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Reflection of plane waves from the boundary of
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Abstract. The theory of generalized thermo-magneto-electroelasticity is employed to obtain the plane wave
solutions in an unbounded, homogeneous and transversely isotropic medium. Reflection phenomena of plane waves
is considered at a stress free and thermally insulated surface. For incidence of a plane wave, the expressions of reflection
coefficients and energy ratios for reflected waves are derived. To explore the characteristics of reflection coefficients
and energy ratios, a quantitative example is set up. The half-space of the thermo-magneto-electroelastic medium is
assumed to be made out of lithium niobate. The dependence of reflection coefficients and energy ratios on the angle of
incidence is illustrated graphically for different values of electric, magnetic and thermal parameters.
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1. Introduction

Ogden and Steigmann (2011) and Dorfmann and Ogden (2014) have presented a monograph on the
nonlinear theory of electroelastic and magnetoelastic interactions. Magneto-electro-elastic materials display
the coupling behavior among electric, magnetic and mechanical fields. Magneto-electro-elastic materials have
various applications due to their ability of converting energy from one kind to another. These materials have
been used in lasers, supersonic devices, microwave and infrared applications. The theories of magneto-
elasticity, thermo-magneto-elasticity and thermo-magneto-electro-elasticity study the effects of magnetic and
electric interactions on an elastic or thermoelastic body. Thermo-magneto-electroelastic materials have been
extensively used as electric packaging, sensors and actuators. Wave propagation in thermo-magneto-
electroelastic solid has possible applications due to wide use of piezoelectric and piezomagnetic materials in
aerospace, automobile and various other industries. The theory of thermo-magneto-electroelasticity has been
developed due to the significant contributions of various researchers. For example, Kaliski (1985) has
developed the wave equations of thermo-magneto-electroelasticity. Coleman and Dill (1971) have proposed
the thermodynamic restrictions on the constitutive equations of electromagnetic theory. Amendola (2000) has
determined the restrictions imposed on the assumed constitutive equations by thermodynamics. Li (2003) has
presented the uniqueness and reciprocity theorems for thermo-electro-magnet-elasticity without the positive
definiteness condition of the elastic parameters. Aouadi (2007) has developed the field equations for Lebon’s
model of generalized thermo-magneto-electroelasticity.

Various static and dynamic problems in elastic solids with electric, magnetic and thermal effects have been
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studied by many researchers. Some of notable and related contributions are mentioned herein. Paria (1962)
has studied the propagation of plane waves in a thermoelastic medium subjected to the magnetic field and has
shown that the magnetic effect on plane waves is insignificant for large electrical conductivity. Nayfeh and
Nemat-Nasser (1971, 1972) have studied the plane harmonic waves in unbounded thermoelastic and electro-
magnetic-thermoelastic media. Roychoudhuri and Chatterjee (1990) have investigated the thermal-shock
induced magneto-thermoelastic wave in a perfectly conducting elastic half-space. Hsieh (1990) has presented
a detailed review of the mechanical behaviour of new electromagnetic materials and their applications. Ezzat
(1997) has introduced the state space formulation in a perfectly conducting medium using the generalized
magneto-thermoelasticity. Sherief and Youssef (2004) have investigated the wave propagation in an electro-
magneto-thermoelastic half-space whose surface is subjected to thermal shock. Baksi and Bera (2005) have
studied the disturbances in an electrically conducting infinite orthotropic thermoelastic elastic solid pervaded
by a primary magnetic field with instantaneous point heat source. Das and Kanoria (2009) have employed the
generalized thermoelasticity with energy dissipation and have studied the time-harmonic plane wave
propagation in a perfectly electrically conducting elastic medium under primary uniform magnetic field. Dai
and Rao (2011) have explored the electro-magneto-thermo-elastic behaviors of a hollow sphere composed of
functionally graded piezoelectric material under electric, thermal and mechanical loads. Ponnusamy and
Selvamani (2012) have discussed the dispersion analysis of magneto-thermoelastic waves in a transversely
isotropic cylindrical panel. Abo-Dahab and Singh (2013) have studied the effects of rotation, magnetic field,
voids and initial stress on the reflection phenomena in context of the thermoelasticity without energy
dissipation. Zhang (2013) has discussed the reflection and refraction phenomena at an interface between
transversely isotropic magneto-electro-elastic and non-viscous liquid half-spaces. Kondaiah et al. (2013) have
studied the pyroelectric and pyromagnetic effects on behavior of magneto-electro-elastic plate under different
boundary conditions. Zhang et al. (2014) have investigated the propagation of Rayleigh waves in a magneto-
electro-elastic half-space with initial stress. Abd-Alla and Othman (2016) have studied the effect of magnetic
field in vacuum on the reflection of plane harmonic waves from a semi-infinite thermoelastic solid. Tiwari
and Mukhopadhyay (2017) have studied the propagation of electro-magneto-thermoelastic plane waves in the
context Green and Naghdi type-11 theory of thermoelasticity. Vinyas and Kattimani (2017) have analyzed the
multiphysics response of magneto-electro-elastic cantilever beam under thermo-mechanical loadings. Yakhno
(2018) has suggested a new method to find an explicit solution of an initial value problem for governing
equations of magneto-electro-elasticity. Moreno-Navarro et al. (2018) have proposed a fully-coupled
thermodynamic-based transient finite element formulation for interactions of electric, magnetic, thermal and
mechanic fields in a linear case. Lata and Kaur (2019) have studied the effects of two-temperature and rotation
on thermo-mechanical interactions in a transversely isotropic magneto-thermoelastic solids.

Sarkar et al. (2019) have studied the reflection phenomenon of the magneto-thermoelastic plane waves
from a stress-free surface of a homogeneous, isotropic, thermally and electrically conducting solid half-space
in context of the generalized thermoelasticity model with memory-dependent derivative. Sarkar and De (2020)
have employed the modified Green-Lindsay model of generalized thermoelasticity to study the propagation
of time-harmonic plane waves in an infinite elastic solid. Singh (2020) have studied the plane wave
characteristics in context of two-temperature porothermoelasticity. Singh et al. (2016) have used the theories
by Aouadi (2007), Lord and Shulman (1967) and Dhaliwal and Sherief (1980) to develop the governing
equations of generalized thermo-magneto-electroelasticity which incorporate a flux-rate term into Fourier’s
law of heat conduction. They have shown that there exist three plane waves, namely, quasi-P (gP), quasi-SV
(qSV) and quasi-T (qT) waves.

To the knowledge of authors, no work has been reported till date on the reflection phenomena in context
of the theories developed by Aouadi (2007), Lord and Shulman (1967) and Dhaliwal and Sherief (1980). The
objective of this paper is to study reflection of the plane waves from a stress free and thermally insulated
surface of a generalized thermo-magneto-electro-elastic solid half space. The expressions of reflection
coefficients and energy ratios are obtained analytically. Using material parameters of lithium niobate
(LiNbO3), the reflection coefficients and energy ratios of reflected waves are computed and illustrated
graphically against the angle of incidence for different material parameters.
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2. Basic equations

Following Aouadi (2007), Lord and Shulman (1967) and Dhaliwal and Sherief (1980), the field equations
governing the theroy of generalized thermo-magneto-electro-elasticity are formulated as
The equations of motion

g, + F; = piy, 1)
The equations of the electric and magnetic fields
Di; = po, Bi;y =0, (2
The energy equation
pTon = qi; + ph, @)
The constitutive equations
0ij = Cijkierr + Fijie + AijEyx — ayT, 4)
Dy = —Aijeij + api§i + Vi £ + pic T, (5)
By = —Fyje;j + Agi(; + a By + my T, (6)
pn = a;je;; + My G + prEy + c. T, (7
kiiT; = q; + 104 (8)

and the geometrical equations
1
ej =>j+u), E=—-v; {(=-¢, 9)
2

where symbols have their usual meanings. Here, the subscripts preceded by a comma denote partial
differentiation with respect to the corresponding Cartesian coordinate. The superposed dot denotes the partial
differentiation with respect to time t. The following symmetries hold between the constitutive parameters

Cijki = Craij = Cjikt Aijic = Akij = Ajir Fijx = Frij = Fijo
QAij = Qi Yij = Vjir Qij = % (10)

3. Two-dimensional specialization

We consider an infinite, homogeneous and transversely isotropic thermo-magneto-electroelastic medium
at uniform temperature Ty, initial electric potential i, and initial magnetic potential ¢,. The medium is
taken transversely isotropic in such a way that the planes of isotropy become perpendicular to the z-axis. The
origin is taken at any point on the plane surface z = 0 and the x-axis is taken along the propagation direction.
For a plane strain parallel to x —z plane with displacement vector u = (u,;,0,u3), electric potential
Y(x, z, t), magnetic potential ¢(x,z,t) and temperature T(x, z, t), the equations of a transversely isotropic
thermo-magneto-electroelastic medium in x — z plane are formulated after rejecting the dependency of y-
direction as well as the derivative with respect to y. With the help of the symmetry conditions (10) and Eqgs.
(4) to (9), the Egs. (1) to (3) reduce to the following system of five partial differential equations in wu,,us, ¢,y
and T in absence of body forces, electric charge density, electric current density and heat supply

0%uy N 0%u, F 0%¢ ) 0%¢ 2 0%y
C11 9x2 C231 Ox0z 11 Dx2 ] 31263602 121 9x2
_ %y _ a_T 0%uq M _0fuy
2431 owos Moy T Css ( 822 axaz) FTEN (1)
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i 0%u;  0%*uy B 62_¢)_/1 621,b+c 0%uy
55\ 9x2 ' 9xoz 1axz "31ox2 T 31 oxaz

0%u 2%2¢ 2%y aT _  9%u
+C33?23_ 335,2 33?‘“35—P?23' (12)
0%u 0%u; 0%u 0°%u 0%
/111_1"'/131 — 33—3+a1—¢
J0x? 0x0z 0x?2 0z2 0x?
9%¢ 2%y 2%y oT aT _
ta St Vigs Ve Py~ P35, =0, (13)
0%uy e (3 0%u;  0%ug 0%uy 0%¢
31\"0x0z = 0x?
2%y oT aT

2%y
—+alm+a3§—mla—m3——0, (14)

(1+‘[ i)T[a 62ul+a 62u3_m o°¢ -m o°¢ - 0"y
05¢) oM Gaar T B 9zar T Maxar 2 ozar Ploxor

%y aT a%t a%T
—P3g o Tl =Ko+ K (15)

where

€11 = C1111» C33 = (3333, €31 = C3311 = C1133, Cs5 = C3113) Fi1 = Fiq,
F31 = F311, 11 = A1, Az1 = A311, a; = agy, as = dass, a; = g1,
a3 = Qz3, Y1 = V11, V3 = V33, K1 = k11, K5 = k33, Ay = Aqq, A3 = Ass.

4. Plane wave propagation

The plane harmonic solutions of Egs. (11) to (15) are sought in the following form
{ul' Us, T, 1»[}' ¢} — {al' ﬁ3' T' l/;, (l_)}etk(sinB x + cosO z —vt)' (16)

where ( = +/—1, 6 is the angle of propagation, k is the wave number, v is the complex wave speed and
i, s, T, P, ¢ are arbitrary constants.

Using Eg. (16) in Egs. (11) to (15), we obtain the following homogeneous system of five equations in
iy, U3, T, and ¢.

(¢ — D)y — Lytig + (t/k)a sinT + Loy + Ly = 0, (17)
—L, 6y + ({ — Dy)us + (t/k)azcosOT + D3h + Dgp = 0, (18)
a,Ty{sinfu, + a;T,{cosOtu; — (1/k)(Dg — c,{)T — (PP — {M¢ = 0, (19)
Loty + D3tz + (t/k)PT + Dy + Ds¢p = 0, (20)

L3ty + Dgtiz + (t/k)MT + Dy + D;¢p = 0, (21)

where ¢ = pv? and the expressions for D; (i=1,2,.,8), L; (1=1,2,3), M and P are given in Appendix

I. The system has non-trivial solution if the determinant of the coefficients of @, u;, T, ¥, ¢ vanishes, i.e.,
A3+ B{*+C{+D =0, (22)

where the expressions for A, B, C and D are given in Appendix |. The dispersion Eq. (22) is a cubic
equation in v2 with complex coefficients. Therefore, the three roots of Eq. (22) are complex. The square of
complex phase velocities v;, (j = 1,2,3) of quasi-waves will vary with the direction of phase propagation.
Then, the complex phase velocities of the quasi-waves (v; = r; + is;) defines the phase propagation velocities
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V= (r]-2 + s]-z)/r]- and attenuation quality factors q; = —2s;/r; for each j. Therefore, three propagating
waves in thermo-magneto-electroelastic medium are attenuating waves. For real slowness vector, the
directions of propagation and attenuation are same. Hence, these waves are homogeneous waves. The three
roots v;2,(j = 1,2,3) of Eq. (22) correspond to quasi-P (gP), quasi-T (qT) and quasi-SV (qSV) waves,
respectively. If we neglect electric, magnetic and thermal fields, the Eq. (22) reduces to

(%4 (D1 + Dy)¢ + (DyD, — Ly ?) =0, (23)

which gives the speeds of qausi-P and quasi-SV waves in a transversely isotropic elastic media.

5. Reflection from the stress free surface

In this section, the reflection of gP wave from a stress free, charge free and thermally insulated surface
z = 0 is studied. For an incident gP wave propagating through x-z plane, the qP, qT and gSV waves get
reflected back into the half-space. The complete geometry showing the half-space with the incident and
reflected waves has been shown in Fig. 1.

qP

qSVv

V4

Fig. 1 Geometry of the half-space showing incident and reflected waves

The relevant boundary conditions at stress free and thermally insulated surface z = 0 are taken as
arT
o33 =0, 03; =0, Py 0, (24)
where
033 = C31U1 + CazUsz — Fazps — Aszh 3 — asT,
031 = Cs5(Usz +Uz1) — Fa191 — 4514
The appropriate displacement components, temperature, electric and magnetic potentials of incident and
reflected waves in the half-space z > 0 are
u, = Aoetkl(sineox + cosfyz — V1 t) + Aletkl(sinelx —cosf1z — Vit)

+ Azetkz(sinezx —c0s0z — V,t) + A3etk3(sin63x — cosf3z — V3t) (25)
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Uy = nOAOeLkl(sineox + cosfgz — Vi t) + 771Aletkl(sinalx —cosf1z —Vyt)
+ nZAzetkz(sinGZx — c0s0yz — V,t) + 7,’3A3etk3(sin93x — cosf3z — V3t) (26)
T = Zvoelkl(Sineox + cosByz — Vqt) + ZlAleLkl(sineix —cosf1z — Vqt)
+ (ZAzeLkZ(Sinezx — c0s0z — V,t) + 63A3etk3(sin93x — cosf3z — V3t) (27)
1/) — EOAoelkl(Sinsox + cosfyz — Vi t) + flAleLkl(Singlx —cosf,z — Vqt)
+ EzAzeLRZ(Sinezx —cos6z — Vt) + €3A3etk3(sin93x — cosf3z — V3t) (28)
¢ — XOAOeLkl(sineox + cosfyz — Vit) + XlAleLkl(sinelx —cosf1z —Vit)
+ XZAzeLkz(sinezx — €c0s0,z — V,t) + X3A3etk3(sin93x — cosf3z — V3t) (29)
where the coupling coefficients n;, {;, &, x; (i =0,1,2,3) are given in Appendix II.

The solutions (25) to (29) for incident and reflected waves satisfy the boundary conditions (24) if following
relation similar to the Snell’s law holds

o _ i (i =1,2,3) (30)

vi v

With the help of the Snell’s law (30), we obtain the following expressions for reflection coefficients as

AL _ A1 Az _ A A3 A3
40 A’ Ay A’ A A’ (31)
where
A = ay1(b12d13 — by3dy2) — a12(b11dis — by3dyi1) + ay3(b11diz — bipdyq),
Ay = (biz — a13)(dyz + aq2) — (b2 — ag2)(dy3 + ay3),
A, = (b1 — a11)(dy3 + ag3) — (b13 — ay3)(dyg + a41),
Az = (b12 — a12)(d11 + aq1) — (b11 — a11)(dyz + aq2),
. Vj ¢j
c31 sinfy (V_l) +0QjQqj+ La3(k—j) v, ]
@ =— P () G=123),
c31 5infBg + cosfyQqp + La3(ﬁ) Vj
) ¢
b= —Cs55 Qj + sinfp Qg (Z—i) (V1) 4 = Qj <k—j> (V1>2 12 3)
1 ™ " g5 cosby + sinfy Qa0 vi) u - cosbg (;%) vi)’ G=123),
and

Q10 = (—F33x0 — 43380 + €33M0), Q20 = (—F31X0 — A31§0 + Cs5M0),
Q1j = (F33xj + 2338 — ¢33M;),  Q2; = (—F31xj — A31&; + Cs51),
= 1= (%) sin26,, i =1,2,3
Q; = _(V_l) sin?6,, (j = 1,2,3).
Following Achenbach (1973), the expression for time average of power per unit area are given as
< P* >= 0'337.:1,3 + 0'31it1. (32)

Using the Eg. (32), the time average power per unit area < P* > of incident and reflected waves are
obtained. Then, the expressions for energy ratios ER; (j = 1,2,3) are obtained as

Xjnj—Csst+(ﬁ)Sin9002]' Aj\?
. ) 1) @)

J Xo 7o + Cs5 C0sBg +sinfyQz0 \Vj/ \Ag

where
: Vj ¢j . Z
X; = 3 sinf, (V—i) +Q; Q1 +1a3 <k_],)’ Xy = €315in8, + c0s6,Q, + taz (i)
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Fig. 2 (a)-(c) Variations of reflection coefficients of reflected waves for incidence of gP wave when K;=4
(Thick solid curve), K1=8 (Thin solid curve) and K;=12 (Dashed curve)

6. Numerical results and discussion

The following physical constants of Lithium Niobate (Weis and Gaylord,\ 1985) have been chosen to
compute the reflection coefficients and energy ratios of reflected qP, qT and qSV waves:

p = 4.647 x 103K gm™3,

€1 = 2.03 X 101INmM™2, 43 = 2.424 X 1011 Nm™2,

css = 0.595 X 10 *Nm™2, ¢3; = 0.752 x 101 *Nm™2, 1,; = 1.13Cm™?,
Ass = 1.33Cm™2, A3, = 0.23Cm™2, y, =852, y, =287,
Fiy = 02 % 1072Kg, Fs; = 0.15x 102Kg, Fy, = 0.1 x 102Kg,
A; =0.005NA™2, A; =0.004 NA™2, a; = 13.3 X 107°K 1,
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a; =103 x107°K~1, K, =4Wm™ K™, K, =42Wm 1K1,
a; =0.02Cm 47, a3 =0.03Cm 4™, m; = 0.006Nm *A~1K™?,
ms = 0.004Nm~1A71K~1, 7, = 0.00000005 s,
p; = 0.133 x 105NC~1K™1, p; = 0.103 x 105SNC~ 1K1,

Using the above material parameters in Egs. (31) and (33), the reflection coefficients and energy ratios of
reflected qP, qSV and qT waves are computed numerically for incidence of gP wave. The reflection
coefficients and energy ratios of the reflected waves are illustrated graphically against the angle of incidence
6, (0°—90°) in Fig. 2(a) to 2(c) and Fig. 3(a) to 3(c), respectively, when K; = 4 (thick solid), 8 (thin
solid) and 12 (dashed curve).

The reflection coefficient of reflected qP wave (as shown in Fig. 2(a)) first decreases very sharply with
the angle of incidence and attains a minimum value at 6, = 45°. Thereafter, it increases very sharply to itsd
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Fig. 3 (a)-(c) Variations of energy ratios of reflected waves for incidence of gP wave when K;=4 (Thick solid
curve), K1=8 (Thin solid curve) and K;=12 (Dashed curve)
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maximum value at the grazing incidence. The reflection coefficients of reflected qSV and qT waves (as
shown in Fig. 2(b) and 2(c)) decreases monotonically as 6, varies from 0° to 90°. The reflection
coefficients of all reflected waves depend on thermal conductivity K, at each angle of incidence except
normal and grazing incidences. However, the thermal conductivity parameter K; affects the reflection
coefficients of qT waves more significantly as compared to the reflection coefficients of gP and qSV
waves.

The energy ratios of reflected gP wave (as shown in Fig. 3(2)) for different values of thermal conductivity
parameter K; monotonically decrease with the angle of incidence and attains their respective minimum
value at 6, = 45°. For therange 45° < 6, < 649, these energy ratios oscillates and thereafter these increase
very sharply to their respective maxima at grazing incidence. The energy ratios of reflected qSV waves (as
shown in Fig. 3(b)) for different values of thermal conductivity parameter K, increase very sharply as 6,
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increases and attain respective maxima near 6, = 10°. Beyond 6, = 10°, these energy ratios decreases
respective minimum values at 6, = 45°. Thereafter these energy ratios first increase and then decrease till
grazing incidence. The energy ratios of reflected gqT waves (as shown in Fig. 3(c)) for different values of
thermal conductivity parameter K; are maximum at normal incidence and these decrease very sharply to
resepctive minimum values at 6, = 45°. Thereafter these energy ratios first increase and then decrease till
grazing incidence. Similar to the reflection coefficients, the effect of thermal conductivity parameter K; is
also observed more prominent on the energy ratios of reflected qT as compared to the energy ratios of
reflected gP and qSV waves.

The energy ratios of all reflected waves are also illustrated graphically against the angle of incidence 6,
in Fig. 4(a) to 4(c) for magneto-thermal parameter m, = 0.006 (thick solid), 0.1 (thin solid) and 0.2
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Fig. 6(a)-(c) Variations of energy ratios of reflected gP wave for incidence of qP wave when A;=0.005 (Thick
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(dashed curve). The energy ratios of all reflected waves change with magneto-thermal parameter m, at each
angle of incidence. However, the energy ratio of reflected qT wave changes more significantly due to the
change in magneto-thermal parameter m,.

The energy ratios of reflected waves are also plotted against the angle of incidence 6, in Fig. 5(a) to 5(c)
for magnetic parameter F;; = 0.2 x 1072 (thick solid), 0.5 x 10~2 (thin solid) and 0.8 x 10~2 (dashed
curve). From Fig. 5(a) to 5(c), it is observed that the energy ratios of all reflected waves change significantly
due to the change in magnetic parameter F;.

The energy ratios of reflected waves are also illustrated graphically against the angle of incidence 6, in
Fig. 6(a) to 6(c) for magnetic parameter A; = 0.005 (thick solid), 0.01 (thin solid) and 0.02 (dashed
curve). The magnetic parameter A, affects the energy ratios of all reflected waves. But, this effect of
magnetic parameter is observed more significant on the energy ratios of reflected gqT wave as compared to



154 Baljeet Singh and Aarti Singh

other reflected waves.

7. Conclusions

The plane harmonic wave solutions of the governing equations of generalized thermo-magneto-
electroelasticity are obtained which indicate the possible propagation of three quasi plane waves, namely, qP,
qT and gSV waves. For incident qP wave, the reflection coefficients (amplitude ratios) and energy ratios
of reflected are analytically obtained. A quantitative example of Lithium Niobate is setup to compute
numerically the reflection coefficients and energy ratios of reflection waves. For incident qP wave, the
energy share of reflected gP wave is noticed maximum. However, the energy share of reflected qT wave is
noticed much smaller as compared to other reflected waves. From theoretical derivations and numerical
results, it is found that the amplitude and energy ratios of reflected waves depend upon the frequency, thermal
relaxation time, electric, magnetic and thermal parameters. The energy ratios and reflection coefficients of all
reflected waves are computed against the angle of incidence for different electric, magnetic and thermal
parameters. The different values of thermal, magnetic-thermal and magnetic parameters K;, m,, F,;; and
A, are chosen for illustrations of energy ratios and reflection coefficients of all reflected waves. It is noticed
that all reflected waves are affected due to these parameters. This effect is noticed minimum at normal and
grazing incidences. The reflected qT wave is found most affected due to these material parameters. The
electric, electric-thermal and electric-magnetic parameters change very slighly the values of the reflection
coefficients and energy ratios and hence not illustrated graphically. From numerical computations, it is also
noticed that the sum of energy ratios of all reflected waves is found equal or less than unity at each angle of
incidence. This fact validates the present numerical results and also justifies the greater than one value of
reflection coefficient for reflected qSV at angles near the normal incidence. In absence of electric and
magnetic parameters, the present numerical results agree with those published in earlier works (Sharma et al.
2003, Das et al. 2008, Abd-Alla et al. 2016). The present numerical results on plane wave characteristics may
have potential applications in developing acoustic/ultrasonic devices, sensors and actuators, electric
packaging, magnetic field probes, hydrophones and transducers working in a desired ways.
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Al

Nomenclature

F; the body force,

Po the electric charge density,

o the electric current density,

p the mass density,

h the heat supply,

U; the displacement components,

P the electric potential,

¢ the magnetic potential,

0ij the components of stress tensor,
Dy, the dielectric displacement vector,
By the magnetic intensity,

n the entropy density,

e;j the components of strain tensor,
E; the electric field,

€ the magnetic field,

T the temperature change to a reference temperature T,
kij, K; the coeffcients of thermal conductivity,
Ce the specific heat,

Ay, A the electro-magnetic coefficients,
a;j, a; the thermal coefficients,

pi the electro-thermal coefficients,
m; the magneto-thermal coefficients,
Cijkr Cij the elastic coefficients,

Yijr Yio Aijio Aij the electric coefficients,

Ayj Aks Fijio Fij the magnetic coefficients,

Ty the relaxation time.
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Appendix |

The expressions for A, B, C and D are obtained as

A = ¢,(DyD; — D2) + P(PD, — MDs) — M(PDs — MD,),
B = Dg(D4D; — D&) = Co[(Dy + D2)(D4D; — DE) + 2Ly L3Ds — L3D; — L3D4 — DED; + 2D3DsDg —
D,D2] — P[(Dy + D;)(PD; — MDs) — a5c0s8(DsDy — DsDg) — Dg(PDg — MD3) — a;sin(L,Dy —
LsDg) + Ly(MLy — PL3)] + M[(D; + Dy)(PDs — MD,) + a5c0s0(DsDs — DyDg) — D3(MDs — PDg) +
a;sin@(L,Ds — L3D,) — L,(ML, — PL3)] + a;Tycos@[azcosf(—D,4D, + DZ) + D3(PD, — MDg) —
Dg(PDs — MD,)] + @,Tysinf[a,sind(—D,Dy + D) + L,(PD; — MDg) — Ly(PDs — MD,)],

C = Dg[(Dy + Dy)(D4Dy — DZ) + 2D, — 2L,LsDs + L2D, + D2D; — 2D3DsDg + D,DZ] + ¢,[(D, D5 —
L2)(DyDy — D) — 2L,LyD3Dy + 2Ly L3D3Ds + 2L, LyDsDg — 2Ly L3DyDg + L3DyDy — 2L,L3D,Dsg +
I2D2 — 2L,L3D3Dg + L3D,D, + [2D% + D; DD, — 2D, D3DsDg + Dy D,D2] + P[(DyD,)(PD, — MDs) +
3c080D; (D3D; — DsDg) + Dy Dg(PDg — MD3) — L2(PDy — MDs) — azcosOL, (LyDs — LsDy) +
L,Dg(ML, — PL3) — a;sin@L, (D3 Dy — DsDg) + ay5in8D,(LyDy — LyDs) + a,sin@Dg(LyDg — LyDs) +
LiL3(MD3 — PDg) — DoL3(ML; — PL3) — a3c080L3(LyDg — L3D3)] — M[(D,D;)(PDs — MD,) +
3c080D; (D3Ds — D4Dg) — Dy D3 (MD; — PDg) — L2(PDg — MD,) — azcos6L, (LyDs — LsDy) +
L,D5(ML, — PL3) — a;sin@L,(DsDs — DyDg) + ay5in8D,(LyDs — LyD,) + a,sin@D5(LyDg — LsDs) +
LiL,(MD3 — PDg) — D;L,(ML, — PL3) — a3cos0L,(L,Dg — L3D3)] + a3TycosB[azcosdD,(DyD; —
D2) = D,D(PD, — MDs) + Dy Dg(PDg — MD,) — a;sinfL,(DyDy — DZ) — a;sin8Ds (LD, — DsLs) +
a,5in8Dg (L,Ds — LyDy) + Ly Ly)(PD; — MDs) + a5c080Ly (LyDy — LyDs) — LyDg(ML, — PLy) —
L,L3(PDs — MD,) — a3c080L3(LyDs — L3Dy) + DsLy(MLy — PL3)] + @, Tosin6[azcos8Ly (—DyDy +
D2) — L,D3(PDy — MDg) + L,Dg(PDs — MD,) + a,sin8D,(D,D; — DZ) + a;sinfDs(DsD; — DsDg) —
a;5in8D, (D3Dg — D4Dg) — LyDy(PDy — MDs) — azcosOL,(DsDy — DsDg) + LyDg(MDs — PDg) —
LsD,(PDs — MD,) + 3c080L3(DsDs — DyDg) — L3Ds(MDs — PDg)],

D = —(DgD;Dy + L2)(DyDy — DZ) — 2Ly L, DDy + 2Ly LsD3Dg — 2Ly LsDyDg + 2L, L, DsDg +
I2D,Dy — 2L,L3D,Ds + L3D2 — 2L,LsDsDg + LAD,D, + L2D? + D, D2D, — 2D, D3 DDy + D; D, D,
and
L; = (c31 + cs5)sinfcosf, L, = 213;sinfcosh + A;;sin?6,
L = 2F;;sinfcosf + F;;sin%6,
D; = ¢1;5in20 + c55c05%0, D, = c555in%0 + c33€0520,
D3 = A3;5in?0 + A33c0s%8, D, = y;sin?8 + y;3cos26,
Ds = a;sin%0 + azcos?6, Dg = F3;5in?6 + F35c0s20,
D, = A;sin?0 + Ascos?6, Dg = —(K;sin20 + K;cos26) /(1o + ),

w
. . 5 P Y M
P = p;sinf + p3cosf, M = m;sinf + mszcosf, P = . M= >
_ as — a, _ Ce
Az =—, 4Gy =—, Cp=—.
3T YT e T,

Appendix Il

Making use of the solutions (25) to (29) for incident and reflected waves into the equations (11) to (14),
the expressions 7n;, xi, &, ¢, (i =0,1,2,3) obtained after using Snell’s law (30) as

_ A _Ap _ Az G A 34
nl_Air XL_Al_! €l_Al_! ki_Ai’ ( )

where
A; = 91il96i(911i916i — 912i915i) — 97i(G10i916i — 912i914i) + 98i(J10i915i — 911i914i)] —

92il95i(911i916i — 912i915i) — 97i(GoiG16i — 912i913i) + 9si(Goig1si — J11i913)] +
93il95i(G10i916i — 912i914i) — 96i(GoiG16i — 912i913i) + 98i(GoiG14i — J10i913)] —
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94il95:(9101915i — 911i9141) — G6i(90i915i — 91119130 + 971(99i914i — 91019130,

Ay = (Gei — 920)[(G11i — 930) (G16i — Gai) — (9120 — 94i) (G1si — 93)] — (970 — 93)[(G10i — G2i) (G16i
= 9ai) — (G12i — 940) (G14i — 9201 + (i — 94)[(Gr0i — 920) (G15: — 931) — (G11
= 931)(G14i — 9201,

Az = (97: — 93)[(9oi — 910) (G161 — Gai) — (G12i — 941) (G13i — 91)] — (9si — 91)[(G11i — 93:) (Gu6i
= 9ai) — (G12i — 941) (G15i — 93)] — (9si — 94)[(Goi — 911)(G15i — 931) — (G11
— 931)(G13i — 910

Az = (95i — 910[(G10i — 920) (G160 — Jai) — (G12i — Gai) (G1ai — 920)] — (Gei — 920)[(Goi — 91:) (916i
= 941) — (G120 — 94) (G13i — 911 + (Gsi — 94)[(Goi — 910)(G14i — G2i) — (G10:
= 920) (9131 — 91,

Ay = (Gei — 920)[(Goi — 910)(G1si — 93i) — (911 — 931) (9131 — 91)] — (si — 910)[(910i — 92:) (91si
= 931) — (911i — 93)(G14i — 920)] — (97: — 93 [(Goi — 911) (914i — 920) — (G0
= 920) (9131 — 91

(€31 + cs55) (%) sinf, 1 — (%)2 sin?6,

911 = VA2 ’
Ccss + (€11 — Cs5) (V;) sin26, — pV;?

and

Fy (%)2 sin?8, — 2F;, (%) sinf, |1 — (%)2 sinZ6,
92 = VA2 ’
Cs5 + (11 — Cs5) (V;) sin?6, — pV;?

M (%)2 sin?6, — 215, (%) sinf, |1 — (%)2 sin26,

1
g3i = 2 )
V; .
Css + (€11 — Cs5) (V;) sin6, — pV;?
—la, (%) sing,,

ViV? '
Cs5 + (C11 — Cs5) (Vi) sin26, — pV;?

9ai =

Vi\2 .
—C33 + (€33 — Cs5) (Vi) sin?6, + pV;?

1- (%)2 sin?6,

Q
@
Il
P

/AR
—(c55 + ¢31) (V;) sinf,

2

F33 + (F31 — F33) ) sin®6,

—
~=

1- (%)2 sinZ6,

2
) sin?6,

«Q
)

Il
P

Viy .
—(c55 + €31) (V;) sinf,

A3z + (A31 — 433)

—~
~=

—(cs5 + €31) (%) sinf, |1 — (%)2 sin?6,

1
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1- (%)2 sin?6,

S
w

Isi =
—(cs5 + €31) (%) sinf, |1 — (%)2 sin?6,

A3z + (A31 — A33) %)2 sin*6,
Joi =
9t v » 3 . )
2234 (Vi) sinf, ’1 - (Vi) sin?0, — A4 (Vi) sin?6,
as + (a; — as3) (%)2 sin?6,
g . =
10 v v 5 v )
2234 (7;) sinf, |1 — (Vi) sin?6y — A4, (Vi) sin?6,
_ Y3+ (1 —v3) (Ki)z sinf,
911i = . s oo
2234 (7;) sinf, |1 — (Vi) sin?6, — 444 (Vi) sin?6,
p, (%) sinfy —tp3 |1 — (%)2 sinZ6,
J12i = . o oo
Yy (Vi) sinf, |1 — (V;) sin?6, — A4, (V;) sin?6,
ViV2 .
F33 4 (F31 — F33) (V;) sin*6,
G131 =
13i v v 5 v )
2F;, (Vi) sinf, |1 — (V;) sin?6, — F;; (ﬁ) sinZ6,
) A+ (4 — A3) (%)2 sin26,
G14i = . o o2
2F;, (Vi) sinf, |1 — (V;) sin?6, — F;; (ﬁ) sinZ6,
~ as + (a; — as3) (%)2 sin?6,
915i = . o o2
2F;, (Vi) sinf, |1 — (V;) sin?6, — F;; (ﬁ) sinZ6,
my (%) sinfy, —tmy |1 — (%)2 sin?6,
G161 =

2 2

2F;,; (%) sinf, |1 — (%) sin%6, — F;, (%) sin?6,





