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Abstract. In this work, the iterative coupling of finite element and boundary element methods for the
investigation of coupled fluid-fluid, solid-solid and fluid-solid wave propagation models is reviewed. In order
to perform the coupling of the two numerical methods, a successive renewal of the variables on the common
interface between the two sub-domains is performed through an iterative procedure until convergence is
achieved. In the case of local nonlinearities within the finite element sub-domain, it is straightforward to
perform the iterative coupling together with the iterations needed to solve the nonlinear system. In particular,
a more efficient and stable performance of the coupling procedure is achieved by a special formulation that
allows to use different time steps in each sub-domain. Optimized relaxation parameters are also considered
in the analyses, in order to speed up and/or to ensure the convergence of the iterative process.

Keywords: wave propagation; iterative coupling; finite element method; boundary element method; multi-
domain decomposition; different time-steps; nonlinear calculations

1. Introduction

 

The numerical simulation of arbitrarily shaped continuous bodies - solids and/or fluids - subjected

to harmonic or transient loads remains, despite much effort and progress over the last decades, a

challenging area of research. In most cases, discrete techniques, such as the Finite Element Method

(FEM) and the Boundary Element Method (BEM) have been employed and continuously further

developed with respect to accuracy and efficiency. Both methodologies can be formulated in the

time domain or in the frequency domain, and each approach has relative benefits and limitations.

The Finite Element Method, for instance, is well suited for inhomogeneous and anisotropic

materials as well as for dealing with the nonlinear behavior of a body. For systems with infinite

extension and regions of high gradient/stress concentration, however, the use of the Boundary

Element Method is more advantageous. Further details are given, e.g., by Hughes (1987) or Bathe

(1996) for the FEM and by Becker (1992) or Dominguez (1993) in the case of the BEM.

In fact, it did not take long until some researchers started to combine the FEM and the BEM in

order to profit from their respective advantages by trying to evade their disadvantages. Up to now,
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quite a few publications concentrate on such coupling approaches. Many details are given, e.g., by

Zienkiewicz et al. (1977,1979), who were among the first suggesting a “mariage à la mode - the best

of two worlds”, by von Estorff and Prabucki (1990), von Estorff and Antes (1991), Belytschko and Lu

(1994), Yu et al. (2001) etc.. A rather complete overview is provided by Beskos (1987, 1996, 2003). It

should be mentioned, that in most cases the BEM has been used to model those parts of the

investigated bodies that are of semi-infinite extension, while finite parts were represented with the

FEM.

The FEM-BEM coupling in the time domain has also been successfully used to take into account

nonlinear effects. Thus Pavlatos and Beskos (1994) as well as Yazdchi et al. (1999), for instance,

modeled an inelastic structure and the surrounding soil part expected to become inelastic by the

FEM and the remaining soil assumed to behave linearly by means of the BEM. A Similar approach

has been used in some publications by von Estorff and Firuziaan (2000), and Firuziaan and von

Estorff (2002). The coupling of an inelastic structure with a fluid domain of semi-infinite extension

has been investigated by Czygan and von Estorff (2002).

Note that the coupling approaches mentioned so far were formulated in a way that, first, a

coupled system of equation is established, which afterwards has to be solved using a standard direct

solution scheme. Doing so, three major problems need to be taken care of:

1. Due to the coupling of the FEM system matrices with fully populated BEM influence matrices,

the coupled system of equations is not banded and sparsely populated anymore. This means that for

its solution the optimized solvers usually used in the FEM cannot be employed anymore, which

leads to rather expensive calculations with respect to computer time.

2. If standard transient coupling approaches are employed, the duration of the time step has to be the

same for each sub-domain. This sometimes leads to numerical difficulties, in particular, if strongly

different materials (with different wave speeds), e.g., a solid and a fluid, need to be coupled. 

3. In the case of taking into account some nonlinearity within the FEM sub-region, the rather big

coupled system of equations needs to be solved in each step of the iterative process, i.e., a few

times within each time step. This is very computer time consuming.

In view of the first aspect, Elleithy et al. (2001) got the idea of coupling the FEM and the BEM

iteratively. However, they were interested only in the solution of elastostatic problems. Later, Elleithy

et al. (2002, 2009) applied the iterative FEM-BEM coupling procedure to solve the Laplace equation

as well as some other more complex static models (elastoplasticity). Other authors also implemented

iterative FEM-BEM coupling procedures to analyze permanent/static mechanical problems (e.g., Lin

1996, Bo et al. 2006 etc.), highlighting the benefits of the iterative procedure. Considering wave

propagation analyses, Soares et al. (2004, 2005b) firstly applied the iterative formulation to analyze

coupled dynamic and/or acoustic models. Later on, the iterative FEM-BEM coupling methodology

was improved (Soares, 2008b, 2009a,c), rendering more stable and efficient techniques. The procedure

was also applied to the coupling of different numerical methods, rather than the FEM and the BEM,

as well as for different physical applications, rather than those considered by computational mechanics,

expanding the generality and versatility of the technique (Soares et al. 2005a, 2006, 2008a,c, 2009b,

2011, 2012, von Estorff and Hagen 2005, Warszawski et al. 2008). 

In the present paper, the iterative FEM-BEM coupling scheme for the investigation of wave

propagation models is reviewed. It turns out to be very efficient with respect not only to the first

but also to the second and third aspects mentioned above. The FEM and the BEM parts are based

on usual formulations, as suggested, e.g., by Crisfield (1991), Belytschko et al. (2000), Zienkiewicz

and Taylor (2002) and Mansur (1983), Dominguez (1993), von Estorff (2000), respectively. Thus,
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only simple interface procedures have to be implemented if one desires to couple FEM/BEM

existing codes.

The discussed iterative coupling scheme is applied to three numerical examples, namely to a

fluid-fluid, solid-solid and fluid-solid system, to illustrate how the FE/BE combination can be

performed, how accurate the results are, and how nonlinearities in some parts of the body can be

taken into account. Boundary elements may be used for either finite or infinite parts of the body,

whereas all finite element sub-regions have to be bounded domains. Adoption of optimal relaxation

parameters is also discussed in the examples, illustrating their influence in the stability and

efficiency of the analyses. 

 

2. Governing equations

 

In the following sub-sections, the basic equations describing the dynamic behavior of a solid and

a fluid sub-domain are briefly summarized. 

 

2.1 Solid sub-domain

 

The momentum equilibrium equation, considering a unit volume of a continuous body, is given by

(1)

where σij is the Cauchy stress, using the usual indicial notation for Cartesian axes; ui stands for the

displacement and bi for the body force distribution. Inferior commas and overdots indicate partial

space (uj,i = ∂uj / ∂xi) and time ( i = ∂ui/∂t) derivatives, respectively. ρ stands for the mass density.

The constitutive law can be written incrementally as

(2)

where the last two terms account for the Zaremba-Jaumann rotational stress changes (negligible

generally in small displacement computation) and Dijkl is a tangential tensor defined by suitable state

variables and the direction of the increment. The incremental strain (dεij) and rotation (dωij)

components are defined in the usual way from the displacement as

(3)

and  refers to strains caused by external actions such as temperature changes, creep, etc.

Taking into account a linear behavior of the considered body, Eq. (1) can be written, in

accordance with a linear simplified form of Eqs. (2) and (3), as

(4)

where cd is the dilatational wave velocity and cs is the shear wave velocity. Furthermore, boundary

and initial conditions should be defined in order to completely describe the model.

σij j, ρu··i ρbi+– 0=

u·

dσi j Di jkl dεkl dεkl
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2.2 Fluid sub-domain

 

If the influence of gravity on the dynamic behavior of the fluid is neglected, the hydrodynamic

equilibrium equation can be obtained from the Navier-Stokes equation as

(5)

 

where p stands for a potential variable, namely the hydrodynamic pressure, v is the velocity of the

fluid particles, and  the density of the fluid. Using Eq. (5) and the continuity equation

(6)

 

it is straight forward to obtain the so-called acoustic wave equation

(7)

which describes the irrotational small-amplitude motions of the fluid particles. In Eq. (7), c is the

acoustic wave velocity and a gives the space and time dependence of a source density in the fluid.

Once again, boundary and initial conditions need to be defined in order to complete the modeling.

 

3. Finite element modeling

 

In the present work, nonlinearities occurring in the solid sub-region, which is modeled with finite

elements, can be taken into account. Using, for instance, Newton-Raphson iterative procedures, the

governing equilibrium equations describing a nonlinear dynamic problem are given by 

(8)

(9)

where M, C, and KT are mass, damping and nonlinear stiffness matrices, respectively. The nonlinear

residual vector is represented by  and  is the variation of the incremental dis-

placements, calculated at each iterative step. ,  and  are the displacement,

velocity and acceleration vectors, respectively, at time tn and iterative step (k + 1).

Using the Newmark methodology (Newmark 1956)

(10)

(11)

 

as well as Eqs. (8) and (9), the following effective system of equations can be achieved, which

has to be solved at each iterative step of the Newton-Raphson procedure

(12)
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In Eqs. (10) and (11),  and  are the parameters chosen in the Newmark

formulation, and ∆t is the time-step. In Eq. (12), A is the effective nonlinear dynamic matrix and B(k)

is the effective residual vector. Further details on the implementation of the Newmark/Newton-

Raphson algorithm can be found, for instance, in Jacob and Ebecken (1994). The Eqs. (9)-(12) enable

the computation of the transient FEM response at time tn. They are the basis for the iterative coupling

scheme with respect to the solid sub-domain, in which nonlinearities may occur.

Taking into account linear acoustic fluid models, the above formulation can be greatly simplified.

In this case, the discretized governing equations can be described as 

(13)

where now the M, C and K matrices and the F vector are related to the fluid model, and P stands

for the hydrodynamic pressure nodal values. Once the Newmark method is considered, an effective

system of equations, analogously to Eq. (12), can be obtained, allowing the solution of the fluid

sub-domain at each time-step, by finite element procedures. 

 

4. Boundary element modeling

 

 In the present work, the boundary element method is going to be employed to deal with linear

solid and acoustic fluid sub-domains. The basic equation that arises from the boundary element

formulation can be written as

(14)

where Hn and Gn are the influence matrices computed at the current time step n and VH and VG are the

variables on the boundary (C is a geometric influence matrix). In the case of a solid mechanic analysis

(Eq. (4)), VH and VG contain the boundary displacements (U) and tractions (T), respectively; if an

acoustic fluid (Eq. (7)) is considered, VH and VG are the vectors in which the boundary pressures (P)

and fluxes (Q) are assembled, respectively.

After introducing the boundary conditions in Eq. (14), the following expression is obtained

(15)

where, as usual in time domain BEM, the entries of xn are unknown variables on the boundary nodes

at the discrete time tn, while the entries of vector y
n are the according known nodal values. Sn is the

vector related to the time convolution process of the BEM; it represents the complete history up to

tn − 1. Further details on the implementation of the time-domain BEM algorithm can be found, for

instance, in Dominguez (1993) and Mansur (1983).

As a last remark concerning the BE modeling, one should keep in mind that, for implementing the

above numerical scheme (Eqs. (14) and (15)), an approximation in time and along the boundary is

considered, following the expression below
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m

–( )
m 1=
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(16)

where η j is a spatial interpolation function corresponding to a boundary node Xj ; φm is a time

interpolation function corresponding to a discrete time tm ; and, finally, . It is im-

portant to highlight this aspect of the formulation since, in the iterative coupling algorithm, different

time-steps for each sub-domain of the model is considered, and time interpolation/extrapolation

procedures are carried out based on the BEM time interpolation functions φm. It is also important to

observe that usually different time interpolation functions are adopted for VH and VG, being usually

linear and piecewise constant time interpolation functions considered, respectively.

 

5. Iterative coupling procedure

In order to be able to explain the iterative coupling procedures in a more comprehensive way, a

notation such as  is used. According to this, the variable V is on the BEM/FEM interface (IV)

and it is approached by the FEM or BEM sub-domain (FV or BV, respectively) at time t (V
t) and at

the iterative step (k) (V(k)). Moreover, the functions N(.)i and T(.)i shall be introduced: at a node i of

the BEM/FEM interface, they lead to the normal and the tangential component of their arguments,

respectively.

Considering the coupling conditions at each node i of the interfaces, Eqs. (17), (18) and (19) must

hold for a fluid-fluid, solid-solid and solid-fluid coupling, respectively

Fluid-fluid coupling (17)

Solid-solid coupling (18)

Fluid-solid coupling

(19)

where, in order to obtain consistency between the FE and the BE formulation, ,  and  represent

the resultant nodal forces, which are obtained from the pressure (P), flux (Q) and traction (T)

distributions, respectively. F denotes the FE nodal forces and the negative signs account for the

different normal directions on the interface of the coupled sub-domains.

The algorithm shown next summarizes the iterative coupling procedures being used. It is

important to note that the iterative coupling process can be done together with the FEM nonlinear

iterations, described in section 3.
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Algorithm

1. Initial calculations

1.1 The global domain of the problem is subdivided into different sub-domains; these sub-

domains are modeled either by the FEM or the BEM.

1.2 The time-steps for each sub-domain are selected: F∆t and B∆t. The initial time attributions are

Ft = 0 and Bt = B∆t.

1.3 Initial prescribed values are chosen for the FEM nodal forces at the interface surfaces, for

example, .

1.4 Standard initial calculations related to the FEM and BEM are performed, for instance, the

calculation of the matrices , etc.

2. Time-step loop

2.1 Beginning of the evaluations at each time-step: Ft = Ft + F∆t 

2.2 BEM pre-iterative processing

If  then: adoption of Bt = Bt + B∆t; evaluation of 

2.3 Iterative loop

2.3.1 Solve the FEM sub-domain.

Solid mechanics: Obtain the displacements  (solid-solid coupling) or the

accelerations  (fluid-solid coupling) at the interface.

Acoustic fluids: Obtain the hydrodynamic pressures  at the interface.

2.3.2 Adoption of relaxation parameters to ensure and/or speed up convergence

Fluid-fluid coupling: 

Solid-solid coupling: 

Fluid-solid coupling: 

2.3.3 Obtain the boundary conditions for the BEM sub-domains

Fluid-fluid coupling: time extrapolation of in order to obtain . Since the

interpolation function φn(t) is usually considered as being linear for hydrodynamic

pressures, one has: .

Solid-solid coupling: time extrapolation of  in order to obtain . Since the

interpolation function φ n(t) is usually considered as being linear for displacements, one

has: .

Fluid-solid coupling: from the FEM acceleration , obtain the BEM flux

. Use time extrapolation of  in order to obtain . Since the

interpolation function φ n(t) is usually considered as being piecewise constant for fluxes,

one obtains .

F 0( )

∆t
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2.3.4 Solve the BEM sub-domain

Solid mechanics: obtain the tractions  at the interface.

Acoustic fluids: obtain the fluxes  (fluid-fluid coupling) or the pressures 

(fluid-solid coupling) at the interface.

2.3.5 Determine the boundary conditions for the FEM sub-domain

Fluid-fluid coupling: time interpolation of  in order to obtain . Since the

interpolation function φ n(t) is usually considered as being piecewise constant for fluxes,

one gets . From the BEM fluxes at the interface , calculate the

FEM nodal forces .

Solid-solid coupling: time interpolation of  in order to obtain . Since the

interpolation function φ n(t) is usually considered as being piecewise constant for tractions,

one gets . From the BEM tractions at the interface , calculate

the FEM nodal forces .

Fluid-solid coupling: time interpolation of  in order to obtain . Since the

interpolation function φ n(t) is usually considered as being linear for hydrodynamic

pressures, one gets: . From the BEM pressures at

the interface , calculate the FEM nodal forces .

2.3.6 Check for convergence. Go back to 2.3.1 if convergence is not achieved.

2.4 Actualization (and impression) of results related to the FEM.

2.5 If Ft + F∆t > Bt then: actualization (and impression) of results related to the BEM.

2.6 Go back to 2.1 until the final time-step is reached.

3. End of calculation

In the algorithm given above, α stands for the relation parameter, which is further discussed in the

next subsection, and β is the time interpolation parameter, which is given by β = (Bt − Ft)/B∆t. As it

was previously discussed, in order to take into account different time discretizations for the FEM and

the BEM sub-domains, extrapolations and interpolations of the variables related to each numerical

approach can be considered. The algorithm presented above shows how this time interpolation/

extrapolation procedure should be done, according to the adopted BE formulation (Eq. (16)).

As one can observe, the FE- and the BE-subsystems are solved separately, which means that

different solution procedures can be applied to solve the FEM and the BEM system of equations.

Thus the symmetry and sparsity of the FEM matrices can easily be taken into account, which results

in a more efficient methodology. By solving the FEM and the BEM apart, one also has better-

conditioned systems of equations, which is important with respect to the accuracy and effectiveness

of the analysis. It should also be pointed out that when a Newton-Raphson procedure is considered,

which includes a renewal of the effective stiffness matrix at different iterative steps, the BEM system

of equations is not affected by this renewal. In this way a considerable amount of calculations is

avoided.

The effectiveness of the iterative coupling methodology is intimately related to the relaxation

T k 1+( )

t
B 

I

B

Q k 1+( )

t
B 

I

B P k 1+( )

t
B  

I

B

Q k 1+( )

t
B 

I

B Q k 1+( )

 t
F

I

B

Q k 1+( )

 t
F

I

B Q k 1+( )

t
B 

I

B= Q k 1+( )

 t
F

I

B

F k 1+( )

 t
F

I

F

T k 1+( )

t
B 

I

B T k 1+( )

t
F 

I

B

T k 1+( )

t
F  

I

B T k 1+( )

t
B 

I

B= T k 1+( )

t
F 

I

B

F k 1+( )

 t
F

I

F

P k 1+( )

t
B 

I

B P k 1+( )

t
F 

I

B

P k 1+( )

t
F 

I

B β P
t

B 
∆ t

B  –I

B 1 β–( ) P k 1+( )

t
B 

I

B+=

P k 1+( )

t
F 

I

B F k 1+( )

 t
F

I

F



FEM-BEM iterative coupling procedures to analyze interacting wave propagation models 27

parameter selection: an inappropriate selection for α can drastically increase the number of iterations

in the analysis or, even worse, make convergence unfeasible. Once appropriate α values are con-

sidered, convergence is usually achieved in quite few iterative steps, providing an efficient and robust

FEM-BEM coupling technique. In the next sub-section, an expression for an optimal relaxation

parameter is deduced.

5.1 Optimal relaxation parameter

In order to evaluate an optimal relaxation parameter, the following square error functional is here

minimized

(20)

where V stands for displacements, accelerations or hydrodynamic pressures, according to the problem

in focus.

Taking into account the relaxation of the selected fields for the (k + 1) and (k) iterations, Eqs.

21(a) and (b) may be written, regarding the discussed iterative coupling algorithm.

(21a)

(21b)

where  stands for previous time-step contributions and  represents a time interpolation coefficient.

Substituting Eq. (21) into Eq. (20) yields

(22)

where the inner product definition is employed (e.g., (W, W) = ||W||2) and new variables, as defined

in Eq. (23), are considered.

(23)

To find the optimal α that minimizes the functional f(α), Eq. (22) is differentiated with respect to α

and the result is set to zero, as described below

(24)

Re-arranging the terms in Eq. (24), yields

/ (25)

which is an easy to implement expression that provides an optimal value for the relaxation

parameter α, at each iterative step.
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It is important to note that the relation 0 < α ≤ 1 must hold. In the present work, the optimal

relaxation parameter is evaluated according to Eq. (25) and if  the previous iterative-

step relaxation parameter is adopted. For the first iterative step, α = 0.5 is selected.

6. Numerical applications

In the next subsections, some numerical applications are presented, illustrating the potentialities and

effectiveness of the discussed methodologies. In the first example, fluid-fluid coupling procedures are

focused, and a two media model is considered, studding the scalar wave propagation through the

different materials. In the second example, solid-solid coupling techniques are discussed, and a

circular cavity is analysed, taking into account linear and non-linear behaviour. Finally, in the third

application, fluid-solid coupling procedures are employed and a dam-reservoir system is analysed,

considering once again linear and non-linear behaviour.

For all the applications that follow, spatial discretization based on linear elements is considered for

both BEM and FEM sub-domains. The trapezoidal rule is adopted for time integration, regarding the

Newmark method. The convergence of the iterative coupling process is analysed based on the FEM

computed fields and residual norms, and a tight tolerance error of 10−5 is selected. The results

obtained with the iterative FEM-BEM coupled formulation are compared with the results from other

numerical procedures.

6.1 Fluid-fluid coupling

In this application, a fluid-fluid interaction model is analysed taking into account acoustic FEM-

BEM coupling procedures. The physical properties of the acoustic fluid modelled by the FEM are

c = 1500 m/s and = 1000 kg/m3; the fluid modelled by the BEM is characterized by c = 340 m/s

and = 1.3 kg/m3. A sketch is depicted in Fig. 1. The geometry of the model is defined by

L = 1.0 m and the FEM and BEM meshes are sufficiently extended horizontally (so that outgoing

waves never reach lateral boundaries - uniform meshes with element length l = 0.1 m are

employed). The time-steps considered in the analyses are B∆t = 2·10−4 s and F∆t = 1·10−5 s. One

should observe that a great difference between the selected time-step values is being considered.

This difference is due to the different wave propagation velocities within the media, requiring very

distinct time-steps at each sub-domain, in order to achieve optimal local time discretizations. 

The potential time histories at points A, B and C, due to a time-sinusoidal point source, located as

α 0.01 1.00;( )∉

ρ̂

ρ̂

Fig. 1 Sketch of the model for the fluid-fluid interaction analysis
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described in Fig. 1, are depicted in Fig. 2. The FEM-BEM results are compared to those provided

by FEM analyses based on (vertically) large enough meshes and a unique temporal discretization of

∆t = 1·10−5 s. As can be seen, good agreement between FEM-BEM and FEM results is observed,

illustrating the robustness of the adopted time interpolation/extrapolation procedures (it is important

to highlight that these procedures are consistent with the boundary element formulations being

considered; if different relations are employed for the time interpolation/extrapolation procedures,

unstable results usually arise). 

6.2 Solid-solid coupling

This plane strain problem consists of a circular cavity under a uniform internal pressure (6.895·106

N/m2) suddenly applied and kept constant in time. A sketch of the model is shown in Fig. 3(c). The

finite and boundary element meshes are depicted in Figs. 3(a) and (b), respectively: 1944 triangular

finite elements and 80 boundary elements are employed in the coupled analysis. The physical

properties of the model are: E = 6.5277·108 N/m2; ρ = 1.804·103 kg/m3 ; v = 0.2308. A perfectly plastic

material obeying the Mohr-Coulomb yield criterion is assumed, where: c = 4.8263·106 N/m2 (cohesion);

φ = 30o (internal friction angle). The geometry of the problem is defined by R = 3.048 m (the radius

Fig. 2 Time history results at points A, B and C for the fluid-fluid interaction analysis

Fig. 3 Circular cavity: (a) FEM mesh, (b) BEM mesh and (c) geometry and boundary conditions
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of the BEM circular mesh is given by 5R). The time discretization adopted is given by F∆t = 0.04 s

and B∆t = 0.20 s.

In Fig. 4, the displacement time history at point A is plotted, considering linear and non-linear

analyses (results considering BEM-BEM coupling procedures are plotted for comparison, following

the work of Soares et al. 2005a). The number of iterations per time-step and the optimal relaxation

parameters, evaluated at each iterative step, are plotted in Figs. 5 and 6, respectively. As one may

observe, basically the same computational effort is necessary for both linear and non-linear analyses,

highlighting the efficiency of the proposed methodology for complex phenomena modeling. For the

focused configurations, the optimal relaxation parameters are intricately distributed within the interval

(0.75; 1.00), as depicted in Fig. 6. 

In Table 1, the total number of iterations is presented, considering analyses with optimal relaxation

Fig. 4 Horizontal displacements at point A considering elastic and elastoplastic behaviour

Fig. 5 Number of iterations per time step considering optimal relaxation parameters
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parameters and with some constant pre-selected α values. As one may observe, an inappropriate

selection for the relaxation parameter can considerably increase the associated computational effort.

Thus, the proposed technique is extremely important in order to provide a robust and efficient

iterative coupling formulation.

6.3 Fluid-solid coupling

In this second example, a dam-reservoir system, as depicted in Fig. 7, is analysed. The structure is

subjected to a sinusoidal distributed vertical load on its crest, acting with an angular frequency

w = 18 rad/s and amplitude 200 N/m2. The material properties of the dam are: E = 3.437·109 N/m2,

v = 0.25 and ρ = 2000 kg/m3 (a perfectly plastic material obeying the von Mises yield criterion is

assumed, with yielding stress σ0 = 175 N/m2). The adjacent water is characterized by c = 1436m/s and

= 1000 kg/m3 (a water level defined by H = 50 m is considered). 93 quadrilateral finite elements are

employed to discretize the dam and the fluid is discretized by constant-length boundary elements

(l = 5m). Regarding temporal discretization, two cases are here considered, namely: (i) case 1 − B∆t =

ρ̂

Fig. 6 Optimal relaxation parameters for each iterative step

Table 1 Total number of iterations for the circular cavity analysis

Relaxation parameter Elastic analysis Elastoplastic analysis

1.00 3730 3740

0.90 3392 3443

0.80 3973 3993

0.70 4772 4777

optimal 3287 3346



32 Delfim Soares Jr.

Fig. 7 Dam with a semi-infinite storage-lake: sketch of the model

Fig. 8 Time history results considering linear and non-linear material behaviour: (a) vertical displacements at
point A and (b) hydrodynamic pressures at point B
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0.0035 s and F∆t = 0.00175 s; (ii) case 2 − B∆t = 0.0035 s and F∆t = 0.000875 s.

In Fig. 8, vertical displacements at point A and hydrodynamic pressures at point B are depicted,

considering case 1 and case 2, as well as linear and non-linear analyses. In Fig. 9, the number of

iterations per time step is presented, considering optimal relaxation parameters (one should keep in

mind that a tight tolerance error is being considered). In Fig. 10, the optimal relaxation parameters,

evaluated at each iterative step, are plotted. As it can be observed, for the current analyses, the optimal

relaxation parameter varies intricately within the interval (0.2;1.0), illustrating the intense dynamic

behaviour of this variable along typical fluid-structure interaction analyses.

In Table 2, the total amount of iterations, taking into account non-linear analyses (case 1 and case

2), are specified. The results are presented considering optimal and some constant pre-selected

relaxation parameter values. As it can be observed, optimal relaxation parameters reduce the

computational cost of the analysis, as well as they ensure convergence in the iterative coupling

procedure (in Table 2, the symbol ∞ indicates that convergence is not achieved).

Fig. 9 Number of iterations per time step considering optimal relaxation parameters: (a) case 1 and (b) case 2
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7. Conclusions

In order to increase the effectiveness of FEM-BEM coupled analyses in the time domain, an iterative

Fig. 10 Optimal relaxation parameters for each iterative step: (a) case 1 and (b) case 2

Table 2 Total number of iterations in the dam-reservoir system non-linear analyses considering different relaxation
parameter values

Relaxation parameter Case 1 Case 2

0.3 3278 4885

0.6 3526 ∞

0.9 ∞ ∞

optimal 2825 4757
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coupling approach has been discussed. It is based on three major steps, namely:

1. subdivision of a given domain problem into a number of sub-domains,

2. modeling of each sub-domain either by finite elements or by boundary elements,

3. iterative coupling of the FEM and BEM sub-domains, taking into account the current transient

boundary conditions.

The major advantage of such a procedure can be seen in the fact that the FEM and BEM system

matrices are solved separately using optimized solution algorithms for each sub-domain. Consequently,

the systems of equations to be solved are much smaller than the standard coupled matrices. In addition,

the iterative coupling offers two advantages: It is straightforward to use different time steps in each sub-

domain and, moreover, to take into account nonlinearities (within the FEM sub-domains) in the same

iteration loop that is needed for the coupling.

The iterative coupling methodology has been applied in three numerical examples, namely con-

sidering fluid-fluid, solid-solid and fluid-solid coupling. Assuming linear and also nonlinear material

laws, it could be shown that the new algorithm yields excellent results, especially when optimal

relaxation parameters are considered, increasing the robustness and efficiency of the methodology.

Independent time discretization for each sub-domain of the model also greatly improves the accuracy,

stability and versatility of the technique, since it allows more appropriate FEM/BEM local analyses

(one should keep in mind that FEM and BEM usually require quite different optimal temporal

discretizations, even when homogeneous media are considered; thus, independent temporal discretiz-

ation for each sub-domain in FEM-BEM coupled analyses of wave propagation models is of major

importance). 

Using the advantages of finite and boundary elements in an iterative coupling scheme, the discussed

formulation is well suited to handle more complex semi-infinite systems including local nonlinearities

and highly heterogeneous media. As a matter of fact, the present methodology is very effective to

analyze complex wave propagation models, properly jointing "the best of two worlds".
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