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Abstract.  The paper deals with the study of the dispersion of quasi-Lamb waves in a hydro-elastic system consisting 
of an elastic plate, barotropic compressible inviscid fluid, and rigid wall. The motion of the plate is described using the 
exact equations of elastodynamics, however, the flow of the fluid using the linearized equations and relations of the 
Navier-Stokes equations. The corresponding dispersion equation is obtained and this equation is solved numerically, 
as a result of which the corresponding dispersion curves are constructed. The main attention is focused on the effect of 
the presence of the fluid and the effect of the fluid layer thickness (i.e., the fluid depth) on the dispersion curves. The 
influence of the problem parameters on the dispersion curves related to the quasi-Scholte wave is also considered. As 
a result of the analyses of the numerical results, concrete conclusions are made about the influence of the fluid depth, 
the rigid wall restriction on the fluid motion, and the material properties of the constituents on the dispersion curves. 
During the analyses, the zeroth and the first four modes of the propagating waves are considered. 
 

Keywords:  quasi-lamb waves; wave dispersion; quasi-Scholte waves; elastic layer; hydro-elastic system; 

compressible inviscid fluid 

 
 
1. Introduction 
 

One of the main questions of the dynamics of plate-fluid hydro-elastic systems concerns the 

dispersion of propagating waves in these systems. The results of investigations on the problem 

provide the theoretical basis for non-destructive defect determination in hydro-elastic systems with 

ultrasonic waves. The investigations carried out in the present paper are about finding the answer to 

this question. In this way, we studied the dispersion of the quasi-Lamb waves propagating in the 

hydro-elastic system consisting of an elastic plate, compressible inviscid fluid layer, and rigid wall 

restricting the motion of the fluid in the direction perpendicular to the plate plane. To illustrate the 

novelty of the investigations carried out in the present paper we first consider a brief review of the 

related and relatively recent investigations. Note that the review of earlier investigations can be 

found in the works of Viktorov (1967), Bagno (1997) and Akbarov (2018).  

We begin this review with the paper by Bagno (2015) in which the wave dispersion in the hydro-

elastic system consisting of the pre-stressed compressible elastic plate and compressible inviscid 
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fluid layer with a free face surface is studied. Following the investigations carried out in this paper 

Bagno (2016) developed his work for the case where the fluid is viscous and later, in the paper 

(Bagno 2017) he considered the case where the elastic plate is in contact with the inviscid 

compressible fluid half-space. In all these investigations the flow of the fluid is described by utilizing 

the linearized Navier-Stokes equations and the motion of the plate by utilizing the three-dimensional 

linearized theory of elastic waves in bodies with initial stresses. In the paper (Guz and Bagno 2016) 

the investigation carried out in the paper (Bagno 2016) again is considered for the case where the 

plate has initial stresses and corresponding numerical results are presented for large change range of 

the problem parameters. Guz and Bagno (2019) then considered the problem related to the wave 

dispersion in the elastic plate which is in contact with the compressible viscous fluid.  

Thus, it follows from the foregoing brief review that almost all investigations regarding the plate 

and fluid interaction problem relate to the cases where the plate is in contact with the fluid half-

space or is in the contact with a fluid layer with the free surface. However, there are many situations 

where the walls restrict the flow of the fluid that is in contact with the plate. In such cases, the 

corresponding hydro-elastic systems are modeled as “plate+fluid+rigid wall” system. There are a 

considerable number of investigations such as Akbarov and Ismailov (2015, 2016, 2017, 2018), 

Akbarov and Panakhli (2017), Akbarov and Huseynova (2019, 2020) related to the dynamics, the 

forced vibration and moving load regarding this system. We briefly discuss the subjects of these 

papers. The paper (Akbarov and Ismailov 2015) studies the dynamics of the moving load acting on 

the “plate+fluid+rigid wall” system. The numerical results related to the interface stress and fluid 

flow velocities are presented and discussed. The forced vibration of the “plate + fluid + rigid wall” 

system is investigated in the paper (Akbarov and Ismailov 2017) and the rule of the influence of the 

fluid viscosity and compressibility on the interface stress and fluid flow velocities are established. 

The paper (Akbarov and Ismailov 2016) investigates the dynamics of the oscillating moving load 

acting on the mentioned system. As a result of this investigation, the “gyroscopic effect” on plate 

fluid interaction characteristics is established. The forced vibration of the “viscoelastic plate + 

viscous fluid + rigid wall” system is studied in the paper (Akbarov and Ismailov 2018). Numerical 

results on the influence of the rheological parameters of the plate material on the interface stress and 

fluid flow velocities are presented and discussed. The paper (Akbarov and Panakhli 2017) studies 

the forced vibration of the hydro-elastic system consisting of the moving plate, compressible viscous 

fluid and rigid wall. Numerical results regarding the influence of the plate moving velocity on the 

stress and velocity state in the hydro-elastic system under consideration are presented and discussed. 

Note that in all the foregoing papers it is assumed that the plate material is isotropic. The paper 

(Akbarov and Huseynova 2019) unlike the foregoing works investigates forced vibration of the 

hydro-elastic system consisting of the orthotropic plate, compressible viscous fluid and rigid wall. 

Numerical results illustrated the influence of the anisotropy properties of the plate material on the 

stress and velocity field in the system are analyzed. Finally, the paper (Akbarov and Huseynova 

2020) studies the fluid flow profile in the system “orthotropic plate+compressible viscous fluid + 

rigid wall” under action on the plate the moving load.          

Thus, it follows from the foregoing review and from the authors’ best knowledge, up to now, 

there are not any investigations related to the guided wave dispersion propagating in the 

“plate+compressible fluid+rigid wall”. Considering that the significance of such investigation is not 

limited only to the theoretical senses, in the present paper we attempt to investigate the dispersion 

of the waves propagating in the system consisting of an elastic plate, compressible inviscid fluid, 

and rigid wall. 

 

124



 

 

 

 

 

 

On the dispersion of waves propagating in “plate+fluid layer” systems 

 

2. Field equations and basic relations  
 

We consider wave propagation in a hydro-elastic system consisting of an elastic layer, 

compressible barotropic inviscid fluid layer and rigid wall the sketch of which is illustrated in Fig. 

1(a). Associate the Cartesian system of coordinates Ox1x2x3 with the upper face plane of the plate 

and as we will consider the plane-stain state in the elastic plate and the plane flow of the fluid layer 

in the Ox1x2 plane, therefore the Ox3 axis doesn’t shown in Fig. 1(a). According to the selected 

coordinate system and to Fig. 1(a), we can indicate the regions  1 ,x−  +   2 0h x−    , 

3x−   +   and  1 ,x−  +   2dh x h−   −  , 3x−   +   occupied by the elastic plate 

and fluid layer, respectively, where h is the plate thickness and hd is the fluid depth or the thickness 

of the fluid layer. 

Thus, within the scope of the foregoing assumptions, we can write the following equations and 

relations describing the motion for the elastic plate 

Equations of motion 

2
11 12 1

2
1 2

,
u

x x t

 


  
+ =

  
     

2
12 22 2

2
1 2

,
u

x x t

 


  
+ =

  
                (1) 

Elasticity relations 

111 1 22( 2 ) ,    = + +   122 1 22( 2 ) ,   = + +  112 22 = ,           (2) 

Strain-displacement relations 

1
11

1

,
u

x





=  2

22
2

,
u

x





=  1

12
2 1

21

2

u u

x x


 
+

 
=  

  
.                 (3) 

In Eqs. (1)-(3) σ11, σ22 and σ12 (ε11, ε22 and ε12) are the components of the stress (strain) tensor, u1 

and u2 are the components of the displacement vector, λ and μ are the Lame’s constants and ρ is the 

density of the material of the elastic layer. 

Now we write the field equations for fluid flow. 

Linearized equations of the fluid flow: 

Linearized Navier-Stokes, continuity, rheological, strain-velocity dependencies and state 

equations for compressible inviscid fluid layer can be respectively written as follows 

(1)
(1) 1
0

1

0,
v p

t x


 
+ =

 
  

(1)
(1) 2
0

2

0,
v p

t x


 
+ =

 
                     (4) 

Linearized continuity equation 

(1)
(1) 1 2
0

1 2

0,
v v

t x x




  
+ + = 

   
                            (5) 

The components of the stress tensor in the fluid are determined through the relations 

(1) ,ij ijT p= −                                  (6) 

Linearized state equation 
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(a) (b) 

Fig. 1 Geometry of the problem 

 

 

(1)
2
0(1)

p
a




=


.                                 (7) 

In (4)-(7) the following notation is used: 
(1)
0  is the fluid density before perturbation, ρ(1) and 

p(1) are perturbations of the fluid density and pressure, respectively, a0 is a sound speed in the fluid, 

v1 and v2 are components of the fluid flow velocity vector, T11 and T22 are components of the stress 

tensor in the fluid. 

Note that the explanation of how the linearized equations in (4) and (5) are obtained, is given in 

the Appendix. 

According to Guz (2009), the solution of the above system of Eqs. (4)-(7) is reduced to finding 

the potential φ determined from the following equation 

2

2 2
0

1
0

a t


 
 − = 
  

.                                (8) 

Note that the components of the velocity vector v1, v2 and the pressure p(1) are expressed by the 

this potential through the following expressions 

1
1

v
x


=


 ,  2
2

v
x


=


,  (1)(1)
0p

t
 


= −


, 

(1)
(1) 0

2
0

ta


 


= −


.              (9) 

Substituting the presentation in (9) into the equations in (4) it is obtained that these equations are 

satisfied automatically. Moreover, substituting the presentation in (9) into the continuity equation in 

(5) it is obtained Eq. (8) with respect to the potential φ. If we assume that the fluid is incompressible, 

then we must obtain limit case of Eqs. (8) and (9) as a0→∞, as a result of which it is attained the 

equation ∆φ=0 instead of Eq. (8) and ρ(1)=0 instead of the last presentation in (9). Consequently, the 

presentation v grad=  useable not only for the incompressible fluids but also for the barotropic 

compressible fluids.        

This completes the field equations and we assume that for the problem under consideration the 

following boundary, compatibility and impermeability conditions are satisfied.  

Boundary conditions on the upper free plane of the plate 
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2
12 0

0
x


=

= ,   
2

22 0
0

x


=
= .                         (10) 

Compatibility conditions on the contact plane between the fluid and plate 

               
2

12 0
x h


=−

= ,  
2 2

22 22x h x h
T

=− =−
= ,  

2
2

2
2 x h

x h

u
v

t =−
=−


=


.           (11)   

Impermeability condition on the rigid wall 

2
2 0.

dx h h
v

=− −
=                                (12) 

This completes the formulation of the problem which we are going to investigate in the present 

paper. Nevertheless, we note that, as usual, the wave propagation problem for the “elastic plate+fluid 

layer system” were investigated for the case where the layer face, as in the paper by Bagno (2015) 

is free from the restriction on the flow velocity, such as shown in Fig. 1(b) and in this case the 

condition  

2 2
22 ' 0

d dx h h x h h
T p

=− − =− −
= − =                    (13) 

is written instead of the condition (12).  

The question “how the aforementioned restriction can act on the wave dispersion in the hydro-

elastic system under consideration?” will be also considered in the present investigation. 

It follows from the above formulation that the elastic and fluid flow fields are coupled only 

through the compatibility conditions (11). In other words, the governing field equations of each 

constituent do not contain the quantity related to the other constituent. However, there are many 

other problems related to the coupling of the electric, magnetic, thermal, and mechanical fields 

simultaneously, such as the problems considered in the papers by Mororro-Navaro et al. (2017, 2018, 

2020) and many others listed therein, in which the equations of the mechanical and thermal fields 

contain the terms determined by the electromechanical fields and vice-versa. Consequently, in the 

mentioned type problems, the coupling of the various fields is accomplished through the field 

equations, which complicates the solution of the corresponding mathematic problem, where 

numerical methods are required, as for instance, the numerical methods developed in the papers 

Mororro-Navaro et al. (2017, 2018, 2020). 

 

 

3. Method of solution 
 

As we consider the harmonic waves propagating in the Ox1 axis direction, therefore the 

components of the displacement vector for elastic layer can be presented as ( ) ( )1
2j j

i kx t
x eu u

−
=  

and substituting this presentations into Eqs. (3) and (2) we obtain the following equations for the 

amplitudes ( )2ju x ( 1,2j = ) from Eq. (1) 

 

( ) ( )

( ) ( )

2
1 1

11 12 12
22

2
2 2

21 22 22
22

d d
0,

dd

d d
0,

dd

u u
c c u

kxkx

u u
c c u

kxkx






+ + =

+ + =




                         (14) 
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where 

2

2

11 12 2
2

, ,
2

,c
c

c
c i c

   
 

 
= =

+
=−

+
 

      

1

1

2

21 22 2
, .

2
, ( 2 )

2
c

c

c
c i c

  
  

   

+
= +

+ +
= = −                (15) 

After some mathematical manipulations we derive the following equation for 
22 ( )u x  from Eq. 

(14) 

 
( ) ( )

4 2

2 2

1 2 24 2

2 2

d d
0.

d d

u u
C C u

kx kx
+ + =                           (16) 

The general solution of Eq. (16) is determined as follows 

2 1 1 2 2 1 2 2 42 2 3 2 2( ) exp( ) exp( exp( ) exp( ,) )u A R kx A R kx A R kx A kxx R= + − + + −
          

 (17) 

where 

 

2 2
1 1 1 1

1 2 2 2

1 22 11 21 2 2212 12,

,
.2 4 2 4

C C C C
R

c

C R C

C c c c c C c


 = − + − = − − −



= + − =

                 (18) 

Using the solution (17) we determine also the expression for the function 
21( )u x  from Eq. (14) 

as 

 1 1 1 2 2 1 2 32 2 2 4 2 21 2 3 4( ) exp( ) exp( exp( ) exp() ),u A R kx A R kx A R kx A R kxx a a a a= + − + + −        (19) 

where  

          
2

22 1
1

21 1

c R
a

c R

−
= , 

2
22 1

2
21 1

,
c R

a
c R

−
= −  

2
22 2

3
21 2

c R
a

c R

−
= , 

2
22 2

4
21 2

c R
a

c R

−
= − .         (20) 

Note that there are not any conditions on the C1 and C2 in order to prevent becoming the complex 

values of the R1 and R2 in (18). However, under concrete numerical investigations carried out in the 

present paper the values of the R1 and R2 are obtained always real values.   

Substituting the expressions in (17) and (19) into the relation in (3) we determine the expression 

for the components of strain tensor and the substituting these later expressions into the elasticity 

relations in (2) we obtain the following expressions for the stresses which enter the boundary and 

compatibility conditions 

12 1 1 1 1 2 2 2 1 1 2( )exp( ) ( )exp( )A k a R i R kx A k a R i R kx = + + − + − +  

3 3 2 2 2 4 4 2 2 2( )exp( ) ( )exp( )A k a R i R kx A k a R i R kx+ + − + − , 

22 1 1 1 1 2 2 1 2 1 2(( 2 ) )exp( ) ( ( 2 ) )exp( )A k R i a R kx A k R i a R kx      = + + + − + + − +  

         3 2 3 2 2 4 2 4 2 2(( 2 ) )exp( ) ( ( 2 ) )exp( )A k R i a R kx A k R i a R kx     + + + − + + − .      (21) 

This completes the determination of the values related to the elastic plate. 

Now we consider the determination of the values related to the fluid and according to the 
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foregoing discussions we represent the potential φ as ( ) ( )1
2

i kx t
x e


 

−
=  . Substituting this 

expression into Eq. (8) we obtain the following equation for the amplitude of this potential 

( )

2 2

2 2
02

d
1 0

d

c

akx




 
− − = 
 
 

.                           (22) 

Thus, we obtain the following expression from Eq. (16) for the amplitude of the potential 2( )x  

 

1 2 22 2( ) exp( ) exp( ),B kx B kx x  = + −                        (23) 

where 

 

( )2 2
01 ,c a = −                                (24) 

and c(=ω/k) is the phase velocity of the propagated waves. 

Substituting the expression (23) into the relations in (9) we obtain the following expressions for 

the fluid pressure and velocity which enter into the compatibility (11) and impermeability (12) 

conditions. 

(1)(1)
1 2 2 20 ( exp( ) exp( ))p i B kx B kx   = − + − , 

   2 1 2 2 2exp( ) exp( )V B k kx B k kx   = − − .                      (25) 

Finally, substituting the expressions in (19), (21) and (25) into the boundary (10), compatibility 

(11) and impermeability (12) conditions, we obtain the system of homogeneous linear algebraic 

equations with respect to the unknowns A1, A2, A3, A4, B1 and B2. This system of equations can be 

presented in a matrix form as follows 

=AX 0 ,   

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

51 52 53 54 55 56

61 62 63 64 65 66

     

     

     

     

     

     

 
 
 
 

=  
 
 
 
 
 

A , 

1

2

3

4

1

2

A

A

A

A

B

B

 
 
 
 

=  
 
 
  
 

X  ,               (26) 

where 

11 1 1( )k a R i = + , 12 2 1( )k a R i = − + , 13 3 2( )k a R i = + , 
14 4 2( )k a R i = − + , 

15 0 = , 
16 0 = ,  

21 1 1(( 2 ) )k R i a   = + + , 22 1 2( ( 2 ) )k R i a   = − + + , 

23 2 3(( 2 ) )k R i a   = + + , 
24 2 4( ( 2 ) )k R i a   = − + + 25 0 = , 

26 0 = , 

31 1 1 1( )exp( )k a R i R kh = + − , 
32 2 1 1( )exp( )k a R i R kh = − + , 

33 3 2 2( )exp( )k a R i R kh = + − , 34 4 2 2( )exp( )k a R i R kh = − + , 35 0 = , 36 0 = , 

41 1 1 1(( 2 ) )exp( )k R i a R kh   = + + − , 42 1 2 1( ( 2 ) )exp( )k R i a R kh   = − + + , 

43 2 3 2(( 2 ) )exp( )k R i a R kh   = + + , 44 2 4 2( ( 2 ) )exp( )k R i a R kh   = − + + , 
(1)

45 0 exp( )i kh   = − − , (1)

46 0 exp( )i kh   = − , 

51 1exp( )i R kh = − , 52 1exp( )i R kh = , 53 2exp( )i R kh = − , 54 2exp( )i R kh = , 
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55 exp( )k kh  = − − , 56 exp( )k kh  = , 

61 0 = , 
62 0 = , 

63 0 = , 
64 0 = , 

65 exp( ( ))dk k h h  = − + , 
66 exp( ( ))dk k h h  = − + .              (27) 

To obtain non-trivial solutions to system of the homogeneous linear system of Eq. (26), it is 

necessary that  

det det 0, ; 1, 2, ... , 6.ij i j= = =A                     (28) 

where the components αij of the matrix A are determined through the expressions in (27). 

This completes the consideration of the solution to the field equations and obtaining the 

corresponding dispersion equation for investigation of the dispersion of the wave propagated in the 

hydro-elastic system indicated in Fig. 1(a). It is evident that, replacing the impermeability (12) 

condition with the free surface condition in (13) we obtain the dispersion equation for the hydro-

elastic system indicated in Fig. 1(b) which was already considered in the paper by Bagno (2015).    

 

 

4. Numerical results and discussions 
 

Numerical results which will be considered below are obtained through the numerical solution 

to the dispersion Eq. (28) under the solution made by employing the well-known “bi-section” 

method. Before the consideration and analyses of these results we attempt to test the used algorithm 

for the case where the elastic plate is in contact with the compressible inviscid fluid filled the half-

space. Recall that this case was also considered in the paper by Bagno (2017) and instead of the 

impermeability condition (12) (or instead of the free surface condition (13)) it was assumed the 

condition |φ|<M=const as x2→−∞ for the “plate + half-space fluid” (for which −∞<x2<−h) system 

and the constant B2 in (23) and (25) is taken as zero, i.e., B2=0. Here B2=0 means that there are no 

waves reflected from infinity, and |φ|<M=const as x2→−∞ means that, according to (23) and (24), 

in the cases where c>a0 (in the case where c<a0) the fluid velocities at “infinity” do not vanish and 

remain bounded (the fluid flow velocities vanish). Moreover, as in the paper by Bagno (2017) we 

assume that the material of the elastic layer is glass with the parameters: ρ=1160 kg/m3. λ=3.96×109 

Pa, μ=1.86×109 Pa and material of the fluid is water with the parameters: 
(1) 3
0 1000 kg/m =  and 

a0=1460 ms. Dispersion curves related to this case are given in Fig. 2(a) and in this figure through 

dashed lines are drown the dispersion curves related to the Lamb waves obtained for the elastic 

plate without contacting with the fluid, however, with solid lines are shown the corresponding 

dispersion curves for the case where the plate is in contact with the fluid half-space, i.e., the 

dispersion curves related to the quasi-Lamb waves. Moreover, in this figure through A1 and A2 (S1 

and S2) are indicated the dispersion curves related to the first and second asymmetric (symmetric) 

modes of the Lamb and corresponding quasi-Lamb waves. We recall that under obtaining the 

dispersion curves related to the asymmetric A1 and A2 (to the symmetric S1 and S2) modes of the 

Lamb waves in the plate without contact with the fluid it is assumed that the 1 1 2 1 1 2( , ) ( , ( ))u x x u x x h= − − +  

and 2 1 2 2 1 2( , ) ( , ( ))u x x u x x h= − +   ( 1 1 2 1 1 2( , ) ( , ( ))u x x u x x h= − +   and 2 1 2( , )u x x = )2 1 2( , ( )u x x h− − +  . 

However, under considering the quasi-Lamb waves (i.e., the case where the plate in contact with 

fluid) these conditions are not acceptable and the dispersion curves for this case are obtained from 

the solution of the dispersion Eq. (28). Note that the dispersion curves illustrated in Fig. 2 completely 
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(a) (b) 

Fig. 2 Dispersion curves for the glass-water half-space vs Lamb waves (no fluid) (a) and the difference 

between the velocities of the Lamb and quasi-Lamb waves (b) 

 

 

coincide with the corresponding ones obtained in the paper by Bagno (2017). Moreover, in Fig. 2(b) 

as an addition to the noted results, the graphs illustrate the difference between the wave propagation 

velocities obtained for the Lamb and quasi-Lamb waves.  

It follows from Fig. 2 that the contact of the plate with the fluid decreases the wave propagation 

velocity and the cut off wavelength in the first symmetric mode appears. Moreover, it follows from 

Fig. 2 that the cut off wavelength appear also in the second symmetric and asymmetric modes as a 

result of the contact of the plate with the fluid. According to Fig. 2, we can conclude that for the 

selected fluid and plate materials the high wavenumber limit value of the wave propagation velocity 

in the first asymmetric mode is the corresponding Scholte wave propagation velocity cSch which is 

equal to cSch=c2Gs×0.077171 for the selected pair of materials (where c2Gs is the shear wave 

propagation velocity in the selected glass). However, such limit value for the first symmetric mode 

is the Rayleigh wave propagation velocity cR in the plate material which is equal to cR=c2Gs×0.9355. 

At the same time, the relation a0/c2Gs=1.1525 occurs in the case under consideration.   

Now we analyze the numerical results obtained for the hydro-elastic system, the sketch of which 

is illustrated in Fig. 1(a), consisting of the elastic plate, compressible inviscid fluid, and rigid wall. 

These results are given in Fig. 3 and in this figure for clarity the graphs related to the dispersion 

curves of the selected modes are given separately. Note that the results given in Fig. 3 are obtained 

for various values of the ratio hd/h and from these results we can conclude how the fluid depth can 

affect the dispersion of the considered waves under the restriction of the flow of this fluid through 

the rigid wall.  

Thus, it follows from the dispersion curves related to the A1 mode that a decrease in the fluid 

layer thickness causes the wave propagation velocity to decrease monotonically. Note that this 

dependence of the wave propagation velocity on the fluid depth agrees with the well -known 

physicomechanical consideration. However, the analyses of the dispersion curves related to the S1 

mode shows that the character of the influence of the fluid layer thickness on the wave propagation 

velocity of this mode depends on the values of the dimensionless wavenumber kh, i.e., there exist 

such value of the kh (denote it by (kh)S1) before which, i.e., under kh<(kh)S1 (after which, i.e., under  
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(a) Mode A1 

  
(b) Mode S1 

  
(c) Mode A2 

Fig. 3 The dispersion curves of modes A1 (a), S1 (b), A2 (c), and S2 (d) for the glass-water system for different 

thicknesses of the fluid layer 

 

 

kh>(kh)S1) increase in the fluid layer thickness causes the values of the mentioned wave propagation 

velocity to decrease (to increase). However, where kh<(kh)S1, the magnitude of the effect of fluid 

layer thickness variation on the wave propagation velocity is more important than in the case where 

kh>(kh)S1. At the same time, these graphs show that an increase in the thickness of the fluid layer 

causes to appear the cut-off wavelength with the corresponding cut-off frequency to appear. Note  
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(d) Mode S2 

Fig. 3 Continued 

 

 

that this appearance is observed more clearly in the case where hd/h≥7 and the values of the cut-off 

wavelength increase monotonically with hd/h. 

The analyses of the dispersion curves related to the mode A2 are similar in the qualitative sense 

with those obtained for the S2 mode and as in the mode S1 there exist such values of the dimensionless 

wavenumber kh (denote they for the A2 and S2 by (kh)S2 and (kh)S2, respectively) before which, i.e., 

under kh<(kh)A2 and kh<(kh)S2 (after which, i.e., under kh>(kh)A2 and kh>(kh)S2) an increase in the 

values of the hd/h causes to decrease (to increase) the wave propagation velocity of the A2 and S2 

modes. At the same time, it should be noted that the magnitude of the influence of the hd/h on the 

wave propagation velocity of the A2 and S2 modes in the cases where kh<(kh)A2 and kh<(kh)S2 is 

more significant than that in the cases where kh>(kh)A2 and kh>(kh)S2. Moreover, the observation of 

the graphs related to the A2 and S2 shows that an increase in the values of the hd/h causes the cut off 

wavelength to appear and it follows from these graphs that (kh)S1>(kh)A2>(kh)S2.  

The detail analyses of the foregoing numerical results show that in the cases where kh=(kh)S1, 

kh=(kh)A2 and kh=(kh)S2 the wave propagation velocity on the dispersion curves related to the S1, A2 

and S2 modes, respectively, is equal to c/c2Gs=1.1525, i.e., to the c=a0 where a0 is a sound speed in 

the water. Namely, in these cases, i.e., in the cases where kh=(kh)S1, kh=(kh)A2 and kh=(kh)S2 the fluid 

layer thickness does not affect the wave propagation velocity in the hydro-elastic system under 

consideration and this velocity is equal to the sound speed in the fluid.  

Thus, based on this fact and based on the above results we can conclude that the parts of the 

dispersion curves, where the wave propagation velocity is less than sound speed in the fluid (denote 

it as the case where c<a0), approach the corresponding ones of the dispersion curves related to the 

same elastic plate contacting with the same fluid which filled the half-space.  

Also, we can conclude that the parts of the dispersion curves, where the wave propagation 

velocity is greater than sound speed in the fluid (denote it as the case where c>a0) does not approach, 

i.e., “move away” from the corresponding ones of the dispersion curves related to the same elastic 

plate contacting with the same fluid which filled the half-space. 

Note that these conclusions hold not only for the “glass+water” material pair, as we will consider 

below, but also for the other plate and fluid material pairs. 

Now we consider the case where the material of the plate is steel with parameters ρ=7800kg/m3,  
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(a) (b) 

Fig. 4 Dispersion curves for the steel-water half-space vs Lamb waves (no fluid) (a) and difference between 

wave propagation velocities of the quasi-Lamb and Lamb waves (b) 

 

 

λ=92.6×109 Pa, μ=77.5×109 Pa and the fluid is water with the parameters given above. Dispersion 

curves for the half-plane fluid case are given in Fig. 4(a) from which we can see that the influence 

of the fluid existence on the wave propagation velocities in all modes under consideration is 

insignificant. However, in the steel+water case new wave dispersion mode appear, called the quasi-

Scholte mode and wave propagation velocity on this mode tend to the Scholte wave propagation 

velocity cSch for the steel+water pair with kh which is equal to cSch=c2St×0.462886 where c2St is shear 

wave propagation velocity in steel. However, the A1 and S1 modes wave propagation velocity tend 

the Rayleigh wave propagation velocity cR with dimensionless wavenumber kh which is equal to 

cR=c2St×0.923008. At the same time, the relation a0/c2St=0.4630 occurs in the case under 

consideration. Moreover, in Fig. 4(b) as an addition to the noted results, the graphs illustrate the 

difference between the wave propagation velocities obtained for the Lamb and quasi-Lamb waves.  

Now we consider the dispersion curves obtained for the hydro-elastic system consisting of the 

elastic plate, of the fluid layer and of the rigid wall which bounded this layer, and study the influence 

of the ratio hd/h on the behavior of these curves obtained for the zeroth and the first fourth modes. It 

should be noted that these modes will be distinguished from each other by the magnitude of the 

obtained roots from the dispersion Eq. (28) for each selected dimensionless wavenumber kh. The 

curves constructed by the first root named as the dispersion curve related to the zeroth (or quasi-

Scholte wave) mode in the hydro-elastic system under consideration. The dispersion curves obtained 

for various values of the ratio hd/h are given in Fig. 5. However, the dispersion curves constructed 

by the second, third, fourth and fifth roots named as the dispersion curves related to the first, second, 

third and fourth modes and the dispersion curves related to these modes which are also obtained for 

various values of the ratio hd/h are given in Fig. 6. In other words, we will not use names as the A1, 

S1, A2 and S2 modes in the present case which were used in the previous, i.e., in the “glass+water” 

case. This is because in the “steel+water” case under moderate values of the ratio hd/h the 

aforementioned first, second, third, and fourth modes become significantly differ from the A1, S1, A2 

and S2 modes obtained for the plate contacting with the fluid which filled half-space, not only in the 

quantitative sense but also in the quantitative sense. 

Note that the graphs in Fig .5(b) show the difference between the wave propagation velocities of 

the Scholte waves obtained for the “plate+fluid+rigid wall” and “plate+half-space fluid” systems.  
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(a) (b) 

Fig. 5 The dispersion curves of quasi-Scholte mode (zeroth mode) (a) for the steel-water system for   

different thicknesses of the fluid layer and difference between the wave propagation velocities of the Scholte 

waves obtained for the “plate+fluid+rigid wall” and “plate+half-space fluid” systems (b) 

 

  
(a) First mode 

  
(b) Second mode 

Fig. 6 The dispersion curves of the first (a), second (b), third (c) and fourth (d) modes for the steel-water 

system for different thicknesses of the fluid layer 

 

 

Moreover, note that graphs on the right in Fig. 6 show the difference of the wave propagation 

velocities in the first, second, third and fourth modes obtained for the “plate+fluid+rigid wall”  

135



 

 

 

 

 

 

Surkay D. Akbarov and Masoud Negin 

 

  
(c) Third mode 

  
(d) Fourth mode 

Fig. 6 Continued 

 

 

system from the wave propagation velocities on the dispersion curves of the A1, S1, A2 and S2 modes, 

respectively, obtained for the “plate+half-space fluid” system.    

Thus, according to relation a0/c2St=0.4630 for the “steel+water” pair and according to the 

conclusion made above on the character of the influence of hd/h on the dispersion curves constructed 

for the hydro-elastic system under consideration, the parts of the dispersion curves or the whole 

dispersion curves on which the wave propagation velocity c is less than a0 a decrease in the values 

of the ratio hd/h must decrease the wave propagation velocity with respect to the corresponding 

velocities obtained for the “plate+half-space fluid” system. However, an increase in the values of 

the ratio hd/h must approach the wave propagation velocity obtained for the system under 

consideration to the corresponding velocities obtained for the “plate+half-space fluid” system. The 

analyses of the graphs given in Fig. 5 confirm this prediction. 

For all the selected values of the ratio hd/h, the dispersion curves related to the first mode starts 

from the near vicinity of the low-wavenumber limit value of the wave propagation velocity related 

to the mode A1 obtained for the “plate+half-space fluid system”. In the relatively small values of the 

ratio hd/h (for instance, in the cases where hd/h≤0.1) the wave propagation velocity in this mode 

tends to the Rayleigh wave propagation velocity for the plate material with the dimensionless 

wavenumber kh. However, for the relatively great values of the ratio hd/h (for instance in the cases 

where hd/h≥0.5) these velocities tend to the Scholte wave propagation velocity for the “steel+water”  
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(a) (b) 

Fig. 7 Dispersion curves for the glass-water case for the “plate+fluid layer+rigid wall” (a) and for the 

“plate+fluid layer+free face” (b) systems 

 

  
(a) (b) 

Fig. 8 Dispersion curves for the steel-water case for the “plate+fluid layer+rigid wall” (a) and for the 

“plate+fluid layer+free face” (b) systems 

 

 

system with the dimensionless wavenumber kh. At the same time, in the relatively small values of 

the ration hd/h (i.e., in the cases where hd/h≤0.1) after a certain value of the kh, the dispersion curves 

of the first mode merge with the dispersion curve related to the mode A1 obtained for the “plate+half-

space fluid case”. However, in the relatively great values of the ratio hd/h (i.e., in the cases where 

hd/h≥0.5) after a certain value of the kh, the dispersion curves related to the first mode have contact 

parts with dispersion curve of the aforementioned A1 mode and after this contact part, these curves 

tends, as noted above to the Scholte wave propagation velocity obtained for the “steel+water” system 

with the dimensionless wavenumber kh. It follows from the foregoing results that the wave 

propagation velocities of all the dispersion curves related to the first mode are greater than the sound 

speed in the water, i.e., the case where c>a0 takes place. Moreover, it follows from these results that 

for the relatively small values of the ratio hd/h (i.e., in the cases where hd/h≤0.1) the dispersion curves 

obtained for the first mode after a certain value of the kh becomes very close to the dispersion curve 

obtained for the mode A1, however, in the relatively great values of the ratio hd/h (i.e., in the cases 

where hd/h≥0.5) the dispersion curves related to the first mode “move away” from the dispersion 
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curve related to the mode A1 with hd/h. Consequently, the results obtained for the first mode is also 

agree with the conclusion made above on the character of the influence of the hd/h on the dispersion 

curves. This conclusion is also confirmed by the dispersion curves obtained for the dispersion curves 

related to the second mode. To be more precise, for the relatively small values of the ration hd/h (for 

instance in the cases where hd/h≤0.1) the dispersion curves obtained for the second mode becomes 

very close to the dispersion curve obtained for the S1 mode obtained for the “plate+half-space fluid” 

system and in these cases, the wave propagation velocity on these dispersion curves tend to the 

Rayleigh wave propagation velocity of the steel with the wavenumber kh  . However, under the 

relatively great values of the ratio hd/h (for instance in the cases where hd/h≥0.5) the dispersion 

curves obtained for the second mode “move away” from the dispersion curve related to the mode S1 

with the hd/h and the wave propagation velocity on these curves tend to the Scholte wave propagation 

velocity for the “steel+water” pair. 

Almost the same situation, i.e., the situation observed for the dispersion curves related to the 

second mode, takes place also for the dispersion curves related to the third and fourth modes. 

However, the dispersion curves related to the third and fourth modes must be compared with the S2 

and A2 modes, respectively, regarding the “plate+half-space fluid system.  

Finally, we consider the comparison of the dispersion curves obtained within the scope of the 

impermeability condition (12) (Fig. 1(a)) with corresponding ones obtained within the scope of the 

free face condition (13) (Fig. 1(b)). For this purpose, we consider the graphs presented in Figs. 7 

and 8 which illustrate the dispersion curves related to the glass+water” and “steel+water” systems, 

respectively. It follows from these results that as a result of the impermeability condition the wave 

propagation velocity decrease with respect to the corresponding ones obtained for the free face 

condition. Moreover, according to the foregoing conclusions on the behavior of the dispersion curves 

with respect to the ratio c/a0, it can be also concluded that the parts of the dispersion curves obtained 

for the system “plate+fluid+rigid wall” on which the wave propagation velocity c is less (greater) 

than sound speed a0 in the fluid must (must not) approach the corresponding ones obtained for the 

system “plate+fluid layer with free surface”. These features make it necessary to carry out the 

investigations presented in this work. 

 

 

5. Conclusions 
 

Thus, in the present paper, for the first time, it is studied the dispersion of the longitudinal waves 

propagated in the hydro-elastic system consisting of an elastic plate, compressible inviscid fluid and 

rigid wall restricted the motion of the plate. The novelty of the investigations consists namely of 

taking the existence and influence of the rigid wall that restricted the flow of the fluid into 

consideration on the dispersion on mentioned waves. The motion of the plate is described with exact 

equations and relations of elastodynamics and the flow of the fluid with the linearized Navier-Stokes 

equations and corresponding linearized relations for compressible barotropic inviscid fluid. The 

corresponding dispersion equation is obtained and solved numerically for two pairs of the plate and 

fluid materials: namely “glass+water” and “steel+water” systems. The obtained numerical results 

are compared with the corresponding results obtained for the corresponding hydro-elastic systems 

consisting of the same plate and of the same fluid which is filled the half-space. The main focus in 

these investigations is how the change of the fluid layer thickness, i.e., the ratio hd/h (where hd is the 

fluid layer thickness or fluid depth, h is the plate thickness) influences the dispersion of the 

propagating waves under impermeability condition on the rigid wall. The most important conclusion 
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obtained from these investigations can be formulated as follows:   

• Parts of the dispersion curves on which the wave propagation velocity is less than the sound 

speed in the fluid tend to the corresponding parts of the dispersion curves obtained for the 

“plate+half-space fluid” system. Moreover, the increase in the ratio hd/h causes the wave 

propagation velocity to increase in the mentioned parts of the dispersion curves; 

• Parts of the dispersion curves on which the wave propagation velocity is greater than the sound 

speed in the fluid “move away” from the corresponding parts of the dispersion curves obtained 

for the “plate+half-space fluid” system and in general, the decrease (the increase) in the ratio hd/h 

causes the wave propagation velocity in the mentioned parts of the dispersion curves to increase 

(to decrease); 

Based on the above results, in the text of the paper it is made more concrete conclusions on the 

influence of the problem parameters on the wave dispersion propagating in the considered hydro-

elastic systems.    
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Appendix 
 

We attempt to explain how the linearized equations in (4) and (5) are obtained from the 

corresponding non-linear equations and for this purpose we write the corresponding non-linear 

equations. 

The non-linear Navier-Stokes equations for inviscid fluid 
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The continuity equation 
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.                       (A2)  

We represent the velocities V1 and V2, density ρ and pressure p as a summation of the initial and 

perturbed states, i.e., as follows 

(0)

1 1 1V V v= + , (0)

2 2 2V V v= + , (0) (1)  = + , (0) (1)p p p= + ,             (A3) 

where (0)

1V and (0)

2V  are velocities, ρ(0) is density and p(0) is pressure of the fluid in the initial state, 

v1, v2, ρ(1) and p(1) are perturbations of the corresponding quantities.  

We rewrite equations in (A1) and (A2) taking the expressions in (A3) into account. 
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As in the case under consideration it is assumed that (0) (0)

1 2 0V V= = , ρ(0)=const and p(0)=const, 

therefore we obtain the following expressions for the equations in (A4) and (A5). 
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  
+ + + + =

  
.               (A7)  

We represent the equations in (A6) and (A7) in the following form. 

(1)
(0) (1) (0)1 1 1 1 1 1

1 2 1 2

1 1 2 1 2

0
v v v v v vp

v v v v
t x t x x x x

  
        

+ + + + + + =   
         

, 
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(1)
(0) (1) (0)2 2 2 2 2 2

1 2 1 2

2 1 2 1 2

0
v v v v v vp

v v v v
t x t x x x x

  
        

+ + + + + + =   
         

.         (A8) 

       ( ) ( )
(1)

(0) (1) (1)1 2

1 2

1 2 1 2

0
v v

v v
t x x x x


  

    
+ + + + = 

     
.               (A9) 

Assuming that the quantities of the perturbations v1, v2, ρ(1) and p(1) are so small that the underlined 

non-linear terms in Eqs. (A8) and (A9) can be neglected with respect to the no-underlined linear 

terms and this neglecting is called the linearization, as a result of which it is obtained the following 

linearized Navier-Stokes equations for inviscid fluid    

(1)
(0) 1 0

1

v p

t x


 
+ =

 
,  

(1)
(0) 2

2

0
v p

t x


 
+ =

 
,               (A10) 

and linearized continuity equation 

(1)
(0) 1 2

1 2

0
v v

t x x




  
+ + = 

   
.                       (A11)  

Note that the equation in (A10) coincide with the equations in (4), and Eq. (A11) coincides with 

Eq. (5).  

 

142




