
 

 

 

 

 

 

 

Coupled Systems Mechanics, Vol. 10, No. 4 (2021) 281-298 

https://doi.org/10.12989/csm.2021.10.4.281                                                                                                   281 

Copyright © 2021 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=csm&subpage=8                ISSN: 2234-2184 (Print), 2234-2192 (Online) 
 
 
 

 

 
 
 

Dynamic response analysis of a foam-based nanoscale plate 
based on finite strip method 

 

Zahra Sadeghi 

 
Engineering Department, Respina Lubricant Supply Company, Tehran, Iran 

 
(Received December 19, 2019, Revised June 2, 2020, Accepted May 11, 2021) 

 
Abstract.  The present article deals with a dynamic response analysis of a foam-based nanoscale plate based on finite 
strip method (FSM). The nanoscale plate formulation has been adopted based upon a higher order plate theory and 
then, a higher order finite strip has been used to solve the problem. The considered finite strip is capable of considering 
the bending displacement and also shear deformation effects. The foam-based material has been treated as a porous 
material with some particular pore distribution. The non-uniformity of strain field as well as the nonlocality of stress 
field have been incorporated with the usage of nonlocal strain gradient elasticity. It is clearly showen that the proposed 
solution based on finite strip method can accurately simulate the dynamic response of considered plate under external 
forces. The scale factors due to small size of the plate and foam-based material will show a remarkable impact on the 
dynamic response. 
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1. Introduction 
 

Foams are in the category of smart and porous materials with low weight due to possessing 

different variations of porosities in them. Applying electric field to piezoelectric material structures 

yields elastic deformations and changed vibrational properties. The variation of porosities in this 

material causes a significant difference between metal foams and other perfect metals. In a non-

perfect metal, the material characteristics are notably influenced by pore variations. Also, this 

variation in pores can affect the vibration frequencies of engineering structures made of metal foams. 

This issue can be understood from the works done by Chen et al. (2015, 2016). Different from metal 

foams, there are also functionally graded (FG) or ceramic-metal materials in which pore variation 

effect is very important (Ahmed et al. 2020a, b, Fenjan et al. 2020a, b, Abdulrazzaq et al. 2020). In 

this material, pores may be produced in a phase between ceramic and material. Engineering 

structures made of this materials are studied to understand their vibration behaviors as reported in 

the works of Wattanasakulpong et al. (2014), Yahia et al. (2015). This type of material is used in 

different structures such as beams, plates and shells. There are some studies on different structures 

in the literature (Singh et al. 2018, Singhal and Chaudhary 2019, Forsat et al. 2020, Mirjavadi et al. 

2020 a-l, Barati and Shahverdi 2018a, b).  

Recent studies focus on engineering structures at nano-scales due to their involvement in nano-
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mechanical systems or devices (Barati and Shahverdi 2017, Ebrahimi and Barati 2017, Barati and 

Zenkour 2019a, b). However, the main issue in these studies is to select an appropriate elasticity 

theory accounting for small scale impacts (Ebrahimi and Barati 2018a-h). The impact of size-

dependency might be considered with the help of a scale parameter involved in non-local theory of 

elasticity Eringen (1983). The word “non-local” means that the stresses are not local anymore 

(Ebrahimi and Barati 2019a-d, Ebrahimi et al. 2019a, b, Shariati et al. 2020a, b, Muhammad et al. 

2019, Kunbar et al. 2020). This is because we are talking about a stress field of nano-scale structure. 

Many authors are aware of these facts and they are using this theory to analysis mechanical 

characteristics of small size engineering structures (Natarajan et al. 2012, Elmerabet et al. 2017, 

Zenkour and Abouelregal 2015, Sobhy and Radwan 2017, Li et al. 2016a, Sayyad and Ghugal 2018). 

Related to the mechanics of porous functionally graded nano-size structures, there are some studies 

about their vibrations or buckling in the literature such as the paper of Mechab et al. (2016). These 

papers showed that pores inside FG material can cause extraordinary dynamic and static properties.  

Strain gradients at nano-scale are observed by many researchers (Lim et al. 2015). Thus, 

nonlocal-strain gradient theory was introduced as a general theory which contains an additional 

strain gradient parameter together with nonlocal parameter (Li and Hu 2016, Li et al. 2016b, Xiao 

et al. 2017, Zhou and Li 2017). The scale parameters used in nonlocal strain gradient theory can be 

obtained by fitting obtained theoretical results with available experimental data and even molecular 

dynamic (MD).  

The present article deals with a dynamic response analysis of a foam-based nanoscale plate based 

on finite strip method. The nanoscale plate formulation has been adopted based upon a higher order 

plate theory and then, a higher order finite strip has been used to solve the problem. The considered 

finite strip is capable of considering the bending displacement and also shear deformation effects. 

The foam-based material has been treated as a porous material with some particular pore 

distribution. The non-uniformity of strain field as well as the nonlocality of stress field have been 

incorporated with the usage of nonlocal strain gradient elasticity. It is clearly showen that the 

proposed solution based on finite strip method can accurately simulate the dynamic response of 

considered plate under external forces. The scale factors due to small size of the plate and foam-

based material will show a remarkable impact on the dynamic response. 

 
 
2. Basic formulation for nanoplates 

 

In the well-known nonlocal strain gradient theory (Lim et al 2015), strain gradient impacts are 

taken into accounting together with nonlocal stress influences defined in below relation (Barati 2017, 

Barati 2018a-c) 

𝜎𝑖𝑗 = 𝜎𝑖𝑗
(0)
− 𝛻𝜎𝑖𝑗

(1)
 (1) 

in such a way that stress 𝜎𝑖𝑗
(0)

 is corresponding to strain components 𝜀𝑘𝑙 and a higher order stress is 

related to strain gradient components 𝛻𝜀𝑘𝑙 which are (Lim et al. 2015) 

𝜎𝑖𝑗
(0)
= ∫𝐶𝑖𝑗𝑘𝑙

𝑉

𝛼0(𝑥, 𝑥
′, 𝑒0𝑎)𝜀𝑘𝑙

′ (𝑥 ′)𝑑𝑥 ′ (2a) 

𝜎𝑖𝑗
(1)
= 𝑙2∫𝐶𝑖𝑗𝑘𝑙

𝑉

𝛼1(𝑥, 𝑥
′, 𝑒1𝑎)𝛻𝜀𝑘𝑙

′ (𝑥 ′)𝑑𝑥 ′ (2b) 
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in which 𝐶𝑖𝑗𝑘𝑙  express the elastic properties; Also, e0a and e1a are corresponding to nonlocality 

impacts and l is related to strains gradients. Whenever two nonlocality functions 𝛼0(𝑥, 𝑥
′, 𝑒0𝑎) and 

𝛼1(𝑥, 𝑥
′, 𝑒1𝑎) verify Eringen’s announced conditions, NSGT constitutive relation may be written as 

follows 

[1 − (𝑒1𝑎)
2𝛻2][1 − (𝑒0𝑎)

2𝛻2]𝜎𝑖𝑗  

= 𝐶𝑖𝑗𝑘𝑙[1 − (𝑒1𝑎)
2𝛻2]𝜀𝑘𝑙 

−𝐶𝑖𝑗𝑘𝑙𝑙
2[1 − (𝑒0𝑎)

2𝛻2]𝛻2𝜀𝑘𝑙 

(3) 

so that 𝛻2defines the operator for Laplacian; by selecting 𝑒1 = 𝑒0 = 𝑒, above relationship decreases 

to 

[1 − (𝑒𝑎)2𝛻2]𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙[1 − 𝑙
2𝛻2]𝜀𝑘𝑙 (4) 

 

 

3. Modeling a porous foam material 
 

A porous material, for instance a steel foam, might be placed in the category of lightweight 

materials and can be applied in several structures such as sandwich panels. Often, pore variation 

along the thickness of panels/plates results in a notable alteration in every kind of material property. 

When the pore distribution inside the material is selected to be non-uniform, the metal foam might 

be defined as a functionally graded material since its properties obey some specified functions. 

Herein, the following types of pore dispersion will be employed: 

• Uniform kind 

𝑬 = 𝑬𝟐(𝟏 − 𝒆𝟎𝝌) (5a) 

𝑮 = 𝑮𝟐(𝟏 − 𝒆𝟎𝝌) (5b) 

𝝆 = 𝝆𝟐√(𝟏 − 𝒆𝟎𝝌) (5c) 

• Non-uniform kind  

𝑬(𝒛) = 𝑬𝟐(𝟏 − 𝒆𝟎 𝒄𝒐𝒔 (
𝝅𝒛

𝒉
)) (6a) 

𝑮(𝒛) = 𝑮𝟐(𝟏 − 𝒆𝟎 𝒄𝒐𝒔 (
𝝅𝒛

𝒉
)) (6b) 

𝝆(𝒛) = 𝝆𝟐(𝟏 − 𝒆𝒎 𝒄𝒐𝒔 (
𝝅𝒛

𝒉
)) (6c) 

The most important factors in above relations are the greatest values of material properties E2, 

G2 and 𝜌2 . For a piezoelectric foam all material properties (P) including elastic constants (cij), 

piezoelectric constants (eij) and dielectric constants (kij) can be described via the function 𝑃 =

𝑃2(1 − 𝑒0𝜒) for uniform porosities and 𝑃 = 𝑃2(1 − 𝑒0 𝑐𝑜𝑠 (
𝜋𝑧

ℎ
)) for non-uniform porosities. Also, 

there are two important factors related to pores and mass which are e0 and em as 

𝒆𝟎 = 𝟏 −
𝑬𝟐
𝑬𝟏

= 𝟏 −
𝑮𝟐
𝑮𝟏

 (7) 
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Fig. 1 Configuration of foam nanoplate under dynamical loading. 

 

 

𝒆𝒎 = 𝟏 −
𝝆𝟐
𝝆𝟏

 (8) 

There is a relationship between elastic modulus and mass density of porous materials with open 

cells as 

𝑬𝟐
𝑬𝟏

= (
𝝆𝟐
𝝆𝟏
)
𝟐

 (9a) 

𝒆𝒎 = 𝟏 − √𝟏 − 𝒆𝟎 (9b) 

Based on uniformly distributed pores, the following parameter is used in Eq. (5) as 

𝝌 =
𝟏

𝒆𝟎
−
𝟏

𝒆𝟎
(
𝟐

𝝅
√𝟏 − 𝒆𝟎 −

𝟐

𝝅
+ 𝟏)

𝟐

 (10) 

By defining exact location of neutral surface, the displacement components based on axial u, 

lateral v, bending wb and shear ws displacements may be introduced as 

𝒖𝒙(𝒙, 𝒚, 𝒛, 𝒕) = 𝒖(𝒙, 𝒚, 𝒕) − (𝒛 − 𝒓
∗)
𝝏𝒘𝒃

𝝏𝒙
− [ϒ(𝒛) − 𝒓∗∗]

𝝏𝒘𝒔

𝝏𝒙
 (11a) 

𝒖𝒚(𝒙, 𝒚, 𝒛, 𝒕) = 𝒗(𝒙, 𝒚, 𝒕) − (𝒛 − 𝒓
∗)
𝝏𝒘𝒃

𝝏𝒚
− [ϒ(𝒛) − 𝒓∗∗]

𝝏𝒘𝒔

𝝏𝒚
 (11b) 

𝒖𝒛(𝒙, 𝒚, 𝒛, 𝒕) = 𝒘(𝒙, 𝒚, 𝒕) = 𝒘𝒃 +𝒘𝒔 (11c) 

so that 

𝑟∗ = ∫ 𝐸(𝑧)𝑧
ℎ/2

−ℎ/2
𝑑𝑧/ ∫ 𝐸(𝑧)

ℎ/2

−ℎ/2
𝑑𝑧, 

𝑟∗∗ = ∫ 𝐸(𝑧)ϒ(𝑧
ℎ/2

−ℎ/2
)𝑑𝑧/∫ 𝐸(𝑧)

ℎ/2

−ℎ/2
𝑑𝑧 

(12) 

The shear deformation function has been selected for the nanoplate shown in Fig. 1 as 

ϒ(𝑧) = 𝑧 −  𝑧[1 +
3𝜋

2
𝑠𝑒𝑐ℎ2( 0.5)] +

3𝜋

2
ℎ 𝑡𝑎𝑛ℎ(

𝑧

ℎ
) (13) 

Finally, the strains based on the four-unknown plate model have been obtained as 
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𝜀𝑥 =
𝜕𝑢

𝜕𝑥
− (𝑧 − 𝑟∗)

𝜕2𝑤𝑏
𝜕𝑥2

− [ϒ(𝑧) − 𝑟∗∗]
𝜕2𝑤𝑠
𝜕𝑥2

 

𝜀𝑦 =
𝜕𝑣

𝜕𝑦
− (𝑧 − 𝑟∗)

𝜕2𝑤𝑏
𝜕𝑦2

− [ϒ(𝑧) − 𝑟∗∗]
𝜕2𝑤𝑠
𝜕𝑦2

 

𝛾𝑥𝑦 =
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
− 2(𝑧 − 𝑟∗)

𝜕2𝑤𝑏
𝜕𝑥𝜕𝑦

− 2[ϒ(𝑧) − 𝑟∗∗]
𝜕2𝑤𝑠
𝜕𝑥𝜕𝑦

 

𝛾𝑦𝑧 = 𝑔(𝑧)
𝜕𝑤𝑠
𝜕𝑦

, 𝛾𝑥𝑧 = 𝑔(𝑧)
𝜕𝑤𝑠
𝜕𝑥  

(14) 

Next, one might express the total potential energy as follows based on strain energy (U) and 

kinetic energy (T) 

𝛱 = 𝑈 + 𝑇 + 𝑉 (15) 

and V is the work of non-conservative loads. Based on above relation we have 

𝑈 = 0.5∫(𝜎𝑥𝑥𝜀𝑥𝑥 + 𝜎𝑥𝑥
(1)
𝛻𝜀𝑥𝑥 + 𝜎𝑦𝑦𝜀𝑦𝑦

𝑉

+ 𝜎𝑦𝑦
(1)
𝛻𝜀𝑦𝑦 + 𝜎𝑥𝑦𝛾𝑥𝑦 + 𝜎𝑥𝑦

(1)
𝛻𝛾𝑥𝑦 + 𝜎𝑦𝑧𝛾𝑦𝑧

+ 𝜎𝑦𝑧
(1)
𝛻𝛾𝑦𝑧 + 𝜎𝑥𝑧𝛾𝑥𝑧 + 𝜎𝑥𝑧

(1)
𝛻𝛾𝑥𝑧)𝑑𝑉 

(16) 

Placing Eq. (14) in Eq. (16) leads to 

𝑈 = 0.5∫ ∫ [
𝑏

0

𝑁𝑥𝑥[
𝜕𝑢

𝜕𝑥
]

𝑎

0

−𝑀𝑥𝑥
𝑏
𝜕2𝑤𝑏
𝜕𝑥2

−𝑀𝑥𝑥
𝑠
𝜕2𝑤𝑠
𝜕𝑥2

+ 𝑁𝑦𝑦[
𝜕𝑣

𝜕𝑦
] − 𝑀𝑦𝑦

𝑏
𝜕2𝑤𝑏
𝜕𝑦2

 

−𝑀𝑦𝑦
𝑠
𝜕2𝑤𝑠
𝜕𝑦2

+ 𝑁𝑥𝑦(
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
) − 2𝑀𝑥𝑦

𝑏
𝜕2𝑤𝑏
𝜕𝑥𝜕𝑦

− 2𝑀𝑥𝑦
𝑠
𝜕2𝑤𝑠
𝜕𝑥𝜕𝑦

+ 𝑄𝑦𝑧
𝜕𝑤𝑠
𝜕𝑦

+ 𝑄𝑥𝑧
𝜕𝑤𝑠
𝜕𝑥

]𝑑𝑦𝑑𝑥 

(17) 

in which 

𝑁𝑥𝑥 = ∫ (𝜎𝑥𝑥
0

ℎ/2

−ℎ/2
− 𝛻𝜎𝑥𝑥

(1)
)𝑑𝑧 = 𝑁𝑥𝑥

(0)
− 𝛻𝑁𝑥𝑥

(1)
 

𝑁𝑥𝑦 = ∫ (𝜎𝑥𝑦
0

ℎ/2

−ℎ/2
− 𝛻𝜎𝑥𝑦

(1)
)𝑑𝑧 = 𝑁𝑥𝑦

(0)
− 𝛻𝑁𝑥𝑦

(1)
 

𝑁𝑦𝑦 = ∫ (𝜎𝑦𝑦
0

ℎ/2

−ℎ/2
− 𝛻𝜎𝑦𝑦

(1)
)𝑑𝑧 = 𝑁𝑦𝑦

(0)
− 𝛻𝑁𝑦𝑦

(1)
 

𝑀𝑥𝑥
𝑏 = ∫ 𝑧(𝜎𝑥𝑥

0
ℎ/2

−ℎ/2
− 𝛻𝜎𝑥𝑥

(1)
)𝑑𝑧 = 𝑀𝑥𝑥

𝑏(0)
− 𝛻𝑀𝑥𝑥

𝑏(1)
 

𝑀𝑥𝑥
𝑠 = ∫ ϒ(𝜎𝑥𝑥

0
ℎ/2

−ℎ/2
− 𝛻𝜎𝑥𝑥

(1)
)𝑑𝑧 = 𝑀𝑥𝑥

𝑠(0)
− 𝛻𝑀𝑥𝑥

𝑠(1)
 

𝑀𝑦𝑦
𝑏 = ∫ 𝑧(𝜎𝑦𝑦

0
ℎ/2

−ℎ/2
− 𝛻𝜎𝑦𝑦

(1)
)𝑑𝑧 = 𝑀𝑦𝑦

𝑏(0)
− 𝛻𝑀𝑦𝑦

𝑏(1)
 

𝑀𝑦𝑦
𝑠 = ∫ 𝑓(𝜎𝑦𝑦

0
ℎ/2

−ℎ/2
− 𝛻𝜎𝑦𝑦

(1)
)𝑑𝑧 = 𝑀𝑦𝑦

𝑠(0)
− 𝛻𝑀𝑦𝑦

𝑠(1)
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𝑀𝑥𝑦
𝑏 = ∫ 𝑧(𝜎𝑥𝑦

0
ℎ/2

−ℎ/2
− 𝛻𝜎𝑥𝑦

(1)
)𝑑𝑧 = 𝑀𝑥𝑦

𝑏(0)
− 𝛻𝑀𝑥𝑦

𝑏(1)
 

𝑀𝑥𝑦
𝑠 = ∫ 𝑓(𝜎𝑥𝑦

0
ℎ/2

−ℎ/2
− 𝛻𝜎𝑥𝑦

(1)
)𝑑𝑧 = 𝑀𝑥𝑦

𝑠(0)
− 𝛻𝑀𝑥𝑦

𝑠(1)
 

𝑄𝑥𝑧 = ∫ 𝑔(𝜎𝑥𝑧
0

ℎ/2

−ℎ/2
− 𝛻𝜎𝑥𝑧

(1)
)𝑑𝑧 = 𝑄𝑥𝑧

(0)
− 𝛻𝑄𝑥𝑧

(1)
 

𝑄𝑦𝑧 = ∫ 𝑔(𝜎𝑦𝑧
0

ℎ/2

−ℎ/2
− 𝛻𝜎𝑦𝑧

(1)
)𝑑𝑧 = 𝑄𝑦𝑧

(0)
− 𝛻𝑄𝑦𝑧

(1)
 

(18) 

where 

𝑁𝑖𝑗
(0)
= ∫ (𝜎𝑖𝑗

(0)
ℎ/2

−ℎ/2
)𝑑𝑧,     

𝑁𝑖𝑗
(1)
= ∫ (𝜎𝑖𝑗

(1)
ℎ/2

−ℎ/2
)𝑑𝑧 

𝑀𝑖𝑗
𝑏(0)

= ∫ 𝑧(𝜎𝑖𝑗
𝑏(0)

ℎ/2

−ℎ/2
)𝑑𝑧,     

𝑀𝑖𝑗
𝑏(1)

= ∫ 𝑧(𝜎𝑖𝑗
𝑏(1)

ℎ/2

−ℎ/2
)𝑑𝑧 

𝑀𝑖𝑗
𝑠(0)

= ∫ ϒ(𝜎𝑖𝑗
𝑠(0)

ℎ/2

−ℎ/2
)𝑑𝑧,     

𝑀𝑖𝑗
𝑠(1)

= ∫ ϒ(𝜎𝑖𝑗
𝑠(1)

ℎ/2

−ℎ/2
)𝑑𝑧 

𝑄𝑥𝑧
(0)
= ∫ 𝑔(𝜎𝑥𝑧

𝑖(0)
ℎ/2

−ℎ/2
)𝑑𝑧, 

𝑄𝑥𝑧
(1)
= ∫ 𝑔(𝜎𝑥𝑧

𝑖(1)
ℎ/2

−ℎ/2
)𝑑𝑧 

𝑄𝑦𝑧
(0)
= ∫ 𝑔(𝜎𝑦𝑧

𝑖(0)
ℎ/2

−ℎ/2
)𝑑𝑧, 

𝑄𝑦𝑧
(1)
= ∫ 𝑔(𝜎𝑦𝑧

𝑖(1)
ℎ/2

−ℎ/2
)𝑑𝑧 

(19) 

for which (ij=xx, xy, yy). The work of non-conservative force is expressed by 

𝑉 = ∫ ∫ (
𝑏

0

𝑁𝑥
0
𝜕2(𝑤𝑏 +𝑤𝑠)

𝜕𝑥2

𝑎

0

+ 𝑁𝑦
0
𝜕2(𝑤𝑏 + 𝑤𝑠)

𝜕𝑦2
 

+2𝑁𝑥𝑦
0
𝜕2(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥𝜕𝑦
+ (𝑞𝑑𝑦𝑛𝑎𝑚𝑖𝑐)(𝑤𝑏 +𝑤𝑠) 

−(𝑁𝑇)(
𝜕2(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥2
+
𝜕2(𝑤𝑏 + 𝑤𝑠)

𝜕𝑦2
))𝑑𝑦𝑑𝑥 

(20) 
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where 𝑁𝑥
0, 𝑁𝑦

0, 𝑁𝑥𝑦
0  denote membrane forces; NT is the load due to thermal environment. Moreover, 

qdynamic is the applied force from periodic mechanical loading. Also, the kinetic energy is obtained as 

𝐾 = 0.5∫ ∫ [
𝑏

0

𝑚0(
𝑎

0

𝜕2𝑢

𝜕𝑡2
+
𝜕2𝑣

𝜕𝑡2
+
𝜕2(𝑤𝑏 +𝑤𝑠)

𝜕𝑡2
) − 𝑚1(2

𝜕𝑢

𝜕𝑡

𝜕𝑤𝑏
𝜕𝑥𝜕𝑡

+ 2
𝜕𝑣

𝜕𝑡

𝜕𝑤𝑏
𝜕𝑦𝜕𝑡

) 

−𝑚2(2
𝜕𝑢

𝜕𝑡

𝜕𝑤𝑠
𝜕𝑥𝜕𝑡

+ 2
𝜕𝑣

𝜕𝑡

𝜕𝑤𝑠
𝜕𝑦𝜕𝑡

) + 𝑚3(2
𝜕𝑤𝑏
𝜕𝑥𝜕𝑡

𝜕𝑤𝑏
𝜕𝑥𝜕𝑡

) + 𝑚4(2
𝜕𝑤𝑠
𝜕𝑥𝜕𝑡

𝜕𝑤𝑠
𝜕𝑥𝜕𝑡

) 

+𝑚5(2
𝜕𝑤𝑏
𝜕𝑥𝜕𝑡

𝜕𝑤𝑠
𝜕𝑥𝜕𝑡

+ 2
𝜕𝑤𝑏
𝜕𝑦𝜕𝑡

𝜕𝑤𝑠
𝜕𝑦𝜕𝑡

)]𝑑𝑦𝑑𝑥 

(21) 

in which 

(𝑚0, 𝑚1, 𝑚2, 𝑚3, 𝑚4, 𝑚5) 

= ∫
(1, 𝑧 − 𝑟∗, (𝑧 − 𝑟∗)2,ϒ − 𝑧∗∗,

(𝑧 − 𝑟∗)(ϒ− 𝑟∗∗), (ϒ− 𝑟∗∗)2)𝜌

ℎ/2

−ℎ/2
(𝑧)𝑑𝑧 

(22) 

the thermal load can be defined as  𝑁𝑇 = ∫ 𝐸𝛼𝛥𝑇𝑑𝑧
ℎ/2

−ℎ/2
.  

Finally, the nonlocal strain gradient constitutive relations based on refined FG plate model for 

metal foam plate can be expressed by 

(1 − 𝜇𝛻2)

{
 
 

 
 
𝜎𝑥
𝜎𝑦
𝜎𝑥𝑦
𝜎𝑦𝑧
𝜎𝑥𝑧}

 
 

 
 

=
𝐸(𝑧)

1−𝑣2
(1 − 𝜆𝛻2)  

∗

(

 
 

1 𝑣 0 0 0
𝑣 1 0 0 0
0 0 (1 − 𝑣)/2 0 0
0 0 0 (1 − 𝑣)/2 0
0 0 0 0 (1 − 𝑣)/2)

 
 

{
 
 

 
 
𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
𝛾𝑦𝑧
𝛾𝑥𝑧}

 
 

 
 

 

(23) 

After integrating Eq. (24) in thickness direction, we get the following relationships 

(1 − 𝜇𝛻2) {

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

} = 𝐴(1 − 𝜆𝛻2) ∗ (
1 𝑣 0
𝑣 1 0
0 0 (1 − 𝑣)/2

)

{
  
 

  
 
𝜕𝑢

𝜕𝑥
𝜕𝑣

𝜕𝑦
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥}
  
 

  
 

 (24) 

(1 − 𝜇𝛻2) {

𝑀𝑥
𝑏

𝑀𝑦
𝑏

𝑀𝑥𝑦
𝑏

} = 𝐷(1 − 𝜆𝛻2) (
1 𝑣 0
𝑣 1 0
0 0 (1 − 𝑣)/2

)

{
  
 

  
 −

𝜕2𝑤𝑏
𝜕𝑥2

−
𝜕2𝑤𝑏
𝜕𝑦2

−2
𝜕2𝑤𝑏
𝜕𝑥𝜕𝑦}
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+𝐸(1 − 𝜆𝛻2) (
1 𝑣 0
𝑣 1 0
0 0 (1 − 𝑣)/2

)

{
  
 

  
 −

𝜕2𝑤𝑠
𝜕𝑥2

−
𝜕2𝑤𝑠
𝜕𝑦2

−2
𝜕2𝑤𝑠
𝜕𝑥𝜕𝑦}

  
 

  
 

 (25) 

(1 − 𝜇𝛻2) {

𝑀𝑥
𝑠

𝑀𝑦
𝑠

𝑀𝑥𝑦
𝑠
} = 𝐸(1 − 𝜆𝛻2) (

1 𝑣 0
𝑣 1 0
0 0 (1 − 𝑣)/2

)

{
  
 

  
 −

𝜕2𝑤𝑏
𝜕𝑥2

−
𝜕2𝑤𝑏
𝜕𝑦2

−2
𝜕2𝑤𝑏
𝜕𝑥𝜕𝑦}

  
 

  
 

 

+𝐹(1 − 𝜆𝛻2) (
1 𝑣 0
𝑣 1 0
0 0 (1 − 𝑣)/2

)

{
  
 

  
 −

𝜕2𝑤𝑠
𝜕𝑥2

−
𝜕2𝑤𝑠
𝜕𝑦2

−2
𝜕2𝑤𝑠
𝜕𝑥𝜕𝑦}

  
 

  
 

 

(26) 

(1 − 𝜇𝛻2) {
𝑄𝑥
𝑄𝑦
} = 𝐴44(1 − 𝜆𝛻

2) ∗ (
1 0
0 1

)

{
 

 
𝜕𝑤𝑠
𝜕𝑥
𝜕𝑤𝑠
𝜕𝑦 }

 

 
 (27) 

in which 

𝐴 = ∫
𝐸(𝑧)

1 − 𝑣2

ℎ/2

−ℎ/2
𝑑𝑧, 𝐷 = ∫

𝐸(𝑧)(𝑧 − 𝑟∗)2

1 − 𝑣2

ℎ/2

−ℎ/2
𝑑𝑧, 

𝐸 = ∫
𝐸(𝑧)(𝑧 − 𝑟∗)(ϒ− 𝑟∗∗)

1 − 𝑣2

ℎ/2

−ℎ/2
𝑑𝑧 

𝐹 = ∫
𝐸(𝑧)(ϒ− 𝑟∗∗)2

1 − 𝑣2

ℎ/2

−ℎ/2
𝑑𝑧, 

𝐴44 = ∫
𝐸(𝑧)

2(1 + 𝑣)
𝑔2

ℎ/2

−ℎ/2
𝑑𝑧 

(28) 

 
 
4. Finite Strip Method (FSM) 
 

In this section, the finite strip method based upon proposed refined plate model, which is known 

as refined finite strip method, has been used for investigating the transient vibrational behavior of 

GOP-reinforced plate. Fig. 2 illustrates a single strip having length as and width bs with two nodal  
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Fig. 2 Refined finite strip and nodal coordinates 

 

 

lines of i and j. This figure also shows the strip nodal degrees of freedom. As the first step, the 

bending and shear displacements of the strip can be introduced by 

𝑤𝑏 =∑𝑓𝑒
𝑤𝑏(𝑥)

𝑟

𝑒=1

𝑔𝑒
𝑤𝑏(𝑦) (29) 

𝑤𝑠 =∑𝑓𝑒
𝑤𝑠(𝑥)

𝑟

𝑒=1

𝑔𝑒
𝑤𝑠(𝑦)

 

(30) 

where r defines the number of harmonic modes, 𝑓𝑒
𝑤𝑏(𝑥) and 𝑓𝑒

𝑤𝑠(𝑥) are appropriate Hermitian 

shape functions; 𝑔𝑒
𝑤𝑏(𝑦) and 𝑔𝑒

𝑤𝑠(𝑦) are trigonometric functions satisfying boundary conditions at 

y direction.  

Based on Hermitian shape functions, Eqs. (29) and (30) can be re-written as 

𝑤𝑏 =∑

[
 
 
 
 
(1 − 3𝜁2 + 2𝜁3)(𝑤𝑖

𝑏)𝑒

+𝑎𝑠(𝜁 − 2𝜁
2 + 𝜁3)(𝜃𝑖

𝑏)𝑒

+(3𝜁2 − 2𝜁3)(𝑤𝑗
𝑏)𝑒

+𝑎𝑠(−𝜁
2 + 𝜁3)(𝜃𝑗

𝑏)𝑒 ]
 
 
 
 𝑟

𝑒=1

𝑔𝑒
𝑤𝑏(𝑦) (31) 

𝑤𝑠 =∑

[
 
 
 
 
(1 − 3𝜁2 + 2𝜁3)(𝑤𝑖

𝑠)𝑒
+𝑎𝑠(𝜁 − 2𝜁

2 + 𝜁3)(𝜃𝑖
𝑠)𝑒

+(3𝜁2 − 2𝜁3)(𝑤𝑗
𝑠)𝑒

+𝑎𝑠(−𝜁
2 + 𝜁3)(𝜃𝑗

𝑠)𝑒 ]
 
 
 
 𝑟

𝑒=1

𝑔𝑒
𝑤𝑠(𝑦)

 

(32) 

in which  𝜁 = 𝑥/𝑎𝑠   and  {𝑤𝑖
𝑏  𝜃𝑖

𝑏  𝑤𝑗
𝑏  𝜃𝑗

𝑏}  are bending degrees of freedom of each nodal line, 

whereas  {𝑤𝑖
𝑠 𝜃𝑖

𝑠 𝑤𝑗
𝑠 𝜃𝑗

𝑠} are the shear degrees of freedom. Eqs. (31) and (32) can then be re-written 

in vector forms as 

𝑤𝑏 =∑𝑁𝑒
𝑏

𝑟

𝑒=1

𝛿𝑒
𝑏 (33) 
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𝑤𝑠 =∑𝑁𝑒
𝑠

𝑟

𝑒=1

𝛿𝑒
𝑠

 

(34) 

 where 

𝑁𝑒
𝑏 = 𝑁𝑒

𝑠 = [1 − 3𝜁2 + 2𝜁3  𝑎𝑠(𝜁 − 2𝜁
2 + 𝜁3)   3𝜁2 − 2𝜁3   𝑎𝑠(−𝜁

2 + 𝜁3)]𝑔𝑒
𝑤𝑏(𝑦) (35) 

Also, 𝛿𝑒
𝑏 and 𝛿𝑒

𝑠 are the displacement vectors related to mode e and has the following form 

𝛿𝑒
𝑏 = {𝑤𝑖

𝑏  𝜃𝑖
𝑏  𝑤𝑗

𝑏  𝜃𝑗
𝑏}
𝑒

𝑇
= {

(𝛿𝑖
𝑏)
𝑒

(𝛿𝑗
𝑏)
𝑒

} (36) 

𝛿𝑒
𝑠 = {𝑤𝑖

𝑠 𝜃𝑖
𝑠 𝑤𝑗

𝑠 𝜃𝑗
𝑠}
𝑒

𝑇
= {

(𝛿𝑖
𝑠)𝑒

(𝛿𝑗
𝑠)
𝑒

} (37) 

Then, the complete displacement vector for a strip can be represented as 

𝛿 = {𝑤𝑖
𝑏  𝜃𝑖

𝑏  𝑤𝑗
𝑏  𝜃𝑗

𝑏 𝑤𝑖
𝑠 𝜃𝑖

𝑠 𝑤𝑗
𝑠 𝜃𝑗

𝑠}
𝑒

𝑇
=

{
 
 

 
 𝛿𝑖

𝑏

𝛿𝑗
𝑏

𝛿𝑖
𝑠

𝛿𝑗
𝑠
}
 
 

 
 

 (38) 

Using the developed total potential energy and minimizing it to field coefficients results in below 

relation containing simultaneous algebraic equations 

𝜕𝛱

𝜕𝛿
= 0 (39) 

Introducing Eqs. (33)-(34) to obtained relations yields 

[𝐾]{𝛿} + [𝑀]{�̈�} = {𝐹(𝑡)}

 

(40) 

Then, it is possible to express obtained boundary conditions as 

𝑤𝑏 = 𝑤𝑠 = 0, 
𝜕2𝑤𝑏
𝜕𝑥2

=
𝜕2𝑤𝑠
𝜕𝑥2

=
𝜕2𝑤𝑏
𝜕𝑦2

=
𝜕2𝑤𝑠
𝜕𝑦2

= 0  

𝜕4𝑤𝑏
𝜕𝑥4

=
𝜕4𝑤𝑠
𝜕𝑥4

=
𝜕4𝑤𝑏
𝜕𝑦4

=
𝜕4𝑤𝑠
𝜕𝑦4

= 0  

(41) 

The presented results are based on the below dimensionless factors 

𝜇 =
𝑒𝑎

𝑎
, 𝜆 =

𝑙

𝑎
 

𝛺 = 𝜔𝑒𝑥𝑎√
𝜌2
𝐸2

 

(42) 
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Table 1 Verification study on normalized vibrational frequencies of nano-scale graded plates with various 

nonlocal factors 

a/h µ 
a/b=1 a/b=2 

Natarajan et al. (2012) present Natarajan et al. (2012) present 

10 

0 0.0441 0.0439 0.1055 0.1044 

1 0.0403 0.0401 0.0863 0.0856 

2 0.0374 0.0372 0.0748 0.0742 

4 0.0330 0.0329 0.0612 0.0605 

20 

0 0.0113 0.0113 0.0279 0.0277 

1 0.0103 0.0102 0.0229 0.0228 

2 0.0096 0.0095 0.0198 0.0197 

4 0.0085 0.008418 0.0162 0.016111 

 

 

Fig. 3 Effect of nonlocal and strain gradient factors on response curves of nano-size plate (λ=0, 

a/h=10, e0=0.5) 

 
 
5. Discussions on results 

 

Thorough the present section, results are provided for forced vibration investigation of scale-

dependent foam plates formulated by a four-unknown plate theory and NSGT. The nano-size foam 

plate under a periodic dynamical loading has been depicted in Fig.1. Table 1 provides validation 

study for vibrational frequency of a functionally graded small scale plate with the results obtained 

by Natarajan et al. (2012). Accordingly, the present formulation and finite strip solution is capable 

of giving accurate results of nanoplates. In this research, obtained results based on metal foam 

material are presented using the below properties: 

• 𝐸2 = 200 GPa, 𝜌2 = 7850 𝑘𝑔/𝑚
3, 𝑣 = 0.33,  

In Figs. 3 and 4, the variation of normalized deflections of a metal foam nano-dimension plate 

versus excitation frequency of mechanical loading is represented for several nonlocality (µ) and  
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Fig. 4 Effect of nonlocal and strain gradient factors on response curves of nano-size plate (λ=0.2, 

a/h=10, e0=0.5) 

 

 

Fig. 5 Effect of pore factor with uniform distribution on response curves of the nano-size metal 

foam plate (µ=0.2, λ=0.1, a=10h) 

 

 

stain gradients (λ) coefficients when a/h=10. By selecting µ=λ=0, the deflections and vibrational 

frequencies based upon classic plate assumption will be derived. Actually, selecting λ=0 gives the 

deflections in the context of nonlocal elasticity theory and discarding strain gradients impacts. 

Exerting higher values of excitation frequency leads to larger deflections and finally resonance of 

the plate. It can be understood from Figs. 3 and 4 that normalized deflection of system will reduce  
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Fig. 6 Effect of pore factor with non-uniform distribution on response curves of the nano-size 

metal foam plate (µ=0.2, λ=0.1, a=10h) 

 

 
Fig. 7 Effect of thermal environments on response curves of nano-size plate (a/h=20, 

µ=0.2, e0=0.2) 

 

 

with strain gradient coefficient and will rise with nonlocality coefficient. This observation is valid 

for excitation frequencies before resonance. So, forced vibration behavior of the nanoplate system 

is dependent on both scale effects. An important finding is that the resonance frequencies of metal 

foam plate are outstandingly affected by the values of nonlocal and strain gradient coefficients. 

In Figs. 5 and 6 one can see the response curves of metal foam plate system with different porosity 
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coefficients and dispersions. Effect of surrounding medium is neglected for this figure. It can be 

understood from the figures that resonance frequency of system will reduce or increase with pore 

coefficient. But, this variation relies on the type of pore dispersion in thickness of nanoplates. 

Uniform pore type gives higher resonance frequencies than other pore types. 

Thermal effects on dynamic response of a porous PZT nanoplate has been plotted in Fig. 7 

assuming that nonlocal factor is µ=0.2. Actually, this figure shows nanoplate center deflection 

against applied frequency of excitation. At first step, nanoplate center deflection (amplitude) is 

increasing with the growth of plied frequency of excitation. After the shift frequent (at which the 

center deflection is infinitive), the center deflection will reduce. Thermal environment has an 

important impact on the frequency curves and the location of shift frequency. Note that increase of 

temperature will reduce the magnitude of shift frequency because of the reduced stiffness of the 

nano-sized plate. 

 

 
6. Conclusions 
 

In this research, dynamic responses of a porous nano-sized plate modeled by a nonlocal higher-

order refined plate model were explored in detail. The porous material considered in this research 

had uniform or non-uniform porosity distribution across the cross section. Stain gradient effects 

were also considered for more accurate modeling of the scale-dependent plate. It was realized that 

resonance vibration frequency of system raised with strain gradient coefficient and reduced with 

nonlocality coefficient. It was also found that resonance vibration frequency and dynamic deflection 

of system might reduce or increase with pore coefficient. Also, uniform pore type gave highest 

resonance frequency among considered pore types. The resonance frequency is also declined with 

the rise of temperature. 
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