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Abstract.  In this paper we deal with instability problems of structures under nonconservative loading. It is shown 
that such class of problems should be analyzed in dynamics framework. Next to analytic solutions, provided for several 
simple problems, we show how to obtain the numerical solutions to more complex problems in efficient manner by 
using the finite element method. In particular, the numerical solution is obtained by using a modified Euler-Bernoulli 
beam finite element that includes the von Karman (virtual) strain in order to capture linearized instabilities (or Euler 
buckling). We next generalize the numerical solution to instability problems that include shear deformation by using 
the Timoshenko beam finite element. The proposed numerical beam models are validated against the corresponding 
analytic solutions. 
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1. Introduction 
 

Modern urban architecture trends are geared towards constructing tall structures, with either 

office/residential buildings or transport infrastructure. At the same time, the progress in material 

engineering that allows to increase the load-bearing capacity and safety of the structure, results with 

lightweight and slender structural elements for high-rise structures, which all became a symbol of 

modern engineering. However, by pushing the boundaries of engineering in the aforementioned way, 

and by designing slender and lightweight structures can result in fatal consequences of loss in 

structural stability. Namely, the instability phenomena imply that for the reduced structural stiffness 

at so-called critical equilibrium state, even a small perturbation can lead to a disproportional increase 

in response (displacement, strain and stress) and eventual structural failures (e.g., see illustrative 

damage cases for recent US storm Laura url: https://www.fox23.com/news/photos-

hurricane/KCGRTCQ4LFFNDHZLW2O6LEE26I/). Thus, the analysis of complex structures 
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instability, and adequate prevention of its occurrence, has again become one of the fundamental 

problems faced by engineers. Furthermore, different types of structures, next to (permanent) 

gravitational forces, are also subjected to various loads.  In general, all the forces that act upon the 

structure can be classified in two categories: conservative and non-conservative. For the 

conservative forces (e.g., gravitational force), the external work does not depend on the path but 

only on the starting and ending point. Therefore, the conservative force can be obtained from a 

potential (e.g., gravity potential) and thus the total work done by a conservative force on a closed 

path is equal to zero. The forces attributed to external actions (e.g., wind or fluid flow, or yet a 

frictional force) are often non-conservative (Sugiyama et al. 2019). The work of nonconservative 

forces cannot be computed from a potential, and it depends on the path taken. It is a fundamental 

finding of Bolotin (1964) that the structure instability under non-conservative forces may occur 

dynamically, leading to increasing vibration amplitudes (yet called flutter instability). Therefore, the 

problem of structural instability under non-conservative forces should be examined within the 

dynamics framework. 

Vast majority of analytic solutions is already available (Hajdo et al. 2020, Bolotin 1963, 

Lacarbonara and Yabuno 2006, Jeronen and Kouhia 2015) for the classical problems of a column 

buckling under non-conservative load. This kind of non-conservative force is also called a follower 

force (Timoshenko and Gere 1961, Langthjem and Sugiyama 2000, Beck 1952, Farhat et al. 2013, 

McHugh and Dowell 2020). Follower forces depend on the deformation of structures. Namely, these 

forces follow the structure motion (e.g., cross-section rotation), and are thus path-dependent and not 

possible to derive from a potential (Sugiyama et al. 2019). The stability analysis of such a column 

under follower force cannot be obtained by using the statics approach of studying the critical 

equilibrium state (Ibrahimbegovic et al. 2013, Hajdo et al. 2020, Imamovic et al. 2019), but requires 

using the dynamics framework. Moreover, the stability analysis of such column cannot be placed 

within the classical Lyapunov stability framework of dynamic motion (Mejia Nava et al. 2020, 

Lozano et al. 2000), which pertains to variations of the total energy (Lyapunov functional in 

Mechanics), simply because no such potential can be established for non-conservative forces.   

We propose in this work an original approach of “dynamic” equilibrium equations, where the 

structure stability can be confirmed by proportionally small vibrations due to small perturbations 

from its equilibrium position. Such theory of the dynamic instability can be explained by using an 

example of the column under compressive axial follower force. If such a force is smaller than the 

Bolotin critical force value, the column response will remain proportionally small due to a small 

perturbation. However, for the applied force equal or larger than critical, relation between a small 

perturbation and structure response will become disproportionally large, followed by large vibration 

amplitudes, which are rapidly increasing (Bolotin 1964). A previous study of Bolotin (1963) was the 

first to give the analytic solution to elastic column instability problem under non-conservative axial 

loads. Similar studies of simple structures can also be found in (Timoshenko and Gere 1961), or in 

a recent survey paper (Langthjem and Sugiyama 2000), for different kinds of columns (Beck’s, 

Reut’s etc.) under non-conservative follower loads. These and other works (Jeronen and Kouhia 

2015, Beck 1952, Farhat et al. 2013, McHugh and Dowell 2020), exploring effects of damping, 

flutter instability of aircraft wings or columns subjected to rocket thrust, mostly put the emphasis on 

either analytic solutions or their experimental validations. The study of large beam deflections under 

conservative and non-conservative load, in static framework can be found in (e.g., Masjedi and 

Ovesy 2015). Dynamic instability of geometrically exact beams under a follower force using fully 

intrinsic equations was subject of research in (e.g., Amoozgar and Shahverdi 2016). Many 

researchers studied follower force as a distributed load (e.g., Fazelzadeh et al. 2017). A uniform 
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cantilever beam subjected to a partially follower load and analyzed using finite element method is 

presented in (Gasparini et al. 1994). A detailed review of papers that deal with the topic of dynamic 

stability of the structures under follower force can be found in (Elishakoff 2005). The main thrust in 

this work is directed towards a complementary approach based upon numerical modeling by using 

the finite element method (Ibrahimbegovic 2009).  

In particular, as the first novelty, we introduce the Euler-Bernoulli beam finite element that can 

deal with instability problems under non-conservative follower force. This is achieved by using the 

von Karman virtual strain measure, typical of moderate rotations, which can account for instability 

phenomena within the framework of weak form of instability problem. Some previous studies 

included the von Karman virtual strain to capture the buckling of frames (e.g., Dujc et al. 2010, 

Piculin and Brank 2015). In our previous work (Ibrahimbegovic et al. 2013, Hajdo et al. 2020), the 

von Karman strain was used to formulate the structure instability problem as corresponding linear 

buckling problem, which reduces to solving the linear eigenvalue problem to predict the critical load 

for conservative (quasi-static) forces. For the instability problems under non-conservative force 

studied herein, we also introduce the novelty of adapting the beam element for use in the dynamics 

framework, and obtain the corresponding dynamic equilibrium solution by employing the Newmark 

time-integration scheme. The final novelty in this paper is in adapting the proposed approach also 

to shear deformable beams, with the equivalent of Timoshenko beam model. Some background 

material and more details needed to master the numerical models developed in this research can be 

found in our previous work (Ibrahimbegovic et al. 2013, Hajdo et al. 2020, Imamovic et al. 2019, 

Mejia Nava et al. 2020, Ibrahimbegovic 2009, Medic et al. 2013). 

The outline of our paper is as follows. In Section 2, we present analytic solutions (based upon 

the strong form) for a cantilever beam under fixed and follower force, as well as semi-analytic 

solution for static and dynamic instability of frame structure. The discrete approximation is 

constructed by FEM as shown in Section 3. In Section 4 we give several illustration examples, and 

in Section 5 we state conclusions. 

 

 

2. Strong form based analytic solution 
 

In this section we briefly discuss the analytic solutions for instability of a compressed cantilever 

under fixed and under follower force. The latter case was first solved by Bolotin (1963), with the 

analytic solution satisfying all three fundamental equations of the strong form. We then provide the 

solution for a shear deformable beam, where the Timoshenko rather than the Euler-Bernoulli beam 

model was used. We finally provide an extension of such solution to instability of frame structure, 

in terms of semi-analytic solution. 

 

2.1 Cantilever beam instability under fixed load - analytic solution 
 

The analytic solution presented in this section, based upon strong form of Euler-Bernoulli beam, 

verifying the equations of kinematics, constitutive law and equilibrium. The first two are borrowed 

from linear beam theory. 

1. Kinematics (see Fig. 1(b)) 

( )
( )

( ) ( )
( )

2

2

p p p
p

xx

p

dv x
u x,y y y du d v

x,y ydx
dx dx

v x,y v x





= −  = − 

 = = −
= 

                  (1) 
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2. Constitutive law 

( ) ( )

( ) ( )

2

2

2 2 23
2

2 2

2
12

p

xx xx

h

xx

A h

d v
x,y E x,y Ey

dx

d v x d v xbh
M y dA Eb y dy E EI

dx dx

 


−

= = −

= − = = = 

                 (2) 

where b and h are the cross section width and height respectively, M is a bending moment, E modulus 

of elasticity and I is a moment of inertia. Eq. (2) only holds for rectangular cross-sections. However, 

the last equation takes into account nonlinearity to establish equilibrium in the deformed 

configuration, i.e., on the beam deformed axis: 

3. Equilibrium: 

( ) ( )

( )
( )

( )
( )

( )

( ) ( )

( )
( )

( )

( ) ( )

( )
( )

0

0

0
2

y

dT x
T x dx

dx

dM x
M x dx dx

dx

dT x
F T x T x dx q x dx q x

dx

dx dv
M x M x dx q x dx T x dx P dx

dx

dM x dv
T x P

dx dx

+

+ +

= = − + + + = +

= = − + + − + +

= + +



           (3) 

( ) ( )
( )

( ) ( ) ( )

4 2

4 2

4 2

4 2

d M x d v x
P q x

dx dx

d v x d v x q xP

dx EI dx EI

+ =

+ =

                         (4) 

were T is a shear force, q is a transverse distributed load. Thus, we are interested in the class of 

problems known as linearized instability or Euler buckling, which considers small deformations 

with moderate rotations before reaching the critical equilibrium state. By combining these three 

equations we obtain the strong form of the problem for Euler buckling 

( ) ( )4 2

2

4 2
0

d v x d v x P
k      ;      k

dx dx EI
+ = =                             (5) 

The general solution for such equation can be written as 

( ) 1 2 3 4v x A sinkx A coskx A x A= + + +                               (6) 

where A1, A2, A3 and A4 are constants to be obtained from boundary conditions. 

The boundary conditions for cantilever beam in Fig. 1 can be written as 

 
( ) ( )

( )

( )
( )

( ) ( ) ( ) ( )

2

2

3 3

2

3 3

0 0 0

0
0 0 0

d v l
v       ;       M l EI

dx

dv d v l dv l dv l d v l
      ;       T l EI P       k

dx dx dx dx dx

= = =

= = − − = → + =

       (7) 

By combining relations in Eqs. (6)-(7), we further obtain 
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(a) Initial configuration (b) Deformed beam axis 

Fig. 1 Linear instability of cantilever 

 

 

( )

( )

( )

( ) ( )
 

1

22
2 2

32
2

43

2
0

3

0 0

0
0 1 0 1 00

0 1 0 0

0 0 00

0 0 0 0

0 det

v

dv
A

dx
Ak

  d v l
Ak sinkl k cos kl

dx
Ak

dv l d v l
k

dx dx
• =

=

    =
    
     =
    − −=
    

    

+ =

              (8) 

From the above determinant it follows that 

2 2 1
0 0 1 2

2

n
k cos kl       cos kl       kl   ,  n , ,...

−
=  =  = =              (9) 

If we recall the relation for k given in Eq. (5), further we get 

( ) ( )
2 2 2

2 2

2 2

2 1 2 1

4 4

n n EIP
k       P

EI l l




− −
= =  =                        (10) 

Finally, the value of the critical force for Euler’s buckling of cantilever beam is 

( )

2

2
2

cr

EI
P

l


=                                        (11) 

while buckling modes are described with 

( )
( )2 1

1
2

n

n x
x cos

l




−
= − +                                  (12) 

The first buckling mode corresponding to the smallest value of the critical load in Eq. (11) is 

( )1
2

x
x cos

l


 =−                                     (13) 

In the reminder of this section we extend this analytic solution to the case of shear deformable 

beam, represented by Timoshenko beam model (see Fig. 2).  

P

l

x

y
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Fig. 2 Deformed configuration of an axially compressed Timoshenko cantilever beam 

 

 

In the same manner we can now obtain the critical force value for Timoshenko beam as the 

solution of the strong form combining three fundamental equations: kinematics, constitutive 

equations and equilibrium. The kinematics of the Timoshenko beam is given as 

d dv
    ;     

dx dx


  = = −                                   (14) 

where θ is independent rotation filed that describes the cross-section position, resulting with new 

definition of bending κ and shear strain γ. 

The corresponding expression for bending moment M and shear force T can be written from 

constitutive equations as 

( ) ( )M EI     ;    T GA = =                                (15) 

where G is a shear modulus and A is a cross-sectional area. According to the Fig. 2, the equilibrium 

on the deformed configuration results in 

M P v    ;    T Psin P


 = −  = =                              (16) 

Further, by combining the results obtained in Eqs. (14)-(16) we can obtain the relation between 

the section rotation and beam transverse displacement 

2

2
1

dv P

dx GA

d v P d

dx GA dx






= +

 
= + 
 

                                   (17) 

With this result in hand, the first relation given in the Eq. (15) can be written 

2

2

0

1
0

1

d
EI P v

dx

d v
EI Pv

Pdx

GA


+  =

+ =

+

                                 (18) 

Finally, the differential equation expressing the strong form of instability condition, of the axially 

compressed Timoshenko beam is given as 

2

2
1 0

d v P P
v

dx EI GA

 
+ + = 

 
                                 (19) 

T 
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Previous equation can be rewritten in the same format as the one for Euler- Bernoulli beam but 

by introducing a new definition of the parameter k 

( )4 2
2

4 2

1
0

P P GAd v d v
 k     ;    k
dx dx EI

+
+ = =                          (20) 

The general solution of this differential equation can again be written as 

( ) 1 2 3 4v x A sinkx A coskx A x A= + + +                            (21) 

where A1, A2, A3 and A4 are constants to be determined by taking into account the boundary 

conditions 

( ) ( ) ( ) ( )0 0 0 0v v l    ,   M l    ,   T l= = = =                           (22) 

Of particular interest is in a nontrivial solution, which is obtained for the case when 

2 1
0 1 2

2

n
cos kl         kl       n , ,...

−
=  = =                        (23) 

The smallest value of factor k corresponding to the critical force value is computed for n=1. With 

the last result in hand, by using the relation given in Eq. (19), we get 

2

2
1

2 4

cr
cr cr

P EI
k         P

l GA l

  
=  + = 

 
                          (24) 

By using the last expression, the critical force for Timoshenko beam is obtained as 

2

2 2

2

1

2
1 1

cr

EI
P

l EI

l GA




=

+ +

                               (25) 

It is obvious that the critical force value computed for Timoshenko beam is smaller than the one 

obtained for the Euler beam, and when 0 → , GA→ , 
2

24
cr

EI
P

l


→ . This finding is in agreement 

with Cauchy interlace theorem (e.g., Ibrahimbegovic 2009) since the Timoshenko beam model 

allows for more deformation modes than the Euler beam model. 

 

2.2 Dynamics framework for instability problems 
 

It was first shown by Bolotin (1964, 1963) that the same procedure no longer works when we 

have the follower force. In such a case we have to place the instability problem within the dynamics 

framework. Namely, we now consider a deformed configuration of a beam under compressive axial 

force P, which undergoes vibrations that should be examined within the dynamics framework.  

 

2.2.1 Cantilever beam analytic solution for thin beams by Bolotin 
In this section we present the solution to the problem of instability of the Euler-Bernoulli beam 

with a concentrated mass on top under the action of a compressive follower force. This implies that 

the force rotates together with the free end section of the beam and remains tangential to its deformed 

axis (see Fig. 3). 

The analysis of this problem is again carried out under hypothesis of linear kinematics and linear  
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Fig. 3 Euler-Bernoulli cantilever beam under follower load 

 

 

constitutive equation 

( )
2 2

2

2 2
;

d v d v
x,y y         E   M EI

dx dx
  = − = → =                        (26) 

The only nonlinear equation in this instability problem pertains to equilibrium, first assumed as 

static, which applies in the deformed configuration (indicated by a curved solid line in Fig. 3 above). 

If we assume small deflection and small end rotation with 

dv

dx
 =                                          (27) 

the follower force can be discomposed into horizontal and vertical components with: 
xP P  , 

yP P . The moment equation of the (slightly) bent beam is given in (Bolotin 1963) 

( ) ( )
2

2

d v
EI P f v P l x

dx
= − − −                                  (28) 

where EI is the beam bending stiffness, f=v(l) is the deflection at the free end of the beam and l its 

length. We can propose the general solution of this differential equation as 

( ) ( )1 2 1v x A sinkx A coskx f x= + + − −                             (29) 

where A1 and A2 are arbitrary constants, whereas f and φ denote free end displacement and rotation. 

The boundary conditions for this problem are zero displacement and zero slope at cantilever 

beam support point and assumed values of displacement and slope at the free end with 

( )
( )

( )
( )0

0 0 0
dv dv l

v  ,    ,   v l f  ,   
dx dx

= = = =                    (30) 

If we substitute the general solution into these boundary conditions, we obtain the following set 

of algebraic equations, written in the matrix notation: 

1

2

0 1 1 1 0

0 0 1 0

0 0 0

0 0 0

A

k A

sinkl cos kl f

cos kl sinkl 

−     
     
     =
     
     

−     

                            (31) 
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It is easy to check that the determinant of this matrix is equal to -1, which means that there are 

no other solutions but trivial, i.e., ( ( ) 0v x  ). Hence, we conclude that the static approach cannot be 

used to solve this instability problem. 

For that reason, we must turn towards finding the solution of such instability problem within the 

dynamics framework. In other words, we study the possibility of flutter instability. Here, the 

equilibrium is said to be unstable if a small disturbance causes a large deviation of the system from 

the considered dynamic equilibrium. With the follower (non-conservative) load explicitly dependent 

on time, the equation of motion with small oscillations around equilibrium state takes the following 

form 

( )
( ) ( )( ) ( )( ) ( )

( )2 2

2 2

d v x,t d f t
EI P f t v x,t P t l x m l x

dx dt
= − − − − −                 (32) 

where v(x,t) is the dynamic deflection at each point and f(t) is the deflection at the free-end of the 

cantilever, i.e., f(t)=v(l,t). The solution to this equation can be obtained by separation of variables 

( ) ( ) ( ) ( )i t i t i tv x,t x e  ,   f t fe  ,   t e    = = =                         (33) 

where we can assume that the beam performs free vibrations with frequency ω. We can thus reduce 

the Eq. (32) to the form 

( ) ( )
2 2

2 2 2

2

d m f
EI k k P k l x l x

dx EI

 
 + = − − + −                         (34) 

The general solution of the last equation can be written as 

( ) ( ) ( )
2

1 2 2

m f
x A sinkx A coskx f l x l x

k EI


 = + + − − + −                     (35) 

Making use of the corresponding boundary conditions for cantilever beam v(0)=0, v’(0)=0, v(l)=f, 

v’(l)= , we obtain a new form of the system in Eq. (31), and again check for non-trivial solutions 

by enforcing that  

( ) ( )

( ) ( )

2

2

2

2

2

2

0 1

0 1
0

0 0

0

m l
1+ l

k EI

m
k

k EI

sin kl cos kl

m
kcos kl ksin kl

k EI







 
− 

 
 

−  =
 
 
 
 − −
  

                          (36) 

We can further obtain the corresponding value of ω from zero determinant condition in Eq. (36) 

above, and find out that such value becomes infinite (non-physical) if the following condition is 

verified 

1P
       tankl kl

sinklml
cos kl

kl

 =  →   =

−

                       (37) 

87



 

 

 

 

 

 

Emina Hajdo, Rosa Adela Mejia-Nava, Ismar Imamovic and Adnan Ibrahimbegovic 

The last expression provides the numerical solution for the critical value 2 05kl . = . Thus, the 

critical follower load for Euler-Bernoulli beam can be computed as 

2

2

2 05
cr

P .
k     P EI

EI l


= → =                                (38) 

If we now have a cantilever beam with the distributed mass (see Fig. 4) the beam motion is 

governed by 

4 2 2 4 2 2
2 2

4 2 2 4 2 2
0 0

d v d v d v d v d v d v
EI P m          k

dx dx dt dx dx dt
+ + =  + + =               (39) 

The boundary conditions at the fixed end and at the free end of cantilever are given as: 

( )
( ) ( ) ( )2 3

2 3

0
0

v ,t v l ,t v l ,t
v ,t = 0    ;    = = 0   

x x x

  
=

  
                    (40) 

Furthermore, we can rewrite the differential equation of the free vibrations of the column as 

follows 

4 2 2
2

4 2
0

d g d g m
k g

dx dx EI


+ − =                               (41) 

 

 

 
Fig. 4 Beck’s column under a follower force 

 

 

The general solution of the differential equation is given with 

( ) 1 2 3 4g x B sin x B cos x B sinh x B cosh x   = + + +                   (42) 

where α and β are 

1 2 1 2
2 2

4 4

4 4
1 1 ; 1 1

2 2

k m k m
        

EIk EIk

 
 

   
= + + = − + +   

   
   

                 (43) 
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By taking into account the boundary conditions, and searching for the nontrivial solution, we 

obtain the critical force value as follows 

2

2

2
cr

EI
P

l


=                                         (44) 

 
2.2.2 Analytic solution for Timoshenko beam buckling under follower force 
The instability problem for Timoshenko beam buckling can be defined in a similar manner, by 

using linear kinematics and constitutive equations, combined with nonlinear equilibrium equation 

imposed in Timoshenko beam deformed configuration. We have already written all governing 

equations for the Timoshenko beam instability in Eqs. (14)-(24). We have shown the equivalence 

of the differential equation governing the instability problem for Timoshenko beam, but with 

different value of k. Hence, the solution to such instability problem will again be computed within 

the dynamics framework. One can follow the same steps to arrive at the same final result as the one 

in Eq. (37), but with different value of k. Such an approach can now provide the critical value of 

the follower load for Timoshenko beam, by imposing that  

2
2

2

1
2 05c

P
P

GA .
k   k

EI l



 
+ 

 
= → =                              (45) 

22 05
1 4 1

2
c

cr

c

. EI

GA
P

GA


+ −

=                                   (46) 

 

2.3 Static and dynamic instability of frame: semi-analytic solution 
 

In this section we give an analytic solution for the critical load of a frame under two conservative 

loads applied at the corner nodes. The frame geometry is as shown in Fig. 5. 

Under the applied loads, we will have the deformed configuration of the beam as shown in Fig. 

6(a). The main idea for constructing the solution is to propose an equivalent system that would have 

the same deformed shape. Such an equivalent system consists of a cantilever beam with a rotational 

spring at the free end of the beam, which is an approximate replacement for the restraining beam 

 

 

 
Fig. 5 Frame instability under conservative load 
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(a) Deformed shape (b) Equivalent system for the frame 

Fig. 6 Frame under conservative load 

 

 

action upon the column (see Fig. 6(b)). 

The corresponding differential equation characterizing critical equilibrium state for this problem 

is similar to the one in Eq. (5) for a cantilever beam 

4 2
2

4 2
0

d v d v P
k     ;     k

dx dx EI
+ = =                             (47) 

The general solution to this differential equation can be written as follows 

( ) 1 2 3 4v x A sinkx A coskx A x A= + + +                          (48) 

The main modification from the previously developed analytic solution by Bolotin for cantilever 

beam is a new form of the boundary condition of top of the column, which is brought by the presence 

of the spring. Thus, we can write as follows 

( )0 0v =                                       (49) 

( )0 0
dv

dx
=                               (50) 

( ) ( ) ( ) ( )2 2

2 2
0 0

d v l dv l d v l dv l
EI    ;      ;   

dx dx dx dx EI


  + = + = =                (51) 

( ) ( ) ( ) ( )3 3

2 2

3 3
0 0

d v l dv l d v l dv l P
EI P    ;   k   ;   k

dx dx dx dx EI
+ = + = =                (52) 

where α and β are the parameters quantifying the beam bending stiffness that is retaining the 

rotations θ1 or θ2 at top of each column. The value of this parameter is obtained by using the FEM 

solution as shown next. For that reason, we refer this development as semi-analytic solution. 

Namely, by using the finite element method solution based upon the Hermite polynomials (see 

Section 3.2) representing the beam deformed shape. We note in passing that such approximation is 

exact for pure bending of beam with homogeneous cross-section with all loads applied at the nodes, 

but not for critical mode where deformed shape can be represented by trigonometric functions (e.g., 

Timoshenko and Gere 1961). We can obtain the following approximation of beam bending 

contribution to critical mode  
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1 1

2 2

4 2 6

2 4 6

EI EI EI

M l l l

EI EIM EI

l l l






  
     

= =      
     
     

                            (53) 

which indicates the correct value for parameters 6EI l =  and b =a EI = 6. 

With these boundary conditions we can obtain the critical load by following the usual procedure 

and enforcing the cero the value of the corresponding determinant  

 

1

2 2

3

42 2

0

0 1 0 1
0

0 1 0
0

0 0 0
0

0 0

det

A
k

A
k

A
( k cos kl k sin kl

A
k sin kl ) k cos kl )

 


 =

 
    
    
     =
    

(−     
   − − 

                   (54) 

which allows us to obtain the critical load solution as follows 

( )
2

2 2

2 71 7 344
cr

, EIP , EI
k   P

EI l l
= → = =                             (55) 

We can see that such a semi-analytic solution is slightly lower than the critical load that we obtain 

with the FEM approximation of deformed shape by Hermite polynomials used the whole frame 

(beam and columns); which is equal to 

2

7 5
cr

, EI
P

l
=                                          (56) 

That is why we seek the analytic solution wherever possible to get the best estimate of the critical 

load and to validate our FEM solutions. 

In numerical simulation to follow, we propose three different frames (see Fig. 7) each loaded 

with two compressive conservative or non-conservative loads. The main difference among three  

 

 

   

(a) Case 1 (b) Case 2 (c) Case 3 

Fig. 7 Different stiffness cases of the frame structure 
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cases are changing values of the beam bending stiffness EI: i) the same bending stiffness EI in 

columns and beam, ii) the beam bending stiffness is 1/100 of the bending stiffness for columns, iii) 

the beam bending stiffness 100 times bigger than the bending stiffness for columns. 

The corresponding analytic solution for each case 2 or 3 can be easily identified from the semi-

analytic solution frame value defined in Eq. (55). 

Case 2: In this case the contribution of the beam to column tip rotation is very small. In order to 

define the behavior of the columns, we can neglect the contribution of the beam. Therefore, the value 

of the critical load tends to the value we already computed for a single cantilever 2 22 05crP . EI l= . 

Case 3: In this case the stiffness of the beam is so dominant over the stiffness of the columns that 

it does not allow any rotation at the top of the columns. This results with the follower load acting as 

a conservative load. Therefore, the solution is ( )
22 2crP EI l=  

 

 
3. Weak form based solution by finite element method 

 

Since the follower force instability of cantilever cannot be solved using statics approach (Bolotin 

1963), we here construct the corresponding dynamics framework. In particular, in this section we 

will show how such dynamics framework can be generalized to more complex problems that can be 

solved by using the finite element method. In constructing the weak form solution, the key role is 

played by von Karman type of strain measure. In our previous work (Ibrahimbegovic et al. 2013, 

Hajdo et al. 2020), the von Karman strain was used for formulating instability problems as linear 

buckling analysis of structures, which reduces to solving the linear eigenvalue problem. Here, we 

carry on further to introduce the Euler-Bernoulli beam with the von Karman strain measure, as the 

model capable of accounting for geometric nonlinearities. We will also add the special finite element 

that can take into account the follower force as the source of instability.  

 

3.1 Variational formulation with von Karman strain as generalization of Euler buckling 
approach 
 

If we consider for example an axially compressed beam, the strong form of the problem can be 

written for the case of small deformations and moderate rotations as 

4 2

4 2
0

d v P d v

dx EI dx
+ =                                        (57) 

where v is transverse displacement, P is compressive force, E is Young’s modulus and I is moment 

of inertia of beam’s cross section. By solving this differential equation, we obtain the Euler critical 

buckling force. Unfortunately, such a result can only be obtained for simple problems; if one wants 

to solve more complex problems, we have to employ the weak form, or virtual work (e.g., 
Ibrahimbegovic 2009). The key role here is played by virtual von Karman strain constructed under 

hypothesis that deformations are small and rotations are moderate. Under such hypothesis the von 

Karman deformation measure can be defined for the Euler-Bernoulli beam as follows 

2 2

2

1

2

vK du dv d v
y

dx dx dx


 
= + − 

 
                                  (58) 
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By introducing virtual displacements (�̂�, 𝑣) to produce the perturbed configuration of the beam 

deformed configuration, we can apply the Gâteaux derivative in the direction of these virtual 

displacements to obtain the virtual von Karman deformation 

 
(59) 

With this result in hand we can further write the virtual work of internal forces 

 
(60) 

The beam stress resultants in terms of axial force N and bending moment M are given as 

( ) ( )
2

2

du d v
N x EA    ;   M x EI

dx dx
= =                               (61) 

We note that the values of stress resultants N and M are obtained from linear theory. Further, we 

can write an explicit form of the principle of the virtual work or the variational equation 

∫
𝑑�̂�

𝑑𝑥
𝐸𝐴

𝑑𝑢

𝑑𝑥
𝑑𝑥 + ∫

𝑑2𝑣

𝑑𝑥2
𝐸𝐼

𝑑2𝑣

𝑑𝑥2
𝑑𝑥 + ∫

𝑑𝑣

𝑑𝑥

𝑑𝑣

𝑑𝑥
𝑁𝑑𝑥 = �̂�𝑓𝑒𝑥𝑡

𝑙
𝑙𝑙

 (62) 

where fext is an external force. The latter is the basis for the approximate solution of instability 

problem, which can be obtained by the finite element method (Ibrahimbegovic 2009), for a structure 

of arbitrary complexity. 

 

3.2 Finite element discrete approximation for thin beam and for thick beams 
 

To define the finite element approximation, we will first use a two-node Euler-Bernoulli beam 

element. In 2D case, each node has three degrees of freedom, two translations and one rotation. The 

nodal values of the real and virtual displacements are denoted as 

𝐝 = [𝑢1 𝑣1 𝜑1     𝑢2 𝑣2 𝜑2] 

�̂� = [�̂�1 𝑣1 �̂�1   �̂�2 𝑣2 �̂�2] 
(63) 

The real displacement field interpolation is given as 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1 2 2

1 1 2 1 3 2 4 4

u x N x u N x u

v x H x v H x H x v H x 

= +

= + + +
                     (64) 

In Eq. (64) above, Ni are the linear shape functions, and Hj are the Hermite cubic polynomials 

( ) ( )

( ) ( )

( ) ( )

1 2

2 3 2 3

1 2 2

2 3 2 3

3 4 2

1

1 3 2 2

3 2

x x
N x                                 N x

l l

x x x x
H x           H x x

l l l l

x x x x
H x                H x

l l l l

= − =

   
= − + = − +   

   

   
= − = − +   

   

                   (65) 
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where l is the length of the beam element. The same kind of interpolation given in Eq. (64) is chosen 

for the virtual displacement field. The derivatives of the shape functions, and the corresponding 

deformations can then easily be obtained as follows 

( ) ( )
2 2

1 1

1 20 0 0 0

T Ta a
a a

a a

ˆdN dNdu du ˆˆx u    ;   x u    ;
dx dx dx dx

dN dN

dx dx

= =

= = = =

 
=  
 

 Nd d N

N

                (66) 

We can further obtain the first and the second derivative of the transverse displacement 

( ) ( )

31 2 40 0

T Tˆdv dv ˆx       ;       x    ;
dx dx

dHdH dH dH

dx dx dx dx

= =

 
=  
 

Hd d H

H

                           (67) 

( ) ( )
2 2

2 2

22 2 2

31 2 4

2 2 2 2
0 0

T Tˆd v d v ˆx       ;       x    ;
dx dx

d Hd H d H d H

dx dx dx dx

= =

 
=  
 

Bd d B

B

                        (68) 

By replacing these results into the relation given in Eq. (62), we can finally obtain the beam 

internal force as well as the material and the geometric part of the stiffness matrix. 

 

(69) 

We note that the tangent stiffness matrix consists of material and geometric matrices 

( )
t m g

T T T

m g

l l

  ;

EA EI dx    ;    Ndx

= +

= + = 

K K K

K N N B B K H H
                    (70) 

To take into account the shear deformation, we modify the material stiffness matrix, as shown in 

our previous work (Medic et al. 2013). More precisely, the entries of the material stiffness matrix 

are multiplied using shear stiffness proportional coefficients 

22 25 52 55

23 26 32 62 53 56 35 65

33 66

36 63

1

1

1

1

1 0 25

1

1 0 50

1

k k k k  ;

k k k k k k k k  ;

.
k k  ;

.
k k  ;













= − = − = − =
+

= = = = = = = =
+

+ 
= =

+

− 
= =

+

                (71) 

with ϕ as shear/bending stiffness ratio defined as 
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2

12EI

kGAl
 =                                         (72) 

where A is the cross-section area, I moment of inertia, l is element length, E elasticity modulus, G 

shear modulus and k is shear correction factor. An infinite shear correction factor implies negligible 

transverse shear deformation, and the element recovers the results in agreement with the Euler-

Bernoulli beam theory.  

Modeling beam dynamics has been subject of many studies (Culver et al. 2019). In case when 

applied load varies in time, the resulting displacements also vary in time. We assume that the nodal 

velocities and accelerations are approximated in the same way as the nodal displacements in Eq. 

(64).  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 2 2

1 1 2 1 3 2 4 4

u x,t N x u t N x u t x t

v x,t H x v t H x t H x v t H x t x t 

= + =

= + + + =

N d

H d
           (73) 

where N(x) and H(x) are the same shape functions as already used in statics 

 

 
1 2

1 2 3 4

0 0 0 0

0 0

N N

H H H H

=

=

N

H
                             (74) 

The equilibrium equation in this case is replaced by equation of motion that is given as 

( t )+ =Md Kd F                                     (75) 

Here, the main novelty is the mass matrix that can be obtained as follows 

( )
0

l

T TM A dx= + N N H H                                 (76) 

where ρ is the mass density. 

 

3.3 Follower force finite element for thin beams 
 

The virtual work of external forces remains as simple as indicated in Eq. (62) when fixed force 

is applied. However, we have to deal with a special load case described as a follower force. The 

follower force is tied to a particular cross-section (Ibrahimbegovic and Taylor 2002). The 

contribution of the follower force applied at the node a to the virtual work principle is 

0

ext

ext a a a tG  = =f p                                   (77) 

where p0 is the initial value of the follower force, and t  is the rotation matrix. The rotation matrix 

in case of the Euler-Bernoulli beam that takes into account von Karman strain measure has the 

following form 

1 0

1 0

0 0 1

t

dv

dx

dv

dx

 
− 

 
 =
 
 
 
  


                                   (78) 
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(a) Vertical force - time diagram 
(b) Transverse displacement vertical force diagram 

indicating instability 

Fig. 8 Cantilever instability under follower force 

 

 

Therefore, the corresponding contribution to the beam element tangent stiffness matrix can be 

obtained as 

2

1

0 0

0 0

0 0 0

f

p

p

− 
 

=
 
  

K                                     (79) 

We note that such contribution to the tangent stiffness has to be applied only to a particular beam 

element node where the follower force is applied. 

 

 
4. Numerical examples 
 

4.1 Analysis of a cantilever beam 
 

4.1.1 Cantilever beam under follower force 
In first example we study a cantilever beam under follower force P (see Fig. 4). The analytic 

solution of such problem is presented in Section 2. Hence, this example can provide the validation 

of our numerical approach.  

At the top of the cantilever, we also apply a small horizontal perturbation force of 0.01P. The 

chosen material and geometrical properties of the cantilever are as follows: E=106 N/cm2, cross-

section area A=1.0cm2, moment of inertia I=0.001 cm4, and length is l=100.0 cm. By replacing these 

values into the analytical solution of the problem, we obtain the critical force value Pcr=2.02 N.  

We here perform numerical analysis for different number of elements, from 10 to 100. The 

structure is subjected to the follower force P, and at time of 1 second a small disturbing force is 

applied to the top of the cantilever. The obtained results are given in Fig. 8. 

The analysis performed using our model indeed results with instability phenomena for the 

analytical value of critical force - 2.02 N. Namely, we can see in Fig. 9, the disproportionally large 

vibration amplitudes for a small perturbation. The closer we get to analytic solution by using a mesh 

with 100 elements the instability becomes more visible. 
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Fig. 9 Cantilever under follower force - time vs transverse displacement 

 

  
(a) k=2.0 (b) k=0.002 

  
(c) k=0.0002 (d) k=0.00002 

Fig. 10 Shear deformation impact to the loss of stability 

 

 

In Fig. 9, it is shown how dynamic instability develops in time, and how transverse displacement 

at the free end of the cantilever is increasing in time for a small perturbation introduced in time t=1s. 

First, we see that the disproportionally large vibration takes some time to develop. We also see that 

to obtain more accurate results, we have to use a refined mesh of 20 or more beam elements.   

 

4.1.2 Cantilever beam under follower force including shear deformation 
Here, we will show how shear deformation affects the value of the critical force. The analytic 
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solution is already given in Section 2.2. We analyze the same kind of cantilever as in the first 

example, but with possibility to include shear deformation by using the Timoshenko beam model. 

We take all the same properties, and also the shear modulus equal to G=0.5×E. In Fig. 10, we give 

the results for four different values of the shear correction coefficient. 

We perform analysis with different values for critical load. We can see in Fig. 10 that the higher 

is the critical load value, the more quickly the instability is manifested. We also see that the presence 

of shear deformation reduced the value of critical load. 

We have already stated that the infinite shear correction factor implies negligible transverse shear 

deformation, and the obtained results in this case match the Euler-Bernoulli beam results. Fig. 10(a) 

shows how transverse displacements changes in time for different force values and shear correction 

factor 2.0. These results are close to the results given in Fig. 9. If we keep increasing the value of 

the correction factor, these results would match completely. But in cases when shear deformation is 

not negligible, Figs. 10(b)-(d), the consequence is an increase in transverse displacement for the 

same critical force value, or an increase in force value which causes the instability. 

 

4.2 Stability analysis of a frame structure 
 

In this section, we analyze the behavior of the frame structure (see Fig. 5) under two vertical  

 

 

  
(a) Ibeam=100×Icolumn (b) IBeam=Icolumn 

 
(c) IBeam=0.01×Icolumn 

Fig. 11 Frame instability under conservative force 
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forces P, also loaded with small disturbances in horizontal direction. The horizontal perturbating 

forces 0.01P are applied at the top of the columns. Frame span and height are both equal to l=h=100 

cm. Moment of inertia of both columns is I=0.001 cm4. We perform several analyses varying the 

beam cross-section properties, while column properties remain constant. 

First, we analyze the behavior of the frame under conservative forces, and then we study 

instability of the frame under nonconservative forces. 

 

4.2.1 Frame under conservative load 
In this case we apply two vertical forces, as shown in Fig. 5, and then in time of 1.0 second we 

apply small horizontal disturbing forces.  

The analysis is performed for three cases of beam stiffness: beam moment of inertia equals to 

columns moment of inertia Ibeam=Icolumn, beam stiffness is 100 times bigger than stiffness of columns 

Ibeam=100Icolumn, and finally third analysis is carried out for the case of small beam stiffness 

Ibeam=0.01Icolumn. In order to obtain the critical force value for all three cases mentioned above, we 

analyze the stability of the frame due to several different values of vertical forces. The resulting 

curves are given in Fig. 11. We already gave semi-analytic solution for frame instability in Section 

2.3, and now we can compare those results to the results we computed using our beam finite 

elements. The comparison is summarized in Table 1. 

 

 
Table 1 Comparison of semi-analytic and numerical solutions for frame critical force 

Beam-columns stiffness ratio Semi-analytic solution Numerical solution 

Ibeam = 100Icolumn 
2 23 14 0 9859crP . EI l .=  =  0.98 N 

Ibeam = Icolumn 
2 22 71 0 7344crP . EI l .=  =  0.736 N 

Ibeam = 0.01Icolumn 
2 21 57 0 2464crP . EI l .=  =  0.26 N 

 

 

The results presented in Table 1 show good matching of semi-analytic and numerical solutions 

for the critical force value of the frame under conservative load. 

 

4.2.2 Frame under follower force 
In the third example, we analyze the same frame as in Section 4.2.1, but in this case, we perform 

instability analysis under two nonconservative follower forces. We also apply small perturbation 

forces at time of 1 second. Again, we perform several analyses varying the beam cross-section 

properties, while column properties remain constant.  

The results of the analyses are given in Fig. 12. In case when beam moment of inertia is 100 

times bigger than the column’s moment of inertia, the critical force value is 1.25 N. Note that such 

a result is in good agreement with the analytical solution for rigid beam (infinite moment of inertia), 

which gives the value for the critical force equal to 0.98 N.  

When columns and beam have the same properties, the instability occurs for the force of 1.55 N. 

Finally, in case when beam is much weaker than columns, the resulting critical force has value of 

2.0 N. When beam moment of inertia tends to zero, the critical force value tends to the analytical 

solution of the column under follower force. 
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(a) Ibeam=100×Icolumn (b) IBeam=Icolumn 

 
(c) IBeam=0.001×Icolumn 

Fig. 12 Frame under instability under follower force 

 
 
5. Conclusions 
 

In this paper we deal with instability problems of structures under non-conservative follower 

force. We demonstrate that the proposed finite element procedure is capable of providing a very 

efficient analysis for this class of problems considering the structures of any complexity (all those 

that can be successfully modeled with beam finite elements). We have validated the proposed 

numerical approach on several examples, including some classical results. Namely, we found out 

that the solution obtained in the numerical example of cantilever column under follower force shows 

a very good agreement with the analytic solution for the critical force. After the shear deformation 

is included, the value of the critical load is reduced, which is also in agreement with the tendencies 

we should find for this kind of problems. 

The stability analysis of frame under follower force indicates that our model can be used in 

solving even more complex structures. The analysis is performed for several beam-column stiffness 

ratios. All obtained results are in agreement with available analytic solution. 
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