finite element method (FEM) and compared the results with 

experimental results. They used Kirchhoff plate theory to analyze the plate and obtained the 

equations of motion using Hamilton’s method. Chen et al. (2012) performed experiments on a 

circular plate and found that the output energy increased as the frequency decreased. Kim et al. 

(2013) examined three plates with circular, hexagonal, and square geometries coated with 

piezoelectric layers with a hole in the middle. The piezoelectric area was considered the same in all 

the three cases. The analysis were performed using FEM by ANSYS software. The output energy of 

the hexagonal plate was reported to be higher than the others; However, the output energy of the 

circular plate was very close to it. The output energy increased with a decrease in piezoelectric width 

and an increase in its length. 

Harvesters usually have a standard mass that is adjustable and can be used to approximate the 

natural frequency of the beam to the excitation frequency of the environment (Abdelkefi et al. 2011). 

Li et al. (2010) proposed a beam with L-shaped mass. The lower surface of the L-shaped mass had 

a curvature that was proportional to the mode shape of the beam, so that the mass had no contact 

with the beam in the bending state of the beam. The analysis was performed using FEM and ANSYS 

software. The results were obtained experimentally. There was more mass on the beam in the L-

shaped mass model, resulting in more strain as well as more energy. This system had significant 

output energy at low frequencies. 

Guan et al. (2013) proposed a structure with an H-shaped mass. This structure induced a large 

rotational moment of inertia, resulting in a uniform strain distribution in the beam and higher output 

energy. This structure, with its standard mass and high moment of inertia, occupied little space. In 

this study, the beam mass and damping were excluded and the analysis was performed using Euler-

Bernoulli beam theory. Abdelkafi et al. (2011) investigated a cantilever beam with a piezoelectric 

layer under bending and shear stresses and base excitation and obtained the equations of motion 

using Hamilton’s method. They also developed a simplified model by Galerkin method and extracted 

transverse displacement, output voltage, angle of twist, and harvested energy. The results indicated 

the bending-torsional harvesting efficiency increased by 30% compared to the symmetrical sample. 

Mehraein et al. (2010) examined a conical beam and experimentally concluded that energy 

harvesting was higher in conical beams than rectangular and trapezoidal beams due to uniform strain 

distribution. Wang and Chu (2007) proposed a cantilever beam with an air gap between the 

piezoelectric layers and experimentally indicated the energy harvesting increased with increasing 

the distance between the piezoelectric layer and neutral axis. Rami et al. (2016) experimentally 

studied a cantilever beam with cavity and actuated its free end by an electric magnet. They found 

that beams with cavity could harvest more power than beams without cavity. Using vibrations caused 

by the electrostatic force of radioisotopes has recently received great attention. In these systems, 

there is usually an electrical voltage between the beam and a fixed surface. With increasing voltage, 

the beam experiences pull-in phenomenon and strikes the adjacent plate, causing a short circuit. 

Then, the beam begins to vibrate, and the piezoelectric layer harvests the energy from vibrations. 

Using radioactive materials is among the existing methods to generate the primary electrostatic 

force, which is discussed below. 
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(a) (b) 

  
(c) (d) 

Fig. 1 (a) System configuration, (b) Charging phase, (c) Discharging phase. (d) Vibration of the cantilever 

 

 

High energy density of radioisotope materials makes them a practical source for generating stable 

vibrations. Radioactive sources have the energy density of about 1-100 
𝑀𝐽

𝑐𝑚3 and half-life of 2-100 

years. Although there are many radioisotope sources with high radioactivity, some of which require 

special and expensive protection. Therefore, choosing an appropriate radioisotope is very important. 

Dow et al. (2011) simplified a piezoelectric harvester operating with a radioactive source into a 

mass-spring system and solved it by energy method. Zamanian et al. (2018) investigated a cantilever 

microbeam with a piezoelectric layer under radioactive irradiation and extracted the equations of 

motion nonlinearly considering the electrostatic force and used the mode shape of three-piece beam 

as the comparison function (Zamanian et al. 2018). 

Although the electrostatic actuation induced between the beam and opposite radioisotope 

electrode layer causes the beam to oscillate permanently, which is a convenience source for 

piezoelectric energy harvester, this question arises how to increase its efficiency. The present study 

investigates the effect of creating a cavity along the lengths of the beam on the efficiency of energy 

harvesting in this configuration. In this research, the equations of motion are extracted using 

Hamilton’s principle and Gauss’s law and the equations are discretized by Galerkin method. The 

exact mode shape of the cantilever beam with the piezoelectric layer is used as the comparison 

function. After finding the relations governing the system, the results are compared with previous 

results neglecting the effect of cavity to validate the calculations. After indicating the effect of cavity 

on the performance of piezoelectric energy harvester under electrostatic actuation, the effect of 

geometric parameters and cavity position on the efficiency of energy harvesting is analyzed. 

431



 

 

 

 

 

 

Kourosh Delalat, Mehdi Zamanian and Behnam Firouzi 

 

Fig. 2 The cantilever beam with a piezoelectric layer and a cavity along its length. 

 

 

2. Modeling and formulation  
 

The studied system is a cantilever beam with length 𝑙  and a rectangular cross-section. A 

piezoelectric layer with a width equal to the beam width is deposited on the beam, the starting and 

ending points of which are at distances of 𝑙1 and 𝑙2 from the support, respectively. As shown in 

Fig. 1, the radioisotope layer is located at a specific distance from the microbeam emitting electrons. 

There is a time-dependent difference in electrical potential between the microbeam surface and 

radioisotope layer. This electrical voltage is assumed to be 𝑉𝑔 = 𝑘𝑡 where t represents time and k 

is a constant. Fig. 1 illustrates the system operation. There is a rectangular cavity right under the 

piezoelectric layer, the length and width of which are equal to the piezoelectric length and beam 

width, respectively. The beam length, width, thickness are about a few hundred  millimeters, a few 

tens of millimeters, and a few millimeters, respectively. 

A rectangular coordinate system (X, z) is used to extract the equations of motion. Displacement 

along the z axis is represented by w(X, t) that is a function of time and place. Dot and prime symbols 

over quantities denote time and place derivatives, respectively. To analyze the beam and extract its 

equations of motion, it is assumed to have three parts, including before and after the piezoelectric 

layer and the piezoelectric part. Fig. 2 shows each of these areas. The rectangular cavity is located 

right under the piezoelectric layer, and the electrodes shown in gray are on either side of the 

piezoelectric. In this figure, ℎ𝑏 and ℎ𝑝 denote beam and piezoelectric thickness, respectively, ℎ1 

is distance of the lower surface of the cavity from the bottom of the beam, ℎ2 is cavity height, and 

ℎ3 is distance of the top of the cavity from the top of the beam. 

   Fig. 3(a) shows the beam cross-section before and after of the piezoelectric layer and Fig. 3(b) 

shows the beam cross-section where the piezoelectric is deposited. 

According to Fig. 3, Eq. (1) applies to beam thickness and cavity height. 

ℎ1 + ℎ2 + ℎ3 = ℎ𝑏 (1) 

Now, the neutral axis of the beam is obtained in each of these areas. Obviously, in parts where  
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(a)                             (b) 

Fig. 3 (a) beam cross-section before and after of the piezoelectric layer, (b) cross-section where the 

piezoelectric is deposited 

 

 

there is no piezoelectric layer, the neutral axis passed through the middle axis of the beam cross-

section; however, in the part where there is a piezoelectric layer and cavity, the location of the neutral 

axis should be calculated. The distance of the neutral axis from the middle axis of the piezoelectric 

is considered to be Zn. Letting the total force in the cross section of the system equal to zero the 

following relation is obtained 

∫ 𝐸𝑏𝑧𝑑𝑧
𝑍𝑛−

ℎ𝑝
2
−ℎ3−ℎ2

𝑍𝑛−
ℎ𝑝
2
−ℎ𝑏

+∫ 𝐸𝑏𝑧𝑑𝑧
𝑍𝑛−

ℎ𝑝
2

𝑍𝑛−
ℎ𝑝
2
−ℎ3

+∫ 𝐸𝑝𝑧𝑑𝑧
𝑍𝑛+

ℎ𝑝
2

𝑍𝑛−
ℎ𝑝
2

= 0 (2) 

where Eb and Ep are elastic modulus of the beam and piezoelectric, respectively. Using Eq. (2), the 

neutral axis is obtained as bellow 

𝑍𝑛 =
𝐸𝑏(ℎ2

2 + 2ℎ2ℎ3 + ℎ𝑝ℎ2 − ℎ𝑏
2 − ℎ𝑏ℎ𝑝)

2(𝐸𝑏ℎ2 − 𝐸𝑏ℎ𝑏 − 𝐸𝑝ℎ𝑝)
 (3) 

To ensure the correctness of the above equation, ℎ2 and ℎ𝑝 are assumed to be equal to zero 

and it is observed that the neutral axis distance is obtained as 𝑍𝑛 = ℎ𝑏/2, which is correct for a 

simple beam without cavity and piezoelectric. The Hamilton’s principle is employed to obtain the 

equations of motion of the system, for which the potential and kinetic energy of the system is 

required. First, the potential energy of the system is discussed. The strain potential energy of the 

system is equal to the total strain energy of the beam and piezoelectric, expressed as follows 

𝑈1 = ∫ ∫ 𝜎𝑏𝑑𝜀𝑑𝑉𝑏

𝜀

0𝑉𝑏

+∫ ∫ 𝜎𝑝𝑑𝜀𝑑𝑉𝑝

𝜀

0𝑉𝑝

 (4) 

where 𝜎𝑏  and 𝜎𝑝  represent the stress in the cross section of the beam and piezoelectric layer, 

respectively, 𝜀 denotes strain, and 𝑑𝑉 is volume element. The total potential energy of the system 

using the Heaviside function may be written as below 
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     

     

  

 

(5) 

where wb is the width of the beam and Hli is the Heaviside function, and is described as follow 

𝐻𝑙𝑖 = 𝐻(𝑋 − 𝑙𝑖) = {
1 𝑋 ≥ 𝑙𝑖
0 𝑋 < 𝑙𝑖

𝑖 = 1,2 (6) 

According to Eq. (6), the first term of Eq. (5) indicates the beam potential energy before the 

piezoelectric layer, the second term represents the beam potential energy at the bottom of the cavity, 

the third term represents the beam potential energy at the top of the cavity, the fourth term indicates 

the piezoelectric potential energy, and the fifth term indicates the beam potential energy after the 

part where the piezoelectric is deposited. Considering the relationships between stress and electrical 

displacement in piezoelectric and assuming longitudinal stress due to piezoelectric bending as well 

as considering the direction of the electric field along with the piezoelectric thickness, the beam and 

piezoelectric stress along with thickness is calculated as bellow 

𝜎𝑏 = 𝐸𝑏𝜀11, 𝜎𝑝 = 𝐸𝑝𝜀11 − 𝑒31𝐸3 (7) 

where 𝑒31 is piezoelectric coefficient, and 𝐸3 is the electric field that can be expressed in terms 

of the voltage across the two ends of the piezoelectric 

𝐸3 = −
𝑉

ℎ𝑝
 (8) 

The strain is calculated in terms of the beam deflection as follow 

𝜀11 = −𝑧
𝜕2𝑤

𝜕𝑋2
 (9) 

By replacing Eqs. (9) and (8) into Eq. (7) and replacing Eq. (7) into Eq. (5), the strain potential 

energy of the system is obtained as follow 

𝑈1 =
1

2
∫ 𝐶𝜂(𝑠) (

𝜕2𝑤

𝜕𝑋2
)

2

𝑑𝑋 +∫ 𝐶𝛾𝑉
𝜕2𝑤

𝜕𝑋2
𝑑𝑋

𝑙

0

𝑙

0

 (10) 

where V is the potential difference in the piezoelectric layer and 𝐶𝜂 and 𝐶𝛾 can be calculated as 

follows 

1 1 2 1 2

1 2 2

1 2 3

1

(1 ) ( ) ( )

( )

l b b l l b b l l b b

l l p p l b b

C H E I H H E I H H E I

H H E I H E I

 = − + − + −

+ − +
 (11) 
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𝐶𝛾 = (𝐻𝑙1 −𝐻𝑙2)
𝑒31𝐴𝑝

ℎ𝑝
 (12) 

where the coefficients presented in Eqs. (11) and (12) are defined as follows 

𝐼1𝑏 = 𝑤𝑏
ℎ𝑏
3

12
 

𝐼2𝑏 =
𝑤𝑏
3
(ℎ𝑏

3 − ℎ3
3 − ℎ2

3 − 3𝑍𝑛
2ℎ3 − 3𝑍𝑛

2ℎ2 − 3𝑍𝑛ℎ3
2 + 3𝑍𝑛ℎ2

2 −
3

4
ℎ𝑝
2ℎ3 −

3

4
ℎ𝑝
2ℎ2 

−
3

2
ℎ𝑝ℎ3

2 −
3

2
ℎ𝑝ℎ2

2 − 3ℎ3
2ℎ2 − 3ℎ2

2ℎ3 + 3𝑍𝑛
2ℎ𝑏 − 3𝑍𝑛ℎ𝑏

2 +
3

4
ℎ𝑝
2ℎ𝑏 +

3

2
ℎ𝑝ℎ𝑏

2 

+3𝑍𝑛ℎ𝑝ℎ3 − 3𝑍𝑛ℎ𝑝ℎ𝑏 − 3ℎ𝑝ℎ3ℎ2 + 3𝑍𝑛ℎ𝑝ℎ2 + 6𝑍𝑛ℎ3ℎ2) 

𝐼3𝑏 =
𝑤𝑏
3
(3𝑍𝑛

2ℎ3 − 3𝑍𝑛ℎ𝑝ℎ3 − 3𝑍𝑛ℎ3
2 +

3

4
ℎ𝑝
2ℎ3 +

3

2
ℎ𝑝ℎ3

2 + ℎ3
2) 

𝐼𝑝 =
𝑤𝑏
3
(3𝑍𝑛

2ℎ𝑝 +
1

4
ℎ𝑝
3) 

𝐴𝑝 = 𝑤𝑏𝑍𝑛ℎ𝑝 

(13) 

Now, the electrostatic potential energy generated by the radioisotope under the beam is 

calculated. This radioisotope modeling has been performed by Dow et al. (2011). Considering the 

differential equations governing the radioisotope, the electrostatic potential energy is calculated as 

follows (Firouzi and Zamanian 2019) 

𝑈2 = −
1

2
∫ 𝐻𝑙3𝜀0𝑤𝑏

𝑉𝑔
2

𝑑 + 𝑤
𝑑𝑋

𝑙

0

 (14) 

where 𝜀0 is vacuum electric permittivity,𝑉𝑔 is time-dependent voltage between the beam and 

radioisotope, and 𝑑is distance between the beam and radioisotope. The kinetic energy is calculated 

may be obtained as bellow 

𝑇 =
1

2
∫ 𝑚(𝑋)(

𝜕𝑤

𝜕𝑡
)2𝑑𝑋

𝑙

0

 (15) 

where m(x) is mass per unit length which can be expressed as 

𝑚(𝑋) = 𝑤𝑏(𝜌𝑏ℎ𝑏 + (𝐻𝑙1 −𝐻𝑙2)(𝜌𝑝ℎ𝑝 − 𝜌𝑏ℎ2)) (16) 

Finally, considering damping as an external force, the external work applied to the system due to 

damping is calculated as follow 

𝛿𝑊𝐹 = ∫ (−𝑐
𝜕𝑤

𝜕𝑡
𝛿𝑤

𝑙

0

)𝑑𝑋 (17) 

where c is the coefficient of external viscous damping. Having potential energy, kinetic energy, and 

external work of the system, the equations of motion were obtained using Hamilton’s principle. 

𝛿 ∫(𝑇 − 𝑈1 −𝑈2 +𝑊𝐹)𝑑𝑡 = 0 (18) 

By substituting Eqs. (17), (15), (14), (10) into Eq. (18), equation of motion is obtained as follow 

𝜕

𝜕𝑡
(𝑚(𝑥)

𝜕𝑤

𝜕𝑡
) +

𝜕2

𝜕𝑋2
(𝐶𝜂

𝜕2𝑤

𝜕𝑋2
) +

𝜕

𝜕𝑋2
(𝐶𝛾𝑉) + 𝐶𝜆𝑉𝑔

2
1

(𝑑 + 𝑤)2
+ 𝑐

𝜕𝑤

𝜕𝑡
= 0 (19) 
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where 𝐶𝜆 is 

𝐶𝜆 =
1

2
𝜀0𝑤𝑏𝐻𝑙3 (20) 

Boundary conditions can be expressed as 

𝑤|𝑋=0 = 0,
𝜕𝑤

𝜕𝑋
|
𝑋=0

= 0 

𝜕2𝑤

𝜕𝑋2
|
𝑋=𝑙

= 0,
𝜕3𝑤

𝜕𝑋3
|
𝑋=𝑙

= 0 

(21) 

For convenience, the following set of non-dimensional parameters are introduced 

𝑣 = −
𝑤

ℎ𝑏
, 𝑥 =

𝑋

𝑙
, 𝜏 =

𝑡

𝑇
, 𝑇 = √

𝜌𝑏𝑤𝑏ℎ𝑏𝑙
4

𝐸𝑏𝐼1𝑏
 (22) 

Considering the non-dimensional parameters, the equation of motion and governing boundary 

conditions can be expressed as Eqs. (23) and (24). 

𝑚(𝑥)
𝜕2𝑣

𝜕𝜏2
+ 𝐶

𝜕𝑣

𝜕𝜏
+
𝜕2

𝜕𝑥2
(𝐻(𝑥)

𝜕2𝑣

𝜕𝑥2
) − 𝛼1𝑉

𝑑2

𝑑𝑥2
(𝐻𝑙1

𝑙

−𝐻𝑙2
𝑙
) − 𝛾𝑉𝑔

2
1

(
𝑑
ℎ𝑏
− 𝑣)

2 = 0 
(23) 

𝑣|𝑥=0 = 0,
𝜕𝑣

𝜕𝑥
|
𝑥=0

= 0 
𝜕2𝑣

𝜕𝑥2
|
𝑥=1

= 0,
𝜕3𝑣

𝜕𝑥3
|
𝑥=1

= 0 (24) 

Where 

𝑚(𝑥) = 1 + (𝐻𝑙1
𝑙

− 𝐻𝑙2
𝑙

)
(𝜌𝑝ℎ𝑝 − 𝜌𝑏ℎ2)

𝜌𝑏ℎ𝑏
, 

𝐶 = √
𝑙4

𝜌𝑏ℎ𝑏𝑤𝑏𝐸𝑏𝐼1𝑏
𝑐, 

𝛼1 =
𝑒31𝐴𝑝𝑙

2

ℎ𝑝𝐸𝑏𝐼𝑏ℎ𝑏
, 𝛾 =

𝜀0𝑤𝑏𝐻𝑙3
𝑙

2ℎ𝑏
2 , 

𝐻(𝑥) = (1 − 𝐻𝑙1
𝑙

) + (𝐻𝑙1
𝑙

−𝐻𝑙2
𝑙

)
𝐼2𝑏
𝐼1𝑏

+ (𝐻𝑙1
𝑙

− 𝐻𝑙2
𝑙

)
𝐼3𝑏
𝐼1𝑏

+ (𝐻𝑙1
𝑙

−𝐻𝑙2
𝑙

)
𝐸𝑝𝐼𝑝

𝐸𝑏𝐼𝑏
+𝐻𝑙2

𝑙

 

(25) 

Gauss’s law, also known as Gauss’s flux theorem, is a law in physics that states the relationship 

between electric charge (Q) and electric displacement (D). The integral form of this law is as Eq. 

(26). 

𝑄 = ∫𝐷. 𝑛𝑑𝐴
𝐴

 (26) 

where A is a closed surface and Gauss’s law relates the electric displacement of this surface to the 

electric charge enclosed within it. Using the definition of electric current, it can be written 

𝑑𝑄

𝑑𝑡
= 𝐼 ⇒

𝑑

𝑑𝑡
∫𝐷. 𝑛𝑑𝐴 = 𝐼
𝐴

 (27) 
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Fig. 4 Surface element of the piezoelectric layer 

 

 

Also, using Ohm’s law, where 
𝑉

𝑅
= 𝐼, it can be written 

𝑑

𝑑𝑡
∫𝐷. 𝑛𝑑𝐴
𝐴

−
𝑉

𝑅
= 0 (28) 

Considering piezoelectric as a surface enclosed in Gauss’s law and using piezoelectric structural 

relations, the output voltage equation of the system is obtained. Considering the equation of 

piezoelectric structure, the following equation is obtained for electric displacement along the z axis 

(Zamanian et al. 2018) 

𝐷3 = 𝑒31𝜀11 +∈33 𝐸3 (29) 

where 𝑒31  is piezoelectric coefficient, 𝜀11  is longitudinal strain or the same as 𝜎𝑝 , ∈33 is 

electrical permittivity factor (dielectric constant), and 𝐸3 is electric field along the z direction. By 

replacing Eq. (29) into Eq. (28), it can be written 

𝑑

𝑑𝑡
∫𝑒31𝜀11𝑑𝐴 +
𝐴

𝑑

𝑑𝑡
∫∈33 𝐸3𝑑𝐴
𝐴

−
𝑉

𝑅
= 0 (30) 

Considering the surface element in Fig. 4 for the second term of Eq. (30) and including Eq. (9), 

the following equation is obtained. 

𝑑

𝑑𝑡
∫−𝑒31𝑧𝑤

″𝑑𝐴
𝐴

+
𝑑

𝑑𝑡
∫ ∈33 𝐸3𝑤𝑏𝑑𝑋
𝑙2

𝑙1

−
𝑉

𝑅
= 0  (31) 

Using divergence theorem, the first term of the above equation can be rewritten as follows, in 

which the integration is performed on the volume of the piezoelectric layer. 

∫ −𝑒31𝑧𝑤
″𝑑𝐴 = ∫ 𝛻. (−𝑒31𝑧𝑤

″)𝑑𝑉𝑝 =
𝑉𝑝𝐴

∫
𝜕

𝜕𝑧
(−

𝑉𝑝

𝑒31𝑧𝑤
″)𝑑𝑉𝑝 (32) 

By substituting Eq. (8) into Eq. (30) and using Eq. (32), the following relation will be obtained 

𝑑

𝑑𝑡
∫ −𝑒31𝑤

″𝑑𝑉𝑝
𝑉𝑝

+
𝑑

𝑑𝑡
∫ −∈33

𝑉(𝑡)

ℎ
𝑝

𝑤𝑏𝑑𝑋
𝑙2

𝑙1

−
𝑉(𝑡)

𝑅
= 0 (33) 

According to Fig. 4, the volume element is considered as 𝑑𝑉𝑝 = ℎ𝑝𝑤𝑏𝑑𝑋. Then, by calculating 

the integrals, the relationship between output voltage and dynamic deflection is obtained as follows 
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𝑒31ℎ𝑝𝑤𝑏
𝜕2𝑤

𝜕𝑋𝜕𝑡
|
𝑙1

𝑙2

+
∈33 𝑤𝑏(𝑙2 − 𝑙1)

ℎ𝑝

𝑑𝑉(𝑡)

𝑑𝑡
+
𝑉(𝑡)

𝑅
= 0 (34) 

By applying the dimensionless quantities in Eq. (22), it can be written 

−
𝑒31ℎ𝑝𝑤𝑏ℎ𝑏

𝑙𝑇

𝜕2𝑣

𝜕𝑥𝜕𝜏
|
𝑙1
𝑙

𝑙2
𝑙

+
∈33 𝑤𝑏(𝑙2 − 𝑙1)

ℎ𝑝𝑇

𝑑𝑉(𝜏)

𝑑𝜏
+
𝑉(𝜏)

𝑅
= 0 (35) 

Finally, Eq. (35) is the electrical relationship governing the system under consideration, which 

will be used later. 

 

 

3. Solving equations of motion  
 

In the previous section a set of coupled equations between the dynamic deflection and output 

electric voltage were extracted. In this section, these relations are solved, and so the dynamic 

deflection and output electric voltage are calculated.  

Galerkin method is used to solve Eq. (23). Therefore the function 𝑣(𝑥, 𝜏) is written as follow 

𝑣(𝑥, 𝜏) =∑𝜙𝑖(𝑥)𝑝𝑖(𝜏)

𝑁

1

 (36) 

where 𝜙𝑖(𝑥), the spatial part of the response, is a function that satisfies the boundary conditions of 

the problem. The exact mode shape of the system described at the appendix are used as the 

comparison functions. 𝑝𝑖(𝜏)  is time coordinate of the response, obtained by Galerkin method. 

Taylor expansion was also employed to simplify the electrostatic force as follow 

1

(
𝑑
ℎ𝑏
− 𝑣)

2 =
ℎ𝑏
2

𝑑2
+
2ℎ𝑏

3

𝑑3
𝑣 +

3ℎ𝑏
4

𝑑4
𝑣2 +

4ℎ𝑏
5

𝑑5
𝑣3 

(37) 

By substituting Eqs. (36) and (37) into differential Eq. (23) and multiplying the resulting equation 

by 𝜙𝑗(𝑥), such that 𝑗 = 1. . 𝑁, and integrating it at the interval 𝑥 = 0. .1, a set of ordinary coupled 

equations are obtained. 

𝑒𝑞𝑗 =∑(
𝑑2𝑝𝑖(𝜏)

𝑑𝜏2
∫ 𝑚(𝑥)𝜙𝑗(𝑥)𝜙𝑖(𝑥)𝑑𝑥
1

0

+ 𝐶
𝑑𝑝𝑖(𝜏)

𝑑𝜏
∫ 𝜙𝑗(𝑥)𝜙𝑖(𝑥)𝑑𝑥
1

0

𝑁

1

 

+𝑝𝑖(𝜏)∫ 𝜙𝑗(𝑥)
𝑑2

𝑑𝑥2
(𝐻(𝑥)

𝑑2𝜙𝑖(𝑥)

𝑑𝑥2
)𝑑𝑥

1

0

) − 𝛼1𝑉(𝜏)∫ 𝜙𝑗
𝑑2

𝑑𝑥2

1

0

(𝐻𝑙1
𝑙

−𝐻𝑙2
𝑙
)𝑑𝑥 

−𝑉𝑔
2(𝜏) (𝛼2∫ 𝐻𝑙3

𝑙

𝜙𝑗(𝑥)𝑑𝑥 + 𝛼3𝑝𝑖(𝜏)∫ 𝐻𝑙3
𝑙

𝜙𝑗(𝑥)𝜙𝑖(𝑥)𝑑𝑥
1

0

1

0

 

+𝛼4𝑝𝑖
2(𝜏)∫ 𝐻𝑙3

𝑙

𝜙𝑗(𝑥)𝜙𝑖
2(𝑥)𝑑𝑥

1

0

+ 𝛼5𝑝𝑖
3(𝜏)∫ 𝐻𝑙3

𝑙

𝜙𝑗(𝑥)𝜙𝑖
3(𝑥)𝑑𝑥

1

0

) = 0 

(38) 

where 𝛼2, 𝛼3, 𝛼4 and 𝛼5 are stated as 
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𝛼2 =
𝜀0𝑤𝑏
2𝑑2

, 𝛼3 =
𝜀0𝑤𝑏ℎ𝑏
𝑑3

, 𝛼4 =
3𝜀0𝑤𝑏ℎ𝑏

2

2𝑑4
, 𝛼5 =

2𝜀0𝑤𝑏ℎ𝑏
3

𝑑5
 (39) 

The third term of Eq. (38) can be simplified by integration by parts as follows 

∫ 𝜙𝑗(𝑥)
𝑑2

𝑑𝑥2
(𝐻(𝑥)

𝑑2𝜙𝑖(𝑥)

𝑑𝑥2
)

𝑙

0
𝑑𝑥 = 𝜙𝑗(𝑥)

𝑑

𝑑𝑥
(𝐻(𝑥)

𝑑2𝜙𝑖(𝑥)

𝑑𝑥2
)|
0

𝑙

−

∫
𝑑𝜙𝑗(𝑥)

𝑑𝑥

𝑑

𝑑𝑥
(𝐻(𝑥)

𝑑2𝜙𝑖(𝑥)

𝑑𝑥2
)𝑑𝑥

𝑙

0
 = 𝜙𝑗(𝑥)

𝑑

𝑑𝑥
(𝐻(𝑥)

𝑑2𝜙𝑖(𝑥)

𝑑𝑥2
)|
0

𝑙

−
𝑑𝜙𝑗(𝑥)

𝑑𝑥
𝐻(𝑥)

𝑑2𝜙𝑖(𝑥)

𝑑𝑥2
|
0

𝑙

+

∫
𝑑2𝜙𝑗(𝑥)

𝑑𝑥2
𝐻(𝑥)

𝑑2𝜙𝑖(𝑥)

𝑑𝑥2
𝑑𝑥

𝑙

0
  

(40) 

By applying the boundary conditions of Eq. (24), the first two terms of Eq. (40) became equal to 

zero and it may be rewritten as follows 

∫ 𝜙𝑗(𝑥)
𝑑2

𝑑𝑥2
(𝐻(𝑥)

𝑑2𝜙𝑖(𝑥)

𝑑𝑥2
)

𝑙

0

𝑑𝑥 = ∫
𝑑2𝜙𝑗(𝑥)

𝑑𝑥2
𝐻(𝑥)

𝑑2𝜙𝑖(𝑥)

𝑑𝑥2
𝑑𝑥

𝑙

0

 (41) 

Also, Eq. (42) is used to simplify the fourth term of Eq. (38) as follows 

∫𝑓(𝑥)
𝑑2

𝑑𝑥2
(𝐻𝑒𝑎𝑣𝑖𝑠𝑖𝑑𝑒(𝑥 − 𝑎))𝑑𝑥 = −

𝑑𝑓

𝑑𝑥
 (42) 

Using Eq. (42), the fourth term of Eq. (38) can be stated as follows 

𝛼1𝑉(𝜏)∫ 𝜙𝑗
𝑑2

𝑑𝑥2

1

0

(𝐻𝑙1
𝑙

−𝐻𝑙2
𝑙
)𝑑𝑥 = −𝛼1𝑉(𝜏) (

𝑑𝜙𝑗(𝑥)

𝑑𝑥
|
𝑙1
𝑙

−
𝑑𝜙𝑗(𝑥)

𝑑𝑥
|
𝑙2
𝑙

) (43) 

By incorporating Eqs. (41) and (38), Eq. (40) is obtained as follows 

𝑒𝑞𝑗 =∑(
𝑑2𝑝𝑖(𝜏)

𝑑𝜏2
∫ 𝑚(𝑥)𝜙𝑗(𝑥)𝜙𝑖(𝑥)𝑑𝑥
1

0

+ 𝐶
𝑑𝑝𝑖(𝜏)

𝑑𝜏
∫ 𝜙𝑗(𝑥)𝜙𝑖(𝑥)𝑑𝑥
1

0

𝑁

1

 

+∫
𝑑2𝜙𝑗(𝑥)

𝑑𝑥2
𝐻(𝑥)

𝑑2𝜙𝑖(𝑥)

𝑑𝑥2
𝑑𝑥

𝑙

0

) + 𝛼1𝑉(𝜏)(
𝑑𝜙𝑗(𝑥)

𝑑𝑥
|
𝑙1
𝑙

−
𝑑𝜙𝑗(𝑥)

𝑑𝑥
|
𝑙2
𝑙

) 

−𝑉𝑔
2(𝜏) (𝛼2∫ 𝐻𝑙3

𝑙

𝜙𝑗(𝑥)𝑑𝑥 + 𝛼3𝑝𝑖(𝜏)∫ 𝐻𝑙3
𝑙

𝜙𝑗(𝑥)𝜙𝑖(𝑥)𝑑𝑥
1

0

1

0

 

+𝛼4𝑝𝑖
2(𝜏)∫ 𝐻𝑙3

𝑙

𝜙𝑗(𝑥)𝜙𝑖
2(𝑥)𝑑𝑥

1

0

+ 𝛼5𝑝𝑖
3(𝜏)∫ 𝐻𝑙3

𝑙

𝜙𝑗(𝑥)𝜙𝑖
3(𝑥)𝑑𝑥

1

0

) = 0 

(44) 

By substituting Eq. (36) into Eq. (35) and multiplying the outcome by 𝜙𝑖, and integerating from 

x=0 to x=1, one obtains 

∑ (−
𝑒31ℎ𝑝𝑤𝑏ℎ𝑏

𝑙𝑇

𝑑𝜙𝑖

𝑑𝑥
|𝑙1
𝑙

𝑙2
𝑙 𝑑𝑝𝑖

𝑑𝜏
)𝑁

𝑖=1 +
∈33𝑤𝑏(𝑙2−𝑙1)

ℎ𝑝𝑇

𝑑𝑉(𝜏)

𝑑𝜏
+
𝑉(𝜏)

𝑅
= 0  (45) 

Eqs. (45) and (44) are numerically solved using Maple software simultaneously. Theses equations 

are solved by Runge-Kutta numerical method. The dynamic deflection of the system and output 

voltage of the piezoelectric layer are obtained based on time variations. The following equation is 

used to calculate the system output power 
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Table 1 System dimensions 

𝑙 𝐸𝑏  𝐸𝑝 ℎ𝑏 ℎ𝑝 𝜌𝑏 𝜌𝑝 𝑤𝑏  𝑒31 ∈33 𝑙1 𝑙2 

276 

mm 

71 

Gpa 

47.62 

Gpa 

6 

mm 

0.5 

mm 

2700 

kg/m3 

7500 

kg/m3 

25 

mm 

-16.6 

C/m2 

2.55 

F/m 

40 

mm 

116 

mm 

 

  

(a) (b) 

Fig. 5 Comparing (a) output power, and (b) time history of the present work with the outcomes of the 

previous work (Zamanian et al. 2018) 

 

 

𝑃 =
𝑉2

𝑅
 (46) 

 

 

4. Results and discussion 
    

The results presented in this section are divided into three parts. The first part deals with the 

validation of the results by a comparison with the previous work assuming the absence of the cavity. 

The second part indicates that harvested energy increases when the configuration includes a cavity. 

The third part presents a more detailed study of the effects of the cavity position and geometry on 

the energy efficiency and energy harvesting. The system dimensions are presented in Table 1.  

Considering the absence of the cavity and using the same characteristics as the previous work 

(Zamanian et al. 2018), the results are compared together. As shown in Fig. 5(a) and 5(b), there is a 

good agreement between the present work and the previous work (Zamanian et al. 2018). It indicates 

the accuracy of the calculations of the present work. In Fig. 5 the initial condition of the beam is 

assumed in discharging position i.e., the beam is initially attached to the electrode layer. As can be 

seen in this diagram, by starting the vibration of the system the electrostatic force causes that 

systems oscillates around a new position in each cycle. It demonstrates that the new position in each 

cycle increases by increasing time, and the amplitude of the vibration decreases. By more increase 

of the time the electrostatic force overcomes the beam stiffness, and the system will be unstable. In 

means that the beam suddenly moves toward the electrode layer, and pull-in occurs. In other words  
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(a) 

  
(b) (c) 

Fig. 6 Comparing (a) voltage, (b) output power, and (c) time history of the system oscillations with and 

without cavity 

 

 

due to the presence of the electrostatic force, the vibration equilibrium position moved away from 

straight position, and each time the beam is vibrated around a new position that is far from straight 

position and is closer to the radioisotope electrode. As shown in figures, pull-in phenomenon occurs 

when the slope of the curve approaches toward the infinity. 

Figs. 6(a) and 6(c) compare the systems in two cases. The first case assumed the system with 

cavity and the second case considers it without cavity. The physical characteristics of the two 

systems were the same and the only difference was the presence of a cavity with the height of about 

two thirds of the beam thickness and close to the upper surface of the beam. It shows that the voltage 

and power harvesting significantly increases in the presence of the cavity. It must be noted that the  
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(a) (b) 

 
(c) 

Fig. 7 Variation of (a) maximum voltage, (b) maximum power and (c) neutral axis, for different values 

of cavity thickness (h2) 

 

 

earlier occurrence of the pull-in phenomenon in the beam with cavity is due to the lower equivalent 

stiffness of the beam. In the present work, the maximum voltage (Vmax) is 3.13, which has been 

increased by 19.4% compared to the system without cavity, in which the maximum voltage was 

2.62. Also, the output power (Pmax) is obtained as 20.23 µW in the present work, which has been 

increased by 42.1% compared to the system without cavity, in which the output power was 14.23 

µW. 

In this section, diagrams of maximum voltage and output power are presented in terms of beam 

geometry changes. Figs. 7(a) and 7(b) illustrate the variations of maximum output voltage and 

electrical power by increasing the cavity thickness. It shows that the output voltage and electrical 

power increases by increasing the cavity thickness, such that they reaches the maximum level, and 

then their values decreases. The maximum value of these parameters occurs when the thickness of 

cavity is approximately equal to 3 mm. The reason for such changes can be attributed to the changes 

of the position of bending neutral axis shown in Fig. 7(c). As can be observed, the amount of 𝑧𝑛  
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(a) (b) 

 
(c) 

Fig. 8 Variation of (a) maximum voltage, (b) maximum power and (c) neutral axis, for different values 

of cavity position (h3) 

 

 

has its maximum value when the cavity thickness is approximately equal to 3 mm. It means that in 

this condition the piezoelectric layer is at the greatest distance from the neutral surface. In the beams 

under bending, the axial stress increases by moving away from the neutral surface. Therefore, the 

stress and strain of the piezoelectric layer will be maximum in this case. According to Eq. (29), 

increasing the strain of the piezoelectric material causes an increase of the electric displacement and 

consequently the electrical output voltage.  

Figs. 8(a) and 8(b) indicate the effect of cavity distance from the upper surface of the beam (ℎ3) 

on the maximum output voltage and electrical power. This figure shows that the maximum output 

voltage and electrical power decreases when the cavity moved away from the top of the beam and 

approached the middle of the beam i.e., when the amount of ℎ3  increases. The reason of this 

behavior is that according to Fig. 8(c), the amount of 𝑧𝑛 decreases by increasing the amount of 

ℎ3. It means that neutral axis moved upwards by increasing the distance of the cavity from the top 

of the beam. In other words, the neutral axis will be closer to the piezoelectric layer. The result of  
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Fig. 9 Variations of the electrical power with respect to the variations of electrical resistance 

 

 

Fig. 10 Variations of the maximum output electrical power with respect to the rate of capacitor charging (k) 

 

 

these changes, for the same reason as stated in the previous paragraph, led to a reduction in maximum 

voltage and output electrical power. Considering both geometric changes of the cavity, i.e., 

increasing its thickness as well as its distance from the upper surface of the beam, it is found that a 

cavity with thickness equal to 3 mm and distance from the upper surface of the beam equal to 0.5 

mm could provide the highest rate of power harvesting. 

It must be noted that a parameter that is important for the design of a harvester energy is its life 

span. Absolutely creating a cavity along the lengths of the beam decreases the life span of system.  

However the relation between the size of the cavity and life span of the system has not been studied 

in this paper, and it may be studied in future works. Certainly there is an optimum dimension for the 

cavity to obtain a good performance and also a long span life.  

Fig. 9 shows the effect of electrical resistance on the maximum output electrical power of the 

system. It demonstrates that the maximum electrical output power increases and then decreases by 

an increase of electrical resistance of the piezoelectric layer. Fig. 9 illustrates that the maximum 

power of 16.821 (mW) is obtained when the electrical resistance is approximately 40 kΩ. 
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Fig. 11 Variations of the output electrical power with respect to the rate of capacitor 

charging (k) during 2000 sec 

 

 

Fig. 10 shows the effect of voltage charge rate by the radioactive material on the maximum 

harvested electrical power. As mentioned earlier, the charge of a capacitor consisting of a beam and 

radioisotope is almost linear. Therefore it is assumed that the voltage difference between the beam 

and opposite electrode layer is vg=kt. Fig. 10 states that the amount of k has a little effect on the 

maximum output power, and its values remains constant approximately equal to 16.81. However, 

the important point is that the pull-in phenomenon occurs faster when k is larger, so more energy 

could be harvested over a specific period of time. For example, the pull-in phenomena occurs 42 

times for a system with 𝑉𝑔 = 50 t during 2000 second. In this period of time the harvested energy 

will be approximately equal to 9J. When 𝑉𝑔 = 5 t the pull-in phenomena happens only once, and 

therefore the total harvested energy will 520 mJ. It means that according Fig. 11 more energy could 

be harvested for a system with higher value of k in the same period of time. It should be noted that 

if the pull-in period is greatly reduced, the beam would not have a chance to vibrate and the total 

harvested energy would be decreased. 

As mentioned earlier, the maximum power is not the only criterion for energy harvesting, but the 

number of times the system experiences pull-in phenomenon is also important. Although this issue 

can be changed by radioisotopes, these materials also have some limitations and cannot create any 

charge rate. Therefore, changing the system dimensions is the best solution. It is necessary to 

investigate the effect of the cavity position and thickness on the period required for pull-in 

phenomenon. 

Fig. 12 indicate the system time history diagrams considering changes in the cavity geometry. 

Comparing Fig. 12(a) with 12(b) reveals that the pull-in phenomenon occurs earlier by increasing 

the cavity thickness (h2) from 2 mm to 3 mm. Also, comparing Fig. 12(a) with 12(c) indicates that 

the pull-in phenomenon occurs later by increasing the cavity distance from the upper surface of the 

beam, i.e., changing h3 from 0.5 mm to 1 mm.  

 
 
5. Conclusions 
 

In this work the energy harvesting by a piezoelectric layer from the oscillations of a cavited  
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(a) 

  
(b) (c) 

Fig. 12 Time history of the system for (a) h2=2 mm (b) Vg=10 t, h3=0.5 mm, h2=3 mm, h3=0.5 mm (c) Vg=10 

t, h2=2 mm, h3=1 mm, Vg=10 t 

 

 

beam has been modelled and analyzed. It has been assumed that the beam is under electrostatic 

actuation due to the emitting electrons by a radioisotope electrode layer at the opposite side of the 

beam. When the electrostatic force overcomes to the bending resistance of system, the beam moves 

toward the electrode layer, and strikes to the radioisotope material. After discharging the beam is 

released and oscillation of the beam is started. The piezoelectric layer converts the released 

microbeam vibration into electricity. The equation of motion has been obtained using Hamilton’s 

principle. The differential equation governed on the piezoelectric output voltage coupled to the 

motion equation of the beam has been obtained employing Gauss’s law. The system equations has 

been discretized by Galerkin method, and then solved using Runge-Kutta numerical method. The 

effect of cavity thickness and its position on the output electrical voltage have been investigated. 

The results demonstrated that the maximum output voltage and electrical power may be increased 

by creating a cavity along the length of the beam. The results indicated that the maximum output 
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voltage and electrical power increases to a special value and then decreases by increasing the cavity 

thickness. In other words, there is an optimal thickness for cavity to generate the maximum output 

power. The results also showed that the maximum output voltage and electrical power decreases by 

increasing the cavity distance from the upper surface of the beam. The effect of the electrical 

resistance of piezoelectric layer on the output electrical power was also investigated. It has been 

shown that the maximum electrical output power increases and then decreases by an increase of the 

electrical resistance of the piezoelectric layer. The result showed that the rate of emitting electrode 

by radioisotopes layer had no effect on the maximum output power; but it has a significant effect on 

the total harvested electrical power during a period of time.  
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Appendix A 
 

Expressions including damping and voltage in Eq. (23) are excluded; therefore the free vibration 

equation of system will be as below 

 

(A.1) 

The free vibration response of system is assumed as below 

𝑣( 𝑥, 𝜏) = 𝜑𝑖(𝑥)𝑒
𝑖𝜔𝜏 (A.2) 

Where 𝜑(𝑥) is the mode shape of system, and 𝜔 is the natural frequency. By substituting Eq. 

(A-2) into Eq. (A-1) one obtains 

−𝜔2𝑚(𝑥)𝜑(𝑥) +
𝑑2

𝑑𝑥2
(𝐻(𝑥)

𝑑2𝜑

𝑑𝑥2
) = 0 (A.3) 

 To solve the above equation, the system is divided into three parts as 

{
 
 
 

 
 
 −𝜔2𝜑(𝑥) +

𝑑4𝜑(𝑥)

𝑑𝑥4
= 0 ,                                                              0 ≤ 𝑥 <

𝑙1
𝑙
,

−(1 +
𝜌𝑝ℎ𝑝 − 𝜌𝑏ℎ𝑏

𝜌𝑏ℎ𝑏

)𝜔2𝜑(𝑥) + (
𝐼2𝑏
𝐼1𝑏

+
𝐼3𝑏
𝐼1𝑏

+
𝐸𝑝𝐼𝑝

𝐸𝑏𝐼𝑏
)
𝑑4𝜑(𝑥)

𝑑𝑥4
= 0,   

𝑙1
𝑙
< 𝑥 <

𝑙2
𝑙
,  

−𝜔2𝜑(𝑥) +
𝑑4𝜑(𝑥)

𝑑𝑥4
= 0                                                                 

𝑙2
𝑙
< 𝑥 ≤ 1

 (A.4) 

By solving the above equation, 𝜑(𝑥) is obtained in three parts as follows 

{
 
 

 
 𝜑(𝑥) = 𝐶1 𝑐𝑜𝑠ℎ(𝛽1𝑥) + 𝐶2 𝑠𝑖𝑛ℎ(𝛽1𝑥) + 𝐶3 𝑐𝑜𝑠(𝛽1𝑥) + 𝐶4 𝑠𝑖𝑛(𝛽1𝑥) , 0 ≤ 𝑥 <

𝑙1
𝑙
,

𝜑(𝑥) = 𝐶5 𝑐𝑜𝑠ℎ(𝛽2𝑥) + 𝐶6 𝑠𝑖𝑛ℎ(𝛽2𝑥) + 𝐶7 𝑐𝑜𝑠(𝛽2𝑥) + 𝐶8 𝑠𝑖𝑛(𝛽2𝑥) ,
𝑙1
𝑙
< 𝑥 <

𝑙2
𝑙
,

𝜑(𝑥) = 𝐶9 𝑐𝑜𝑠ℎ(𝛽1𝑥) + 𝐶10 𝑠𝑖𝑛ℎ(𝛽1𝑥) + 𝐶11 𝑐𝑜𝑠(𝛽1𝑥) + 𝐶12 𝑠𝑖𝑛(𝛽1𝑥) ,
𝑙2
𝑙
< 𝑥 ≤ 1

 (A.5) 

where 𝐶𝑖 are constant coefficients that are calculated from boundary and continuity conditions  due 

to equality the amount of shear force and moment at the stepped cross section, i.e. 

𝜑|𝑥=0 = 0,  
𝑑𝜑

𝑑𝑥
|
𝑥=0

= 0,  
𝑑2𝜑

𝑑𝑥2
|
𝑥=1

= 0,  
𝑑3𝜑

𝑑𝑥3
|
𝑥=1

= 0 

𝜑|𝑥 = 𝑙1/𝑙 = 𝜑|𝑥 = 𝑙1/𝑙,
𝑑𝜑

𝑑𝑥
|𝑥 = 𝑙1/𝑙 =

𝑑𝜑

𝑑𝑥
|𝑥 = 𝑙1/𝑙,    

𝑑2𝜑

𝑑𝑥2
|𝑥 = 𝑙1/𝑙 = (

𝐼2𝑏
𝐼1𝑏

+
𝐼3𝑏
𝐼1𝑏

+
𝐸𝑝𝐼𝑝
𝐸𝑏𝐼𝑏

)
𝑑2𝜑

𝑑𝑥2
|𝑥 = 𝑙1/𝑙, 

𝑑3𝜑

𝑑𝑥3
|𝑥 = 𝑙1/𝑙 = (

𝐼2𝑏
𝐼1𝑏

+
𝐼3𝑏
𝐼1𝑏

+
𝐸𝑝𝐼𝑝
𝐸𝑏𝐼𝑏

)
𝑑3𝜑

𝑑𝑥3
|𝑥 = 𝑙1/𝑙, 
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𝛽1 = √𝜔 ,                 𝛽2 = (
(1+

𝜌𝑝ℎ𝑝−𝜌𝑏ℎ2

𝜌𝑏ℎ𝑏
)

(
𝐼2𝑏
𝐼1𝑏

+
𝐼3𝑏
𝐼1𝑏

+
𝐸𝑝𝐼𝑝

𝐸𝑏𝐼𝑏
)
𝜔2)

1

4

  (A.6) 

Three mode shapes of system calculated according to the above approach have been shown in 

the following figure. 

 

Three mode shapes of system where ℎ2=2 mm and ℎ3=0.5 mm 
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