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Abstract.  A delamination analysis of a multilayered inhomogeneous beam structure under linear creep is 
developed. A viscoelastic model that consists of an arbitrary number of linear springs and linear dashpots is used. The 
cross-section of the beam is a circle. The beam is made of concentric longitudinal layers. Each layer is continuously 
inhomogeneous in thickness and length directions. Therefore, the shear moduli and the coefficients of viscosity of the 
viscoelastic model are distributed continuously along the thickness and length of each layer. Two concentric 
delamination cracks are located arbitrary between layers. The beam is loaded in torsion. Time-dependent solutions to 
the strain energy release rate for the two delaminations are derived by using the time-dependent strain energy in the 
beam. The strain energy release rates are derived also by the compliance method for verification. The variation of the 
strain energy release rate with time due to creep is evaluated. The effects of material inhomogeneity, external loading 
and delamination length on the strain energy release rate are investigated. 
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1. Introduction 
 

The continuously inhomogeneous structural materials have drawn the attention of both 

practicing engineers and researchers during the last decades. These materials exhibit continuous 

(smooth) change of their properties along one or more directions in the solid (Tokovyy and Ma 

2017, Tokovyy and Ma 2019, Tokovyy 2019). Therefore, the material properties are smooth 

functions of the coordinates. It should be noted that the strong interest to continuously 

inhomogeneous structural materials is conditioned by the wide entering of functionally graded 

materials in various areas of up-to-date engineering. Functionally graded materials represent a new 

kind of continuously inhomogeneous composites made by continuously mixing of two or more 

constituent materials (Akbaş 2017, 2018, 2019, Gasik 2010, Hedia et al. 2014, Hirai and Chen 

1999, Mahamood and Akinlabi 2017, Miyamoto et al. 1999, Nemat-Allal et al. 2011, Uslu Uysal 

and Kremzer 2015, Uslu Uysal 2016, Uslu Uysal and Güven 2015, Vishesh Kar et al. 2016). One 

of the basic advantages of functionally graded materials in comparison with the conventional 

homogeneous structural materials is the fact that the former permit controlled tailoring of their 

microstructure and composition during the manufacturing with aim of obtaining of maximum 
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benefits from their continuous inhomogeneity. That is why the functionally graded materials are 

frequently used in critical structural applications in aeronautics, nuclear reactors, automotive 

industry and power plants.         

The structural integrity and safety of continuously inhomogeneous (functionally graded) 

materials depend in a high degree on their fracture behavior (Dolgov 2005, 2016, Uslu Uysal and 

Güven 2016). Therefore, analyzing of various crack problems in continuously inhomogeneous 

structural members and components can aid significantly in the design and use of these novel 

composite materials especially in load-bearing structural applications. One of the specific 

disadvantages of multilayered inhomogeneous structures is the high risk of delamination fracture. 

Delamination crack problems in various beam configurations loaded in bending have been 

analyzed in (Hutchinson and Suo 1992). Solutions of the strain energy release rate have been 

derived assuming linear-elastic behavior of the materials. The beams considered in (Hutchinson 

and Suo 1992) have rectangular cross-section. However, multilayered beam structures of circular 

cross-section under torsion are also used in various load-bearing applications. Besides, these 

structures very often are subjected to constant external loadings for a long time. In such cases, the 

structures usually exhibit creep behavior. Therefore, delamination analyses of multilayered 

inhomogeneous beams of circular cross-section exhibiting creep under torsion have to be 

developed too.    

The purpose of the present paper is to analyze the strain energy release rate for two concentric 

delamination cracks in a multilayered inhomogeneous beam of circular cross-section that exhibits 

linear creep behavior (the paper is motivated by the fact that previous analyses do not consider the 

effect of creep (Rizov 2017, 2018a, b, 2019a, b, 2020, Rizov and Altenbach 2020)). The beam is 

under torsion. The creep is treated by using a viscoelastic constitutive model consisting of an 

arbitrary number of linear springs and dashpots. The strain energy release rate is derived by using 

the time-dependent strain energy density. The strain energy release rate is obtained also by 

applying the compliance method. The results yielded by the two solutions are identical. The main 

benefit of the present work is that solutions of the strain energy release rate which account for the 

creep in a multilayered inhomogeneous beam with two delaminations under torsion are derived. 

The solutions are suitable for parametric studies. Also, the solutions can be applied to check for 

crack growth. The change of the strain energy release rate with the time due to the creep behavior 

is examined by using the solutions. The influence of material inhomogeneity, delamination lengths 

and the number of springs and dashpots in the model on the strain energy release rate is studied.            

 

 
2. Strain energy release rate in viscoelastic multilayered inhomogeneous beam 
subjected to torsion 
 

The beam shown in Fig. 1 is under consideration. The cross-section of the beam is a circle of 

radius, R3. The beam is clamped in its right-hand end. The length of the beam is l. The beam is 

made of adhesively bonded concentric longitudinal layers which have different thicknesses and 

material properties. Two concentric delamination cracks are located arbitrary between layers as 

shown in Fig. 1. The lengths of the internal and external cracks are a1 and a2, respectively. The two 

cracks represent circular cylindrical surfaces of radiuses, R1 and R2. The crack fronts of the 

external and internal cracks are located in sections, H2 and H3, respectively. In portion, H1H2, the 

beam is divided by the two cracks in internal, interstitial and external parts. The internal part has a 

circular cross-section of radius, R1. The interstitial and external parts of the beam have ring-shaped  
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Delamination analysis of multilayered beams exhibiting creep under torsion 

 

Fig. 1 Geometry and loading of a multilayered inhomogeneous cantilever beam with two circular 

cylindrical delaminations 

 

 

cross-sections. The internal and external radiuses of the cross-section of the interstitial part are R1 

and R2, respectively. The radiuses of the cross-section of the external part are R2 and R3, 

respectively. In portion, H2H3, the internal crack divides the beam in internal and external parts. 

The cross-section of the internal part is a circle of radius, R1. The external part has a ring-shaped 

cross-section of internal and external radiuses, R2 and R3, respectively. The beam is loaded by a 

torsion moment, T, applied at the free end of the external part of the beam (Fig. 1). The internal 

and interstitial parts of the beam in portion, H1H2, and the internal part in portion, H2H3, are free of 

stresses.  

The material in each layer of the beam exhibits linear creep behavior that is treated by using the 

generalized Kelvin viscoelastic model depicted in Fig. 2. The model consists of n linear dashpots 

and n+1 linear springs connected as shown in Fig. 2. Under constant applied shear stress, for the 

model in Fig. 2, the stress-strain-time relationship in the j-th layer of the beam is written as 
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                                   mj ...,2,1= .                              (3) 

In the above formulae, γ is the shear strain, τj is the shear stress in the layer, Gji is the shear 

modulus of the i-th spring, ηji is the coefficient of viscosity of the i-th dashpot, t is time, m is the 

number of layers.  

Each layer of the beam is made of material that is continuously inhomogeneous in both 

thickness and length directions. Therefore, the shear moduli and the coefficients of viscosity vary 

continuously along the thickness and length of the layer.  

The following exponential laws are applied to describe the variation of the shear moduli and  
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Fig. 2 Linear viscoelastic model 

 

 

the coefficient of viscosity in the thickness direction of the j-th layer  
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where  
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In formulae (4)-(7), Gj0, Gji0 and ηji0 are, respectively, the values of Gj, Gji and ηji at the internal 

surface of the layer, pj, qji and gji are parameters which control the distribution of Gj, Gji and ηji in 

the thickness direction, Rj-1 and Rj are the radiuses of the internal and external surfaces of the layer, 

respectively.    

The distributions of Gj0, Gji0 and ηji0 along the length of the beam are written as 
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where 
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In formulae (10)-(12), Gj0F, Gji0F and ηji0F are, respectively, the values of Gj0, Gji0 and ηji0 at the  
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Delamination analysis of multilayered beams exhibiting creep under torsion 

 

Fig. 3 Multilayered inhomogeneous cantilever in which the external delamination is longer than the 

internal one 

 

 

free end of the beam, fj, bji and hji are parameters which control the distribution of Gj0, Gji0 and ηji0 

in the length direction, x is the longitudinal centroidal axis of the beam (Fig. 1).  

The delamination is analyzed in terms of the strain energy release rate. For this purpose, first, a 

time-dependent solution to the strain energy release rate, Ga1, is derived assuming an elementary 

increase, da1, of the internal crack. The strain energy release rate is written as 

                                
1121 daR

dU
Ga


= ,                               (16) 

where U is the time-dependent strain energy in the beam. Since the internal and interstitial parts of 

the beam in portion, H1H2, and the internal part in portion, H2H3, are free of stresses, the time-

dependent strain energy is expressed as 

                              321 UUUU ++= ,                             (17) 

where U1, U2 and U3 are, respectively, the strain energies cumulated in the external parts of 

portions, H1H2 and H2H3, of the beam and in the un-cracked beam potion, H3H4. 

The strain energy in the external part of beam portion, H1H2, is obtained as  
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where m1 is the number of layers in external part of the beam portion, H1H2, uo1j is the time-

dependent strain energy density in the j-th layer. The following formula is used to calculate uo1j 

                                 jju
2

1
01 = .                                (19)  

The distribution of the shear strain is treated by applying the Bernoulli’s hypothesis for plane 

sections sine beams of high length to diameter ratio are considered in the present paper. Thus, the  

321



 

 

 

 

 

 

Victor I. Rizov 

 

Fig. 4 The strain energy release rate in non-dimensional form plotted against the non-dimensional 

time (curve 1-for the internal delamination, curve 2-for the external delaminsation) 

 

 

distribution of γ in radial direction of the external part of portion, H1H2, of the beam is written as 

                         R
R

E

3
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where  

                      32 RRR  .                              (21) 

In formula (20), γE is the shear strain at the surface of the beam. The following equation for 

equilibrium of the elementary forces in the cross-section of the external part of beam portion, 

H1H2, is used to determine γE 
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From (1), it follows that 
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By combining of (20) and (23), one derives 
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Fig. 5 The strain energy release rate in non-dimensional form plotted against q61 (curve 1-at 

g61=0.5, curve 2-at g61=0.7 and curve 3-at g61=0.9) 

 

 

where  

                               jj RRR −1 .                               (25) 

After substituting of (24) in (22), the equation for equilibrium is solved with respect to γE at 

various values of time by using the MatLab. 

The time-dependent strain energy cumulated in the external part of portion, H2H3, of the beam 

is written as 
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where m2 is the number of layers in the external part of beam portion, H2H3, u02j is the time-

dependent strain energy density that is obtained by replacing of γ with γI in formula (19). The 

distribution of γI is found by replacing of γE with γEI in (20). The shear strain, γEI, at the surface of 

the beam in portion, H2H3, is found by equation (22). For this purpose, m1 and τj are replaced, 

respectively, with m2 and τjI where τjI is the shear stress. The shear strain, γE, is replaced with γEI in 

(24) to find τjI.  

The time-dependent strain energy in the un-cracked beam portion is found as   
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where the strain energy density, u03j, is obtained by replacing of γ with γII in (19). Formula (20) is 

used to obtain γII by replacing of γE with γEII. Eq. (22) is applied to determine the shear strain, γEII, 

at the surface of the beam in the un-cracked portion. For this purpose, m1 and τj are replaced with 

m and τjII, respectively. The shear stress, τjII, is found by replacing of γE with γEII in (24).  
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Fig. 6 The strain energy release rate in non-dimensional form plotted against b61 (curve 1-at 

h61=0.4, curve 2-at h61=0.6 and curve 3-at h61=0.8) 

 

 

By substituting of (18), (26) and (27) in (17) and then in (16), one obtains the following time-

dependent solution to the strain energy release rate 
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where the strain energy densities are found at x=a1. The integration in (28) is carried-out by using 

the MatLab computer program. Solution (28) is applied to calculate the strain energy release rate 

at various values of time. In this way, the variation of the strain energy release rate with time due 

to the creep can be evaluated.    

The strain energy release rate is derived also by applying the compliance method. According to 

this method, the strain energy release rate can be written as 
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where lcrf1 is the front length of the internal crack, C is the compliance. The front length of the 

internal crack is found as  

                                 11 2 Rlcrf = .                                (30) 

By substituting of (30) in (29), one obtains 
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The compliance is expressed as 

                                 
T

C


= ,                                 (32) 
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Fig. 7 The strain energy release rate in non-dimensional form plotted against p6 (curve 1-at 

a2/l=0.3, curve 2-at a2/l=0.5 and curve 3-at a2/l=0.7) 

 

 

where φ is the angle of twist of the free end of the external part of beam portion, H1H2. This angle 

is obtained by applying the integrals of Maxwell-Mohr. The result is   
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By combining of (31), (32) and (33), one derives the following solution to the strain energy 

release rate 
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where γEI and γEII are obtained at x=a1. It should be mentioned that the strain energy release rate 

found by (34) is exact match of that calculated by applying (28). This fact proves the correctness 

of the analysis of the strain energy release rate.  

A time-dependent solution to the strain energy release rate is found also at increase of the 

external crack. For this purpose, (16) is re-written as    
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By substituting of (18), (26) and (27) in (35), one derives 
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where the strain energy densities are obtained at x=a2. The MatLab computer program is applied to 

perform the integration in (36).  
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Fig. 8 The strain energy release rate in non-dimensional form plotted against f6 (curve 1-at T=4 

Nm, curve 2-at T=5 Nm) 

 

 

The strain energy, Ga2, is found also by using the compliance method. Expression (31) is re-

written as   

                            22
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By substituting of (32) and (33) in (37), one obtains 
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where γE and γEI are determined at x=a2. The fact that the strain energy release rate calculated by 

using (38) is exact match of that found by (36) proves the correctness of the analysis of the strain 

energy release rate developed at increase of the external delamination crack.   

The strain energy release rate is derived also for beam configuration in which the external 

delamination crack is longer than the internal one (Fig. 3). In this configuration, the fronts of the 

internal and external cracks are located in beam cross-sections, H2 and H3, respectively. It is 

obvious that the internal and interstitial parts of the beam in portion, H1H2, and the internal part of 

beam portion, H2H3, are free of stresses (Fig. 3). Therefore, the time-dependent strain energy 

cumulated in the beam is obtained as 
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where the time-dependent strain energy density, u01j, is found by applying formula (24). In order to 

calculate u03j, γE is replaced with γEII in (24).  

First, the strain energy release rate is derived assuming increase of the internal delamination 
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crack. For this purpose, (39) is substituted in (16). The result is Ga1=0. This finding is attributed to 

the fact that the front of internal crack is located in zone that is free of stresses (internal and 

interstitial parts of beam portion, H1H2, and the internal part of the beam portion, H2H3, are free of 

stresses (Fig. 3)).  

The strain energy release rate, Ga1, is found also by using the compliance method. The angle of 

twist of the free end of external part of the beam that is needed to calculate the strain energy 

release rate by (31) is obtained by applying the integrals of Maxwell-Mohr        
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By substituting of (40) in (31), one obtains Ga1=0. 

Formula (35) is applied to derive the strain energy release rate at increase of the external crack 

for the beam shown in Fig. 3. By combining of (35) and (39), one obtains 
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where the strain energy densities are determined at x=a2. The integration in (41) is performed by 

the MatLab computer program. Solution (41) can be used to calculate the strain energy release rate 

at various values of time. 

The compliance method is also applied to obtain Ga2. For this purpose, by substituting of (40) 

in (37), one derives 

                            
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where γE and γEII are found at x=a2. It should be mentioned that the strain energy release rate 

obtained by (42) is exact match of that determined by (41) which proves the correctness of the 

analysis.                     

 
 
3. Parametric study 
 

A parametric study of the delamination is performed in this section of the paper. For this 

purpose, calculations of the strain energy release rate are carried-out by applying the time-

dependent solutions to the strain energy release rate derived in the previous section. The strain 

energy release rate is expressed in non-dimensional form by using the formula GN=G/(G10FR3). The 

purpose of the parametric study is to evaluate the variation of the strain energy release rate with 

time due to the creep behavior of the multilayered inhomogeneous beam under torsion. The effects 

of material inhomogeneity, the lengths of the two delamination cracks and the external loading on 

the strain energy release rate are evaluated too. It is assumed that l=0.250 m, R3=0.006 m, T=5 

Nm, m1=2, m2=4, m=6, n=3 (i.e., the viscoelastic model used consists of 3 dashpots and 4 springs), 

pj=0.6, qji=0.7, gji=0.8, fj=0.5, bji=0.7 and hji=0.8 where j=1,2,…6, i=1,2,3. The thickness of each 

layer is 0.001 m.  
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Fig. 9 The strain energy release rate in non-dimensional form plotted against q62 (curve 1- for the 

beam configuration with shorter external delamination (Fig. 1), curve 2 - for the beam 

configuration with longer external delamination (Fig. 2) 

 

 

First, the variation of the strain energy release rate with time is investigated for the beam 

configuration in which the internal crack is longer than the external one (Fig. 1). For this purpose, 

calculations of the strain energy release rate are carried-out at various values of time by using 

solutions (28) and (36). The results obtained are illustrated in Fig. 4 where the strain energy release 

rate in non-dimensional form is plotted against the non-dimensional time. The time is presented in 

non-dimensional form by using the formula tN=tG10F/η110F. One can observe in Fig. 4 that the strain 

energy release rate increases with time (this is due to the creep behavior). It can also be observed 

in Fig. 4 that the strain energy release rate for the external delamination crack is higher than that 

for the internal crack. It should be mentioned that the strain energy release rate at tN=0 is due to the 

instantaneous linear-elastic strain that is modeled by the spring whit shear modulus Gj (Fig. 1).     

The effect of the material inhomogeneity in the thickness direction is analyzed. For this 

purpose, calculations of the strain energy release rate are performed at various values of q61 and g61 

by using the solution to the strain energy release rate derived at increase of the external crack in 

the beam configuration shown in Fig. 1. The strain energy release rate in non-dimensional form is 

plotted against q61 in Fig. 5 at three values of g61. It is evident from Fig. 5 that the strain energy 

release rate decreases with increasing of q61. One can observe in Fig. 5 that the increase of g61 leads 

also to decrease of the strain energy release rate.    

The effect of the material inhomogeneity in the length direction is analyzed too. The solution to 

the strain energy release rate derived at increase of the external delamnation in the beam in Fig. 1 

is used to carry-out calculations at various values of b61 and h61. The calculated strain energy 

release rate is plotted in non-dimensional form against b61 in Fig. 6 at three values of h61. The 

curves in Fig. 6 indicate that the strain energy release rate decreases with increasing of b61. The 

increase of material property, h61, leads also to decrease of the strain energy release rate (Fig. 6).    

The influence of the delamination length is investigated. Calculations of the strain energy  
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Fig. 10 The strain energy release rate in non-dimensional form plotted against g62 (curve 1-at n=3, 

curve 2-at n=4) 

 

 

release rate are carried-out by applying the solution obtained at increase of the external 

delamination crack in the multilayered beam configuration shown in Fig. 1. The strain energy 

release rate in non-dimensional form is plotted against p6 in Fig. 7 at three a2/l ratios. The curves in 

Fig. 7 show that the strain energy release rate decreases with increasing of a2/l ratio (this behavior 

is due to the increase of the values of shear moduli and the coefficients of viscosity in the beam 

cross-sections in which the front of the external delamination crack is located). It can also be 

observed in Fig. 7 that the strain energy release rate decreases with increasing of p6.   

The influence of the torsion moment is studied. The solution to the strain energy release rate 

obtained at increase of the external delamination crack in the beam in Fig. 1 is used to perform 

calculations at various values of the torsion moment and the material property, f6. The strain energy 

release rate in non-dimensional form is plotted against f6 in Fig. 8 at two values of the torsion 

moment. One can observe that the strain energy release rate increases with increasing of the 

torsion moment (Fig. 8). The curves in Fig. 8 indicate that the strain energy release rate decreases 

with increasing of f6.  

It is important to compare the strain energy release rates in the beam configurations shown in 

Fig. 1 and Fig. 3. For this purpose, the strain energy release rate calculated by using the solutions 

derived at increase of the external crack in the two beam configurations are plotted in non-

dimensional form against q62 in Fig. 9.  

One can observe in Fig. 9 that the strain energy release rate for the beam configuration with 

shorter external crack (Fig. 1) is higher than that for the beam with longer external crack (Fig. 3).   

The strain energy release rate is analyzed also by using a viscoelastic model consisting of 5 

springs and 4 dashpots (i.e., n=4). In order to evaluate the influence of the number of springs and 

dashpots in the model used, the strain energy release rate in non-dimensional form is plotted 

against g62 in Fig. 10 for both n=3 and n=4. It is evident from Fig. 10 that the strain energy release 

rate obtained by using the viscoelastic model with 5 springs and 4 dashpots is higher than that 

found by the model with 4 springs and 3 dashpots (this finding is attributed to increase of the 

strains). 
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4. Conclusions 
 

Multilayered inhomogeneous cantilever beam of circular cross-section with two delaminations 

exhibiting linear creep behavior under a torsion moment is analyzed. Time-dependent solutions of 

the strain energy release rate which take into account the creep behavior are derived for both 

delaminations. The solutions are verified by the compliance method. The solutions are applied to 

analyze the strain energy release rate. It is found that the strain energy release rate increases with 

time as a result of creep. The analysis reveals that the strain energy release rate for the external 

delamination is higher than that for the internal delamination. The study indicates that the strain 

energy release rate decreases with increasing of q61, g61, q62, p6 and g62 (the material properties, q61, 

g61, q62, p6 and g62, control the distributions of the coefficients of viscosity and the shear moduli 

along the thickness). It is found also that the increase of material properties, b61, h61 and f6, leads to 

decrease of the strain energy release rate. Concerning the effect of delamination length, the 

calculations show that the strain energy release rate decreases with increasing of a2/l ratio. The 

analysis indicates that the strain energy release rate for the beam configuration with shorter 

external delamination is higher than that for the beam configuration with longer external 

delamination. The effect of the number of dashpots and springs in the linear creep model on the 

strain energy release rate is analyzed too. It is found that the strain energy release rate increases 

with increasing of the number of dashpots and springs in the model.     
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