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Abstract.  This research is devoted to investigate the thermal buckling analysis behaviour of laminated composite 
plates, by applying an analytical model based on a refined plate theory (RPT) with five independent unknown variables. 
The theory accounts for parabolic distribution of the transvers shear strains through the plate thickness, and satisfied 
the zero traction boundary condition on the surface without using shear correction factors, hence a shear correction 
factor is not required. The governing differential equations and associated boundary conditions are derived by 
employing the principle of virtual work and solved via Navier-type analytical procedure to obtain critical buckling 
temperature for simply supported boundary condition of symmetric and antisymmetric cross-ply and angle-ply 
laminated plates. MATLAB 2018 program is used to investigate the effect of thickness ratio (a/h), aspect ratio (a/b), 
orthogonality ratio (E1/E2), coefficient of thermal expansion ratio (α2/α1) and numbers of layers on thermal buckling of 
laminated plate. It can be concluded that this theory gives good results when compared with other theory. 
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1. Introduction 
 

Designs of airframes for high speed flight and spacecraft structures have to consider carefully 

the effect of the thermal environment on structural and material behavior. The plate structures are 

often subjected to severe thermal environments during launching and reentry and may have 

significant and unavoidable initial geometric imperfections. When the plate is subjected to 

temperature change, thermally induced compressive stresses are developed in the constraint plate 

due to thermoelastic properties and consequently buckling occurs. Therefore, the study of the 

buckling behavior of composite laminated plates under such environmental conditions is a matter of 

considerable importance in the design of aircraft. Thangaratnam and Ramachandran (1989) used 

finite element method using semiloof elements to analyse critical buckling temperature for 

composite laminates under thermal load. The equation of motion for critical temperature is obtained 

by equating the second variation of total potential energy to zero. Different boundary condition for 

cross-ply and angle-ply symmetric and antisymmetric plates. Chang and Leu (1991) studied thermal 

buckling of antisymmetric angle-ply laminated simply supported subjected to uniform thermal load 

using higher order deformation theory which account for transverse shear and transverse normal 
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strain to obtain exact-closed form solution. Chen et al. (1991) studied the thermal buckling behavior 

of composite laminated plates subjected to uniform or non-uniform temperature fields are analyzed 

with the aid of the finite element method. Noor and Scott Burton (1992) presented three-dimensional 

analytical solution for thermal buckling multilayered angle-ply composite plates with temperature-

dependent thermo elastic properties. The temperature is assumed to be independent of the surface 

coordinates, but has symmetric variation along plate thickness. Shu and Sun (1994) used a higher-

order displacement field is developed for study the analysis of the thermomechanical buckling of 

composite plates subjected to thermal or mechanical load. Exact closed-form solutions of symmetric 

cross-ply laminates are obtained. Prabhu and Dhanaraj (1994) studied thermal buckling of laminated 

composite plates is analysed using the finite element method based on the Reissner-Mindlin first 

order shear deformation theory. The nine-node Lagrangian isoparametric element is employed for 

the thermal buckling analysis of symmetric cross-ply, anti-symmetric angle-ply and quasi-isotropic 

laminates subjected to uniform temperature distribution. Matsunaga (2006) investigated thermal 

buckling of angle-ply laminated composite and sandwich plates based on two-dimensional global 

higher order shear deformation theory. Abdul-Majeed et al. (2011) investigated thermal buckling of 

isotropic thermo elastic thin plates using governing differential equation and the Rayleigh-Ritz 

method. Three types of thermal distribution have been considered these are: uniform temperature, 

linear distribution and non-linear thermal distribution across thickness. Bourada et al. (2012) used a 

new four-variable refined plate theory for thermal buckling analysis of functionally graded material 

(FGM) sandwich plates. The thermal loads are assumed as uniform, linear, and nonlinear 

temperature rises across the thickness direction. Kumar et al. (2013) investigated the effect of 

temperature on the buckling response of a laminated composite plate subjected to thermo mechanical 

loadings. Mechanical loading consists of uniaxial, biaxial, and shear. The distribution of temperature 

on the surface is considered to be uniform. The mathematical formulation is based on higher order 

shear deformation theory. Jameel (2013) investigated critical buckling temperature of cross-ply and 

angle-ply composite laminated plate using classical laminated and higher order shear deformation 

plate theory. Equations of motion are solved using Navier and Levy methods for symmetric and anti-

symmetric laminated plates. Kumar and Gupta (2014) investigated thermal buckling of symmetric 

cross-ply composite laminate using the classical laminated plate theory & first order shear 

deformation theory in conjunction with the Rayleigh-Ritz method is used for the evaluation of the 

thermal buckling parameters of structures made out of graphite fibres with an epoxy matrix. 

Symmetrically cross-ply laminated composite plates subjected to a combination of uniform 

temperature distribution through the thickness. Singh (2014) presented thermal buckling behavior 

of laminated composite curved panel embedded with shape memory alloy fiber based on higher 

order shear deformation plate theory. Variational principle with finite element modeling under 

uniform temperature loading is used to obtain the responses. Cetkovic (2016) Studied thermal 

buckling of laminated composite plates, based on Layer wise Theory of Reddy and new version of 

Layer wise Theory of Reddy. From the strong form, analytical solution is derived based on Navier’s 

type, while the weak form is analysed using the isoperimetric finite element approximation. Ounis 

and Belarbi (2017) studied the thermal buckling behavior of laminated plates with rectangular cut 

outs using classical plate theory as a base for finite element method. Xing and Wang (2017) 

concerned the critical buckling temperature of functionally graded rectangular thin plates. Closed 

form solutions for the critical thermal parameter are obtained for the plate with different boundary 

conditions under uniform, linear and nonlinear temperature fields using separation-of-variable 

method. Hussein and Alasadi (2018) investigation of the stress-strain for E-glass fiber/polyester 

composite plates subjected to the uniform temperature at various factors, such as fiber volume 
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fraction and fiber orientation. using finite element solution. Sadiq and Majeed (2019) studied critical 

buckling temperature of angle-ply laminated plate is developed using a new higher-order 

displacement field. Equations of motion based on higher-order theory angle-ply plates are derived 

through Hamilton’s principle, and solved using Navier-type solution to obtain critical buckling 

temperature for simply supported laminated plates. Tounsi et al. (2019) presented a novel higher-

order shear deformation theory (HSDT) for buckling analysis of functionally graded plates. The 

present theory accounts for both shear deformation and thickness stretching effects by a parabolic 

variation of all displacements across the thickness, and satisfies the stress-free boundary conditions 

on the upper. The governing equations are obtained by the principle of virtual work. Analytical 

solutions for the buckling analyses are solved for simply supported sandwich plate. Belbachir et al. 

(2019). Investigated to describe the response of anti-symmetric cross-ply laminated plates subjected 

to a uniformly distributed nonlinear thermo-mechanical loading. By using refined plate theory. The 

undetermined integral terms are used and the variables number is reduced to four. The boundary 

conditions on the top and the bottom surfaces of the plate are satisfied. The principle of virtual work 

is used to obtain governing equations and boundary conditions. Navier solution for simply supported 

plates is used to derive analytical solutions. Abualnour et al. (2019). Studied The thermo-mechanical 

bending behavior of the antisymmetric cross-ply laminates is examined using a new simple four 

variable trigonometric plate theory. The proposed theory utilizes a novel displacement field which 

introduces undetermined integral terms and needs only four variables. Belbachir et al. (2020). Deals 

with the flexural analysis of anti-symmetric cross-ply laminated plates under nonlinear thermal 

loading using a refined plate theory with four variables. The undetermined integral terms are used 

and the number of variables is reduced to four. The principle of virtual work is used to obtain 

governing equations and boundary conditions. Navier solution for simply supported plates is used 

to derive analytical solutions. Abdul and Majeed (2020) a modified Fourier-Ritz approach for first 

time is used to study dynamic transverse response of laminated plates with different boundary 

conditions based on classical plate’s theory. The transverse displacement component of the plate is 

represented by Fourier series which is modified by adding auxiliary functions to cosine series so as 

to accelerate the convergence of the series and the solution. Ghadimi (2020) studied stability 

functions are calculated to obtain critical elastic buckling loads of asymmetric and axisymmetric 

one-span non-sway bending frames made up of laminated thin beams and columns with through-

thickness mechanical properties variation subjected to axial compression. The shear and axial 

deformations are neglected. It is assumed that the members are perfect and axial compression is 

applied to neutral axis without eccentricity. The relative rotations of beams with respect to columns 

are occurred due to semi-rigid connections at joints of the bending frame. Menasria et al. (2020) 

Presented dynamic analysis of the FG-sandwich plate seated on elastic foundation with various kinds 

of support using refined shear deformation theory. The zero-shear stresses at the free surfaces of the 

FG-sandwich plate are ensured without introducing any correction factors. The four equations of 

motion are determined via Hamilton’ principle and solved by Galerkinw’s approach for FG-

sandwich plate with three kinds of the support. Chikr et al. (2020). Studied the buckling analysis of 

material sandwich plates based on a two-parameter elastic foundation under various boundary 

conditions is investigated on the basis of a new theory of refined trigonometric shear deformation. 

The governing equations and boundary conditions are obtained. Bensaid et al. (2021) investigate the 

static bending and buckling response of Functionally Graded (FG) nanobeams by employing a new 

refined first order shear deformation beam theory. The elegancy of this novel theory is that, not only 

has one variable in terms of equations of motion as in classical beam theory (EBT) but also accounts 

for the effect of transverse shear deformation without any requirement of Shear Correction Factors 
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(SCFs). Tahir et al. (2021). Presented Wave propagation analysis of porous functionally graded (FG) 

sandwich plate in a hygro-thermal environment. By using a simple four-unknown integral higher-

order shear deformation theory (HSDT). The effect of moisture and temperature on wave 

propagation in porous FG sandwich plates is investigated by considering their role on the material’s 

expansion. Bakoura et al. (2021) Studied the mechanical buckling analysis of simply-supported 

functionally graded plates are carried out using a higher shear deformation theory (HSDT) in 

conjunction with the stress function method. Without using shear correction factor and gives rise to 

a variation of transverse shear stress such that the transverse shear stresses vary parabolically 

through the thickness satisfying the surface conditions without stress of shear.  

In present work, critical temperature of simply supported composite cross-ply and angle-ply plate 

is obtained using refined five-parameter plate theory (RPT). The significant advantage of our 

proposed theory is that five unknown variable exists in its displacement formula and governing 

equation. The displacement u in x direction, the displacement v in y direction, the transverse 

displacement W contains three components of bending wb, shear ws and extension wa which these 

components are function of coordinates x and y. the effect of thickness ratio (a/h), aspect ratio(a/b), 

orthogonality ratio (E1/E2), coefficient of thermal expansion ratio (α1/α2) and numbers of layers on 

thermal buckling of laminated plate for symmetric and antisymmetric thin and thick plate are 

investigated. 

 

 

2. Theoretical analysis 

 

2.1 Displacement field 

 

Consider a rectangular plate of total thickness (h) composed on (n) orthotropic layers with the 

coordinate system (see Fig. 1) Kim (2009). Refined plate theory satisfies equilibrium conditions at 

the top and bottom forces of the plate without using shear correction factor. The transverse 

displacement W includes three components of extension wa, bending wb and shear ws the 

displacement field may be expressed as Kim (2009): 

 

 

 
Fig. 1 Developed samples from stir casting 
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𝑈(𝑥, 𝑦, 𝑧) = 𝑢(𝑥, 𝑦) − 𝑧 [
𝜕𝑤𝑏
𝜕𝑥

] + 𝑧 [
1

4
−
5

3
(
𝑧

ℎ
)
2

]
𝜕𝑤𝑠
𝜕𝑥

 

𝑉(𝑥, 𝑦, 𝑧) = 𝑣(𝑥, 𝑦) − 𝑧 [
𝜕𝑤𝑏
𝜕𝑦

] + 𝑧 [
1

4
−
5

3
(
𝑧

ℎ
)
2

]
𝜕𝑤𝑠
𝜕𝑦

 

𝑊(𝑥, 𝑦, 𝑧) = 𝑤𝑎(𝑥, 𝑦) + 𝑤𝑏(𝑥, 𝑦) + 𝑤𝑠(𝑥, 𝑦) 

(1) 

For small strain Linear, the strain-displacement relations take the form Reddy 2004. 

ℰx
 = 

∂u

∂x
 ,  ℰy

 = 
∂v

∂y
 

ℇ𝑥𝑦 =
1

2
(
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
) =  

1

2
𝛾𝑥𝑦 ,  ℰ𝑦𝑧 =

1

2
(
𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
) =  

1

2
𝛾𝑦𝑧 ,  ℰ𝑥𝑧 =

1

2
(
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
) =  

1

2
𝛾𝑥𝑧  

(2) 

The strain components will be derived, based on the displacement refined of plate, from Eq. (1) 

and (2) as: 

ℰ𝑥 = 
𝜕𝑢

𝜕𝑥
− 𝑧

𝜕2𝑤𝑏

𝜕𝑥2
+ 𝑧 [

1

4
−
5

3
(
𝑧

ℎ
)
2
]
𝜕2𝑤𝑠

𝜕𝑥2
 ,  ℰ𝑦 = 

𝜕𝑣

𝜕𝑦
− 𝑧

𝜕2𝑤𝑏

𝜕𝑦2
+ 𝑧 [

1

4
−

5

3
(
𝑧

ℎ
)
2

]
𝜕2𝑤𝑠

𝜕𝑦2
 

γxy = 
∂u

∂y
+
∂v

∂x
− 2z (

∂2wb

∂x∂y
) + 2z [

1

4
−
5

3
(
z

h
)
2
]
∂2ws

∂x∂y
 , 

 γyz =  
∂wa

∂y
+ [

5

4
− 5(

z

h
)
2
]
∂ws

∂y
 ,   γxz = 

𝜕𝑤𝑎

𝜕𝑥
+ [

5

4
− 5(

𝑍

ℎ
)
2
]
𝜕𝑤𝑠

𝜕𝑥
  

(3) 

The strains associated with the displacements are: 

ℰx = ℰx
0 + zkx

b + fkx
s  ,  ℰy = ℰy

0 + zky
b + fky

s  , ℰz = 0 , 

 γxy = γxy
0 + zkxy

b + fkxy
s  , γyz = γyz

a + gγyz
s  ,  γxz = γxz

a + gγxz
s    

(4) 

where: 

{

ℰx
0

ℰy
0

γxy
0

} =

{
 
 

 
 

∂u

∂x
∂v

∂y

∂u

∂y
+
∂v

∂x}
 
 

 
 

, {

kx
b

ky
b

kxy
b

}  

{
 
 

 
 −

∂2wb

∂x2

−
∂2wb

∂y2

−2
∂2wb

∂x∂y}
 
 

 
 

 , {

kx
s

ky
s

kxy
s
} = 

{
 
 

 
 −

∂2ws

∂x2

−
∂2ws

∂y2

−2
∂2ws

∂x∂y}
 
 

 
 

  

{
γxz
a

γyz
a } =  {

∂wa

∂x
∂wa

∂y

} , {
γxz
s

γyz
s } =  {

∂ws

∂x
∂ws

∂y

} , f = −
1

4
z +

5

3
 z (

z

h
)
2
,    g =  

5

4
− 5(

z

h
)
2
 

(5) 

 

2.2 Hamilton’s principle 

 

Hamilton’s principle is used herein to derive the equations of motion appropriate to the 

displacement field. The principle can be stated in analytical form as Reddy (2004). 

0 = ∫ (δU + δV)dt
T

0

 (6) 
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The strain energy 𝛿𝑈 can be written as: 

δU =  ∫(σxδℰx + σyδℰy + σxyδγxy + σyzδγyz + σxzδγxz)dV
 

V

 (7) 

Substituting Eq. (4) into Eq. (7) we get: 

δU =   ∫ [
σxx(δℰx

0 + zδkx
b + fδkx

s) + σyy(δℰy
0 + zδky

b + fδky
s)

+σxy(δγxy
0 + zδkxy

b + fδkxy
s ) + σyz(δγyz

a + gδγyz
s ) + σxz(δγxz

a + gδγxz
s )
] dV 

 

V

 

δU =  ∫ [
Nxδℰx

0 + Nyδℰy
0 +Nxyδγxy

0 +Mx
bδkx

b +My
bδky

b +Mxy
b δkxy

b +Mx
sδkx

s

+My
sδky

s +Mxy
s δkxy

s + Qyz
a δγyz

a + Qxz
a δγxz

a + Qyz
s δγyz

s +Qxz
s δγxz

s ]
 

A

∂x∂y 

(8) 

where: 

(Nx, Ny, Nxy) =  ∫ (σx , σy , σxy) dz =  ∑ ∫ (σx, σy, σxy)
zk+1
zk

N
k=1

h

2

−
h

2

dz  

(Mx
b, My

b, Mxy
b ) =  ∫ (σx , σy , σxy)z dz =  ∑ ∫ (σx , σy , σxy)

zk+1
zk

N
k=1

h

2

−
h

2

zdz  

(Mx
s, My

s , Mxy
s ) =  ∫ (σx , σy , σxy) fdz =  ∑ ∫ (σx , σy , σxy)f

zk+1
zk

N
k=1

h

2

−
h

2

dz   

(Qxz
a , Qyz

a , Qxz
s , Qyz

s ) = ∫ (σxz , σyz , gσxz ,gσyz) dz =  ∑ ∫ (σxz , σyz , gσxz ,gσyz)
zk+1
zk

N
k=1

h

2

−
h

2

dz  

(9) 

Substituting Eq. (5) in Eq. (8) and by using by parts integrating we get the final strain energy as 

below: 

δU = −∫

[
 
 
 
 
 
 

∂Nx
∂x

δu +
∂Ny

∂y
δv +

∂Nxy

∂y
δu +

∂Nxy

∂x
δv +

∂2Mx
b

∂x2
δwb

+
∂2My

b

∂y2
δwb + 2

∂2Mxy
b

∂x∂y
δwb +

∂2Mx
s

∂x2
δws +

∂2My
s

∂y2
δws

+2
∂2Mxy

s

∂x ∂y
δws +

∂Qyz
a

∂y
δwa +

∂Qxz
a

∂x
δwa +

∂Qyz
s

∂y
δws +

∂Qxz
s

∂x
δws]

 
 
 
 
 
 

∂x ∂y
 

A

 (10) 

The Work done by applied thermal Forces can be written as: 

δV = ∫ [Nx
T
∂2(wa +wb +ws)

∂x2
+ Ny

T
∂2(wa +wb +ws)

∂y2
+ 2Nxy

T
∂2(wa +wb +ws)

∂x ∂y
] dA

 

A

 (11) 

 

2.3 Equation of motion 

 

Substituting Eqs. (10)-(11) into Eq. (6) and then collecting the coefficient of (δu, δv, δwa, δwb 
 and δws) to zero separately, the equation of motion for the ply plate are obtained as follows: 

δu:  
∂Nx

∂x
+
∂Nxy

∂y
= 0 , δv:  

∂Ny

∂y
+
∂Nxy

∂x
= 0  (12) 
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δwa :  
∂Qxz

a

∂x
+
∂Qyz

a

∂y
+NT(ω) = 0 , δwb :  

∂2Mx
b

∂x2
+
∂2My

b

∂y2
+ 2

∂2Mxy
b

∂x∂y
+ NT(ω) = 0 

δws :  
∂2Mx

s

∂x2
+
∂2My

s

∂y2
+ 2

∂2Mxy
s

∂x∂y
+
∂Qxz

s

∂x
+
∂Qyz

s

∂y
+ NT(ω) = 0 

where: 

N𝑇(𝜔) = Nx
T
∂2(wa +wb +ws)

∂x2
+Ny

T
∂2(wa +wb +ws)

∂y2
+ 2Nxy

T
∂2(wa +wb +ws)

∂x ∂y
 

The transformed stress-strain relations of an orthotropic lamina in a plane state of stress are 

Reddy (2004) 

{

σx
σy
σxy

} =  [

Q̅11 Q̅12 Q̅16
Q̅12 Q̅22 Q̅26
Q̅16 Q̅26 Q̅66

] ({

εx
εy
γxy
} − {

αxx
αyy
2αxy

} ∆T), {
σyz
σxz

}  =  [
Q̅44 Q̅45
Q̅45 Q̅55

] {
γyz
γxz
} (13) 

The force results are: 

{
 
 
 
 
 

 
 
 
 
 
{

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

}

{

𝑀𝑥
𝑏

𝑀𝑦
𝑏

𝑀𝑥𝑦
𝑏

}

{

𝑀𝑥
𝑠

𝑀𝑦
𝑠

𝑀𝑥𝑦
𝑠
}

}
 
 
 
 
 

 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
𝐴11 𝐴12 𝐴16 𝐵11 𝐵12 𝐵16 𝐵11

𝑠 𝐵12
𝑠 𝐵16

𝑠

𝐴12 𝐴22 𝐴26 𝐵12 𝐵22 𝐵26 𝐵12
𝑠 𝐵22

𝑠 𝐵26
𝑠

𝐴16 𝐴26 𝐴66 𝐵16 𝐵26 𝐵66 𝐵16
𝑠 𝐵26

𝑠 𝐵66
𝑠

𝐵11 𝐵12 𝐵16 𝐷11 𝐷12 𝐷16 𝐷11
𝑠 𝐷12

𝑠 𝐷16
𝑠

𝐵12 𝐵22 𝐵26 𝐷12 𝐷22 𝐷26 𝐷12
𝑠 𝐷22

𝑠 𝐷26
𝑠

𝐵16 𝐵26 𝐵66 𝐷16 𝐷26 𝐷66 𝐷16
𝑠 𝐷26

𝑠 𝐷66
𝑠

𝐵11
𝑠 𝐵12

𝑠 𝐵16
𝑠 𝐷11

𝑠 𝐷12
𝑠 𝐷16

𝑠 𝐻11
𝑠 𝐻12

𝑠 𝐻16
𝑠

𝐵12
𝑠 𝐵22

𝑠 𝐵26
𝑠 𝐷12

𝑠 𝐷22
𝑠 𝐷26

𝑠 𝐻12
𝑠 𝐻22

𝑠 𝐻26
𝑠

𝐵16
𝑠 𝐵26

𝑠 𝐵66
𝑠 𝐷16

𝑠 𝐷26
𝑠 𝐷66

𝑠 𝐻16
𝑠 𝐻26

𝑠 𝐻66
𝑠 ]
 
 
 
 
 
 
 
 
 

{
 
 
 
 
 

 
 
 
 
 
{

휀𝑥
0

휀𝑦
0

𝛾𝑥𝑦
0

}

{

𝑘𝑥
𝑏

𝑘𝑦
𝑏

𝑘𝑥𝑦
𝑏

}

{

𝑘𝑥
𝑠

𝑘𝑥
𝑠

𝑘𝑥𝑦
𝑠
}

}
 
 
 
 
 

 
 
 
 
 

{
 
 

 
 Qyz

a

Qxz
a

Qyz
s

Qxz
s
}
 
 

 
 

 

= 

[
 
 
 
A11 A11 A44

a A45
a

A11 A11 A45
a A55

a

A44
a A45

a A44
s A45

s

A45
a A55

a A45
s A55

s ]
 
 
 

{
 
 

 
 γyz

a

γxz
a

γyz
s

γxz
s
}
 
 

 
 

{

Nx
T

Ny
T

Nxy
T

} = ∑∫ [

Q̅11 Q̅12 Q̅16
Q̅12 Q̅22 Q̅26
Q̅16 Q̅26 Q̅66

] {

αxx
αyy
2αxy

} ∆T dz
zk+1

zk

N

k=1

 

(14) 

where: 

αxx = α1cos
2θ + α2sin

2θ, αyy = α1sin
2θ + α2cos

2θ 

2αxy = 2(α1 − α2) sinθ cosθ(Aij, Bij, Dij, Bij
s , Dij

s , Hij
s) 

= ∫ Q̅ij(1, z, z
2, f, zf, f2)

h
2

−
h
2

dz     (i, j = 1,2,6) 

(Aij, Aij
a , Aij

s ) = ∫ Q̅ij(1, g, g
2)

h
2

−
h
2

dz       (i, j = 4,5) 

Eq. (12) can be expressed in terms of displacements (𝑢, 𝑣, 𝑤𝑏 , 𝑤𝑠, 𝑤𝑎) by substituting for the 

stress resultants from Eq. (14). the equations of motion (12) take the form: 
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A11
∂2u

∂x2
+ 2A16

∂2u

∂x ∂y
+ A66

∂2u

∂y2
+ A16

∂2v

∂x2
+ (A16 + A66)

∂2v

∂x∂y
+ A26

∂2v

∂y2
 

−[B11
∂3wb
∂x3

+ 3B16
∂3wb
∂x2 ∂y

+ (B12 + 2B66)
∂3wb
∂x∂y2

+ B26
∂3wb
∂y3

] 

−[B11
s ∂3ws

∂x3
+ 3B16

s ∂3ws

∂x2 ∂y
+ (B12

s + 2B66
s )

∂3ws

∂x∂y2
+ B26

s ∂3ws

∂y3
] =  0   

  A16
∂2u

∂x2
+ (A12 + A66)

∂2u

∂x∂y
+ A26

∂2u

∂y2
+ A66

∂2v

∂x2
+ 2A26

∂2v

∂x∂y
+ A22

∂2v

∂y2
 

−[B16
∂3wb
∂x3

+ (B12 + 2B66)
∂3wb
∂x2 ∂y

+ 3B26
∂3wb
∂x ∂y2

+ B22
∂3wb
∂y3

] 

−[B16
s ∂3ws

∂x3
+ (B12

s + 2B66
s )

∂3ws

∂x2 ∂y
+ 3B26

s ∂3ws

∂x∂y2
+ B22

s ∂3ws

∂y3
] =  0  

𝐵11
𝜕3𝑢

𝜕𝑥3
+ 3𝐵16

𝜕3𝑢

𝜕𝑥2𝜕𝑦
+ (𝐵12 + 2𝐵66)

𝜕3𝑢

𝜕𝑥𝜕𝑦2
+ 𝐵26

𝜕3𝑢

𝜕𝑦3
+ 𝐵16

𝜕3𝑣

𝜕𝑥3
 

+(𝐵12 + 2𝐵66)
𝜕3𝑣

𝜕𝑥2𝜕𝑦
+ 3𝐵26

𝜕3𝑣

𝜕𝑥𝜕𝑦2
+ 𝐵22

𝜕3𝑣

𝜕𝑦3
 

−[𝐷11
𝜕4𝑤𝑏
𝜕𝑥4

+ 4𝐷16
𝜕4𝑤𝑏
𝜕𝑥3𝜕𝑦

+ 2(𝐷12 + 2𝐷66)
𝜕4𝑤𝑏
𝜕𝑥2𝜕𝑦2

+ 4𝐷26
𝜕4𝑤𝑏
𝜕𝑥𝜕𝑦3

+ 𝐷22
𝜕4𝑤𝑏
𝜕𝑦4

] 

−[𝐷11
𝑠
𝜕4𝑤𝑠
𝜕𝑥4

+ 4𝐷16
𝑠
𝜕4𝑤𝑠
𝜕𝑥3𝜕𝑦

+ 2(𝐷12
𝑠 + 2𝐷66

𝑠 )
𝜕4𝑤𝑠
𝜕𝑥2𝜕𝑦2

+ 4𝐷26
𝑠
𝜕4𝑤𝑠
𝜕𝑥𝜕𝑦3

+ 𝐷22
𝑠
𝜕4𝑤𝑠
𝜕𝑦4

] 

+N𝑇(𝜔) =  0  

B11
s
∂3u

∂x3
+ 3B16

s
∂3u

∂x2 ∂y
+ (B12

s + 2B66
s )

∂3u

∂x ∂y2
+ B26

s
∂3u

∂y3
+ B16

s
∂3v

∂x3
 

+(B12
s + 2B66

s )
∂3v

∂x2 ∂y
+ 3B26

s
∂3v

∂x∂y2
+ B22

s
∂3v

∂y3
 

−[D11
s
∂4wb
∂x4

+ 4D16
s
∂4wb
∂x3 ∂y

+ 2(D12
s + 2D66

s )
∂4wb
∂x2 ∂y2

+ 4D26
s
∂4wb
∂x∂y3

+D22
s
∂4wb
∂y4

] 

−[H11
𝑠
𝜕4𝑤𝑠
𝜕𝑥4

+ 4H16
𝑠
𝜕4𝑤𝑠
𝜕𝑥3𝜕𝑦

+ 2(H12
𝑠 + 2H66

𝑠 )
𝜕4𝑤𝑠
𝜕𝑥2𝜕𝑦2

+ 4H26
𝑠
𝜕4𝑤𝑠
𝜕𝑥𝜕𝑦3

+ H22
𝑠
𝜕4𝑤𝑏
𝜕𝑦4

] 

+𝐴55
𝑎
𝜕2𝑤𝑎
𝜕𝑥2

+ 𝐴44
𝑎
𝜕2𝑤𝑎
𝜕𝑦2

+ 2𝐴45
𝑎
𝜕2𝑤𝑎
𝜕𝑥𝜕𝑦

+ 𝐴55
𝑠
𝜕2𝑤𝑠
𝜕𝑥2

+ 𝐴44
𝑠
𝜕2𝑤𝑠
𝜕𝑦2

+ 2𝐴45
𝑠
𝜕2𝑤𝑠
𝜕𝑥𝜕𝑦

+ N𝑇(𝜔) =  0 

A55
∂2wa
∂x2

+ A44
∂2wa
∂y2

+ 2A45
∂2wa
∂x ∂y

+ A55
a
∂2ws
∂x2

+ A44
a
∂2ws
∂y2

+ 2A45
a
∂2ws
∂x∂y

+ N𝑇(𝜔) = 0  

(15) 

 

2.4 Navier Solution 

 

In Navier’s method the generalized displacements are expanded a double trigonometric series in 

terms of unknown parameters. The choice of function in the series is restricted to those which satisfy 

the boundary condition of problem. The Navier method is employed to obtain the closed form 

solutions of the partial differential equations in Eq. (12) for simply supported rectangular plates. 

Two types of simply supported boundary conditions are Reddy (2004). 
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2.4.1 Navier solution of cross-ply laminated plates 
Assuming the following displacements form to satisfied simply supported boundary conditions 

for cross-ply 

u =  ∑ ∑ Umn
∞
n=1

∞
m=1 cosαx sin βy  

 v =  ∑ ∑ Vmn
∞
n=1

∞
m=1 sinαx cos βy  

Wb = ∑ ∑ Wbmn sin αx sinβy
∞
n=1

∞
m=1   

Ws = ∑ ∑ Wsmn sinαx sinβy
∞
n=1

∞
m=1   

Wa = ∑ ∑ Wamn sinαx sin βy
∞
n=1

∞
m=1   

(16) 

 

2.4.2 Navier solution of angle-ply laminated plates 
Assuming the following displacements form to satisfied simply supported boundary conditions 

for Angle-ply 

𝑢 =  ∑ ∑ 𝑈𝑚𝑛
∞
𝑛=1

∞
𝑚=1 sin 𝛼𝑥 cos𝛽𝑦  

𝑣 =  ∑ ∑ 𝑉𝑚𝑛
∞
𝑛=1

∞
𝑚=1 cos 𝛼𝑥 sin𝛽𝑦  

 𝑊𝑏 = ∑ ∑ 𝑊𝑏𝑚𝑛 sin𝛼𝑥 sin𝛽𝑦
∞
𝑛=1

∞
𝑚=1  

 𝑊𝑠 = ∑ ∑ 𝑊𝑠𝑚𝑛 sin𝛼𝑥 sin𝛽𝑦
∞
𝑛=1

∞
𝑚=1  

 𝑊𝑎 = ∑ ∑ 𝑊𝑎𝑚𝑛 sin 𝛼𝑥 sin𝛽𝑦
∞
𝑛=1

∞
𝑚=1  

(17) 

Substituting Eq. (16) and Eq. (17) into Eq. (15), the Navier solution of cross and Angle-ply 

laminates can be determined from Matrix stiffness Eq. (18): 

[
 
 
 
 
s11 s12 s13 s14 0
s12 s22 s23 s24 0
s13 s23 s33 − k s34 − k −k
s14 s24 s34 − k s44 − k s45 − k
0 0 −k s45 − k s55 − k]

 
 
 
 

{
 
 

 
 
𝑈𝑚𝑛
𝑉𝑚𝑛
𝑊𝑏𝑚𝑛

𝑊𝑠𝑚𝑛
𝑊𝑎𝑚𝑛}

 
 

 
 

= 0 (18) 

where K = (Nx
Tα2 + Ny

Tβ2) and sij is the element of stiffness. 

 

 

3. Numerical results and discussion 

 

Using above analytical solutions of the refined plate theory based on displacement field. a 

computer program is built using MATLAB18 programming for thermal buckling of laminated cross 

ply and angle ply composite plates. The parametric effect of side to thickness ration (a/h), aspect 

ratio (a/b), modulus ratio(E1 E2⁄ )  and thermal expansion coefficient ratio (α2 α1⁄ ) on critical 

buckling temperature of laminated composite plates are analysed. The results obtained by RPT are 

compared with other different theories those of the refine four parameters plate theory (RPT), FSDT, 

HSDT, LWT an Noor, 1992. 
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Table 1 A critical temperature of cross-ply (0/90/90/0) simply supported square plate (a/b = 1) 

a/h Present LWT1 FSDT2 HSDT3 HSDT4 
GRT5 

RPT P = 3 (TOT) P = 5 P = 7 

4 0.06652 0.0514 0.0613 0.0570 0.0554 0.0711 0.05580 0.05888 0.06109 

10 0.1658 0.1400 0.1598 0.1479 0.1436 0.1749 0.14784 0.15344 0.15704 

20 0.2121 0.1976 / 0.2088 / / / / / 

50 0.23029 0.2245 / 0.2383 / / / / / 

100 0.2331 0.2291 0.2438 0.2432 0.2431 0.2440 0.24331 0.24378 0.24359 

1Cetkovic (2016); 2Shukla (2001); 3Singh (2013); 4Shu and Sun (1994); 5Mansouri and Shariyat (2014) 

 
Table 2 Dimensionless buckling temperature  (𝑇𝑐𝑟𝑎

2ℎ/𝜋2𝐷22)  of cross-ply (0/90)𝑁  simply supported 

square plate 

Lay-up a/h present TOT1 

Present DQ results (11*11) 

RPT 
GRT 

P = 3(TOT) P = 5 P = 7 

(0/90)𝑠 

4 0.06652 0.0575 0.07115 0.05580 0.05888 0.06109 

10 0.165814 0.1522 0.17492 0.14784 0.15344 0.15704 

100 0.233139 0.2435 0.24405 0.24331 0.24348 0.24359 

(0/90)2𝑠 

4 0.031579 0.0315 0.03348 0.03179 0.03205 0.03261 

10 0.078715 0.0797 0.08231 0.07963 0.08021 0.08081 

100 0.1106759 0.1148 0.11485 0.11478 0.11479 0.11481 

(0/90)5𝑠 

4 0.02401 0.0247 0.02541 0.02521 0.02526 0.02562 

10 0.05985 0.0621 0.06247 0.06216 0.06250 0.06293 

100 0.0841534 0.0872 0.08716 0.08715 0.08716 0.08717 
1Shu and Sun (1994) 

 
 
3.1 Cross-ply composite plates 
 
3.1.1 Verification of results 
To verify the suggested above solution, obtained results are compared with the refined four 

parameters plate theory (RPT) and other higher order theories. 

A critical temperature of cross-ply (0/90/90/0) simply supported square plate (a/b = 1) subjected 

to uniform temperature rise is analysed as listed in Table 1. Material constants are given as: 

Material 1: 
𝐸1

𝐸2
= 25, 𝐸2 = 1,

𝐺12

𝐸2
= 0.5,

𝐺13

𝐸2
= 0.5,

𝐺23

𝐸2
= 0.2, 𝑣12 = 𝑣13 = 𝑣23 = 0.25,

𝛼2

𝛼1
=

3, 𝛼1 = 1  

The critical temperature is normalized in the following form 𝑇𝑐𝑟 = (
𝑎2ℎ

𝜋2𝐷22
∗ 𝑇). Result show that 

while present model of refined plate theory utilized more displacement parameters (five parameters), 

it is generally more accurate result than (RPT) and less accurate than higher other order theories. 

Table 2. Show the effect of number of layers on critical temperature for different thickness ratio. 

Obtained result compared with other theory and give good agreement, increasing number of layers  
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Table 3 A critical temperature of cross-ply (0/90) simply supported square plate (a/b = 1) 

theory 
a/h 

2 10/3 4 5 20/3 10 20 100 

Present 0.2865 0.1922 0.1572 0.1179 0.07656 0.03828 0.01035 0.4249e-3 

LWT1 0.3695 0.2391 0.1926 0.1419 0.09052 0.04449 0.01188 0.4858e-3 

HSDT2 0.3198 0.2114 0.1729 0.1302 0.08524 0.04310 0.01177 0.4856e-3 
1Cetkovic (2016), 2Matsunaga (2005) 

 
Table 4 A critical temperature of cross-ply (0/90/0) simply supported square plate (a/b =1) 

theory 
a/h 

2 10/3 4 5 20/3 10 20 100 

Present 0.2945 0.2311 0.2033 0.1671 0.1206 0.0659 0.0191 8.0678e-4 

LWT1 0.3595 0.2625 0.2272 0.1848 0.1340 0.07628 0.02316 0.9964e-3 

NoorAK,3D2 / / 0.2140 0.1763 / 0.07467 0.02308 0.9961e-3 
1Cetkovic (2016), 2Noor, 3D, 3Matsunaga (2005), 4Singh (2013) 

 

Table 5 Effect (α2/ α1) on critical temperature of cross-ply (0/90/90/0) simply supported square plate (a/b 

= 1) 

a/h 

𝑇𝑐𝑟  

(α2/ α1) 

2 4 6 8 10 

5 0.09357 0.0851 0.07806 0.07208 0.06696 

10 0.1741 0.1583 0.14519 0.13408 0.1245 

15 0.2076 0.1888 0.1732 0.1599 0.14858 

20 0.2227 0.2025 0.1858 0.1715 0.15937 

50 0.2417 0.2199 0.2016 0.1862 0.17298 

100 0.2447 0.2226 0.2041 0.18852 0.17512 

 

Table 6 Critical temperature of symmetric and antisymmetric cross-ply [0 90⁄ ]𝑁 laminated thick and thin 

plates for different aspect ratio simply supported 

Lay-up a/h 

𝑇𝑐𝑟  

a/b 

1 2 3 4 

[0 90⁄ ]𝑠 

4 0.0665 0.07156 0.08053 0.08737 

10 0.1658 0.2019 0.2872 0.36024 

20 0.2122 0.2777 0.47497 0.70769 

100 0.2331 0.31608 0.6037 1.0376 

[0 90⁄ ]2 

4 0.0192 0.0252 0.0283 0.0301 

10 0.0455 0.09215 0.1268 0.1468 

20 0.0569 0.1542 0.2773 0.3799 

100 0.06189 0.19736 0.4558 0.8133 
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(a) Effect of aspect ratio (a/b) (b) Thermal expansion coefficient (𝛼2 𝛼1⁄ ) ratio 

Fig. 1 Effect of aspect ratio (a/b) and thermal expansion coefficient(𝛼2 𝛼1⁄ ) ratio of cross-ply (0/90/90/0) 

Plate on critical buckling temperature Tcr 

 

 

caused decreasing critical temperature for all thickness ratio. Material used in this Table 2 is the 

same that use for Table 1. 

Tables 3-4 show the effect of side to the thickness ratio (a/h) on the critical temperature of cross-

ply (0/90) and (0/90/0) simply supported square plate (a/b = 1) subjected to uniform temperature 

respectively. Material properties for these tables as given as: 

Material 2: 
𝐸𝐿

𝐸𝑇
= 15, 𝐸𝑇 = 1𝐺𝑝𝑎,

𝐺𝐿𝑇

𝐸𝑇
= 0.5,

𝐺𝑇𝑇

𝐸𝑇
= 0.3356, 𝑣𝐿𝑇 = 0.3, 𝑣𝑇𝑇 = 0.49,

𝛼𝐿

𝛼0
=

0.015,
𝛼𝑇

𝛼0
= 1, 𝛼0 = 10

−6  

Present results show that normalized critical temperature (𝑇𝑐𝑟 = 𝛼0𝑇)  increase with the 

decrease of plate thickness and give good result for thick plate. 

Fig. 1(a) present the effect aspect ratio with the variation of critical temperature for thin plate (a/h = 

100) simply supported plate for material 3 result of present model are compared with HSDT Kari 

RT, Palaninathan and Ramachandran (1989), and new layer wise Cetkovic (2016), and good 

agreement is achieved. Critical temperature increases with the increasing of (a/b) ratio, after 

attaining its minimum value for (a/b =1). 
 

3.1.2 Verification of results 

The effect of ratio of thermal expansion coefficient (𝛼2 𝛼1⁄ ), on critical temperature is shown 

in Fig. 1(b), which show that critical temperature decreases, while (𝛼2 𝛼1⁄ ) increase. The material 

properties are given as:  

Material 3: 
𝐸1

𝐸2
= 20, 𝐸2 = 1,

𝐺12

𝐸2
= 0.5,

𝐺13

𝐸2
= 0.5,

𝐺23

𝐸2
= 0.5, 𝑣12 = 𝑣13 = 𝑣23 = 0.25,

𝛼2

𝛼1
=

2, 𝛼1 = 0.1 × 10
−5  

Table 5 show the effect of changing (𝛼2 𝛼1⁄ ) on critical temperature for four symmetric cross-

ply (0/90/90/0) plates for different thickness ratio (a/h), since stiffness increase when increasing 

orthotropic ratio therefore normalized critical temperature increase. The mechanical properties are 

the same in Table 1. 

Changing of aspect ratio (a/h) effect on critical buckling temperature of four symmetric and 

antisymmetric cross-ply (0/90/90/0) laminated thick and thin plates, are listed in Table 6. Which  
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Table 7 Effect (𝐸1 𝐸2⁄ )  on critical temperature of symmetric and antisymmetric cross-ply [0 90⁄ ]𝑁 

laminated thick and thin plates simply supported 

Lay-up 𝐸1 𝐸2⁄  

𝑇𝑐𝑟  

a/h 

5 10 20 100 

[0 90⁄ ]𝑠 

10 0.2341 0.3493 0.3988 0.4178 

20 0.1169 0.2048 0.2531 0.2737 

40 0.0469 0.0997 0.1400 0.1610 

50 0.0336 0.0761 0.1127 0.1333 

[0 90⁄ ]2𝑠 

10 0.1322 0.1973 0.2253 0.2360 

20 0.0574 0.1006 0.1243 0.1345 

40 0.0210 0.0447 0.0627 0.0721 

50 0.0147 0.0334 0.0494 0.0585 

[0 90⁄ ]5𝑠 

10 0.1048 0.1565 0.1787 0.1872 

20 0.0440 0.0771 0.0952 0.1031 

40 0.0158 0.0335 0.0471 0.0542 

50 0.0110 0.0250 0.0370 0.0438 

[0 90⁄ ]2 

10 0.0854 0.1246 0.1410 0.1471 

20 0.0349 0.0590 0.0715 0.0767 

40 0.0124 0.0253 0.0345 0.0390 

50 0.0087 0.0188 0.0269 0.0313 

[0 90⁄ ]5 

10 0.0910 0.1354 0.1544 0.1617 

20 0.0375 0.0654 0.0806 0.0871 

40 0.0133 0.0282 0.0395 0.0453 

50 0.0093 0.02100 0.0309 0.0365 

[0 90⁄ ]10 

10 0.0918 0.1370 0.1564 0.1638 

20 0.0379 0.0664 0.0819 0.0886 

40 0.0135 0.0286 0.0402 0.0462 

50 0.0094 0.02131 0.0315 0.0372 

 

 

show that critical temperature increases as aspect ratio (a/b) increases, also it increases with 

increasing (a/h) ratio which effected critical temperature larger than (a/b) ratio. The mechanical 

properties are the same in Table 1. 

In Table 7. show the effect of changing (𝐸1 𝐸2⁄ )  on critical temperature for four, eight and 

twenty layers symmetric and antisymmetric cross-ply plates for different thickness ratio (a/h), notice 

that normalized critical temperature increase when aspect ratio increase, also normalized critical 

temperature decrease when orthotropic ratio increasing for both cross-ply symmetric and 

antisymmetric laminated plates. Using the mechanical properties are the same in Table 1. 

Figs. 2(a)-2(d) shows first four buckling modes of moderately thick plate (a/h = 10) rectangular 

(a/b = 2) simply supported laminated plate. 
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(a) (m = 1, n = 1) (b) (m = 1, n = 2) 

  

(c) (m = 1, n = 3) (d) (m = 1, n = 4) 

Fig. 2 Thermal buckling mode for symmetric cross-ply (0/90/90/0) square plate, No. of layers = 4, a/h = 10, 

a/b = 1 

 
Table 8 A critical temperature (𝑇𝑐𝑟 = 𝛼0𝑇) of angle-ply (0/15/30/45) with simply supported square plate 

a/h References 

Tcr 

Θ = 0 

(m, n) (1,2) 

Θ = 15 

(m, n) (1,2) 

Θ = 30 

(m, n) (1,1) 

Θ = 45 

(m, n) (1,1) 

4 

present 0.1973 0.2357 0.3081 (1, 2) 0.3200 

HODT 0.1872 0.2221 - - 

Noor, 1992 0.1777 0.2087 - - 

Discrepancy % 11 12.9 - - 

5 

present 0.1591 0.1974 0.2596 0.2719 

HODT 0.1504 0.1849 0.2554 (1,2) - 

Noor, 1992 0.1436 0.1753 0.2377 (1,2) - 

Discrepancy % 10.7 12.6 9.2 - 

10 

present 0.06125 0.08478 0.11298 0.12247 

HODT 0.05917 0.08124 0.1125 0.12259 

Noor, 1992 0.05782 0.07904 0.1100 0.1194 

Discrepancy % 5.9 7.3 2.7 2.5 
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Table 8 Continued 

a/h References 

Tcr 

Θ = 0 

(m, n) (1,2) 

Θ = 15 

(m, n) (1,2) 

Θ = 30 

(m, n) (1,1) 

Θ = 45 

(m, n) (1,1) 

20 

present 0.017728 0.0259 0.03477 0.038437 

HODT 0.01752 0.02552 0.03472 0.03844 

Noor, 1992 0.01739 0.02528 0.03446 0.03810 

Discrepancy % 1.9 2.4 0.9 0.88 

100 

present 0.0007469 0.001115 0.001502 0.001674 

HODT 0.0007465 0.001115 0.001502 0.001674 

Noor, 1992 0.0007463 0.001115 0.001502 0.001674 

Discrepancy % 0.08 0 0 0 

 
Table 9 A critical temperature (Tcr = T ∗ α0 ∗ 10

3) of antisymmetric six layers angle-ply (45/-45) with 

simply supported square plate (a/b = 1) subjected to uniform temperature rise is analysed 

a/h Present Chen and Liu, 1993 Discrepancy % 

5 21.3428 21.3622 0.09 

8 12.7245 12.7542 0.23 

10 9.2833 9.2963 0.14 

15 4.7908 4.7885 0.04 

20 2.8564 2.8523 0.14 

30 1.3264 1.3234 0.22 

40 0.7580 0.7560 0.26 

50 0.4887 0.4874 0.26 

80 0.1924 0.1919 0.26 

100 0.1234 0.1230 0.32 

 

 

3.2 Angle-ply composite plate 
 

3.2.1 Verifications of results and design parameters 

A critical temperature of antisymmetric angle-ply (0/15/30/45) with simply supported square 

plate (a/b = 1) subjected to uniform temperature rise is analyzed. Material constants are given as: 

Material 4: 
E1

E0
= 15,

E2

E0
= 1,

G12

E0
=

G13

E0
= 0.5,

G23

E0
= 0.3356, v12 = 0.3,

α1

α0
= 0.015,

α2

α0
= 1, E0 =

1 Gpa, α1 = 10
−6, No. of layer 10. 

The critical temperature is normalized in the following form (𝑇𝑐𝑟 = 𝛼0𝑇). Table 8 presents the 

convergence analysis of non-dimensional critical temperature (𝑇𝑐𝑟)  of simply supported square 

plate for different side to thickness ratio (a/h), which obtained results are compared with three 

dimensions elasticity theory proposed by Noor, (1992) which give good agreement with maximum 

discrepancy (12.9 %) for ten layers of antisymmetric angle-ply composite material.  

A critical temperature of antisymmetric six layers angle-ply (45/-45) with simply supported 

square plate (a/b = 1) subjected to uniform temperature rise is analyzed. Material constants are given 

as: 
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Material  5: 𝐸1 = 21, 𝐸2 = 𝐸3 = 1.7, 𝐺12 = 𝐺13 = 0.65,  𝐺23 = 0.639, 𝑣12 = 𝑣13 = 0.21,
𝛼2 = 16, 𝛼1 = −0.21, [45/−45]3   

The critical temperature is normalized in the following form (𝑇𝑐𝑟 = 𝑇𝛼010
3). Table 9 presents  

the convergence analysis of non-dimensional critical temperature (𝑇𝑐𝑟) of simply supported square 

plate. which obtained results are compared with Chen and Liu, (1993), which give good agreement 

with maximum discrepancy (0.32 %) for six layers of antisymmetric angle-ply composite material. 

 

 
Table 10 Normalized critical temperature [(𝑇𝑐𝑟  =  𝑇 ∗  𝛼1 ∗ 10 ∗ (𝑏/ℎ)

2])  for antisymmetric angle-ply 

plate a/h = 10 

b/a Angle No. Of layers Present Chen and Lui 1993 Discrepancy% 

1 

30 

2 4.1527 4.0600 2.28 

4 7.0490 7.1345 1.19 

8 7.7179 7.7267 0.11 

45 

2 4.3127 4.2070 2.5 

4 7.5512 7.6605 1.42 

8 8.2847 8.3010 0.19 

60 

2 4.1527 4.0600 2.28 

4 7.0490 7.1345 1.19 

8 7.7179 7.7267 0.11 

2 

30 

2 2.6865 2.6431 1.66 

4 4.9329 4.9757 0.86 

8 5.4537 5.4530 0.01 

45 

2 2.5432 2.4942 1.96 

4 4.8633 4.8401 0.47 

8 5.4015 5.3240 1.45 

60 

2 2.3776 2.3437 1.44 

4 4.3465 4.3038 0.87 

8 4.8148 4.7266 1.86 

 
Table 11 Effects of Elastic moduli ratio on the dimensionless buckling temperature (𝑇𝑐𝑟𝛼010

3) of the square 

simply supported antisymmetric angle-ply (45/−45)3 plates (a/h = 10) 

𝐸1/𝐸2 Present LWT1 TOT2 

Present DQ results 

RFT 
GRT (9x9) 

P = 3(TOT) P = 7 P = 5 

2 2.47209 2.4672 2.4721 2.4721 2.4721 2.4771 2.4744 

5 4.7728 4.6703 4.7728 4.7728 4.7728 4.7928 4.7823 

10 8.53874 8.1229 8.5390 8.5386 8.5390 8.6029 8.5697 

15 12.3511 11.5069 12.3517 12.3509 12.3517 12.4799 12.4134 

20 16.3081 14.9536 16.3091 16.3076 16.3090 16.5195 16.4099 

30 25.0718 22.4823 25.0733 25.0700 25.0733 25.5007 25.2756 
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Table 11 Continued 

𝐸1/𝐸2 Present LWT1 TOT2 

Present DQ results 

RFT 
GRT (9x9) 

P = 3(TOT) P = 7 P = 5 

40 35.90239 31.7113 35.9042 35.8980 35.9041 36.6308 36.2438 

50 50.68244 44.2904 50.6840 50.6737 50.6840 51.8351 51.2138 
1Cetkovic (2016), 2Matsunaga (2005) 

 
Table 12 Effects of the thermal expansion coefficients ratio on the dimensionless buckling temperature (𝑇𝑐𝑟 =
𝑇𝛼010

3) of the square simply supported antisymmetric angle-ply (45/−45)3 plates (a/h = 10) 

𝛼2/𝛼1 Present LWT1 TOT2 

Present DQ results 

RFT 
RFT 

P = 3(TOT) P = 7 P = 5 

1 10.3861 9.3134 10.3868 10.3854 10.3867 10.4707 10.5638 

5 8.99978 8.0703 9.0003 8.9991 9.0003 9.0730 9.1537 

10 7.71288 6.9163 7.7134 7.7123 7.7133 7.7757 7.8448 

20 5.99765 5.3782 5.9980 5.9972 5.9980 6.0465 6.1002 

30 4.9065 4.3998 4.9068 4.9062 4.9068 4.9464 4.9904 

40 4.1513 3.7225 4.1515 4.1510 4.1515 4.1851 4.2223 

50 3.5975 3.2260 3.5978 3.5973 3.5977 3.6268 3.6591 

1 10.3861 9.3134 10.3868 10.3854 10.3867 10.4707 10.5638 
1Cetkovic (2016), 2Matsunaga (2005) 

 

 

Table 10 show another comparison with, Chen and Liu,1993, for antisymmetric laminated square 

thick plate (a/h =10) for different aspect ratio (b/a), angle orientation (30, 45 and 60) and number of 

layer (2, 4 and 8) which give closed results with maximum discrepancy (2.28 %). Material constant 

given as:  

Material 6:  
𝐸1

𝐸2
= 25, 𝐺12 = 𝐺12 = 𝐺13 =  0.5 𝐸2, 𝐺23 = 0.2𝐸2, 𝑣12 = 0.25, 𝛼2 𝛼1⁄ = 3  

Table 11 show the effect of changing (𝐸1 𝐸2⁄ )  on critical temperature for six layers of 
antisymmetric angle-ply (45/−45)3 plates for thickness ratio (a/h = 10) since stiffness increase 
when increasing orthotropic ratio, therefore normalized critical temperature increase. Material 
constants are given as: 

Material 7:  
E1

E2
= 𝑜𝑝𝑒𝑛,

E2

E0
= 1,

G12

E0
=

G13

E0
= 0.65,

G23

E0
= 0.639, v12 = 0.21,

α1

α0
= −0.21,

α2

α0
= 16, E0 =   10𝐺𝑝𝑎, α0 = 10

−6    

Table 12. show the effect of changing 𝛼2/𝛼1  on critical temperature for six layers of 

antisymmetric angle-ply (45/−45)3 plates for thickness ratio (a/h = 10) since stiffness decrease, 

when thermal expansion coefficient ratio increase therefore normalized critical temperature 

decrease. Material constants are given as: 

Material 8:   
E1

E0
= 30,

E2

E0
= 1,

G12

E0
=

G13

E0
= 0.65,

G23

E0
= 0.639, v12 = 0.21,

α1

α0
= 1,

α2

α1
=

𝑜𝑝𝑒𝑛, E0 =   10𝐺𝑝𝑎 
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(a) (m = 1, n = 1) (b) (m = 1, n = 2) 

  
(c) (m = 1, n = 3) (d) (m = 1, n = 4) 

Fig. 3 Thermal buckling mode for antisymmetric angle-ply square plate, No. of layers = 4, a/h = 10, a/b = 

2 
 

 

Figs. 3(a)-3(d) shows first four buckling mode of angle-ply moderately thick plate (a/h = 10) 

rectangular (a/b = 2) simply supported laminated plate. 
 

 

5. Conclusions 
 

The following conclusions may be derived: 
• The most important characteristic of this work is that it contains five unknown displacement of 

refined plate theory, which compared with other theories those of the refined four parameters plate 

theory (RPT), FSDT, HSDT, LWT and Noor, 1992 and give good agreement. 

• The critical temperature buckling is affected by design parameters (aspect ratio (a /bh), 

thickness ratio (a/h), lamination angle, modulus elastically ratio (E1/E2) and thermal expansion 

coefficient ratio (α1/α2)). 

• The critical buckling temperature depend on the lamination scheme, especially for thick 

laminates and is greater for [0/90/0], compared to [0/90] laminates, when the same material 

properties of each layer are used. 

• The critical buckling temperature decreases with the increase of modulus ratio E1/E2, this 

decreasing for only cross-ply plate. 

• The critical buckling temperature increases with the increase of modulus ratio E1/E2 for angle-

ply plate 

152



 

 

 

 

 

 

A five-variable refined plate theory for thermal buckling analysis of composite plates 

 

• The critical buckling temperature decreases with the increase of thermal expansion coefficient 

ratio (𝛼2 𝛼1⁄ ) and is faster for thick, compared to thin laminates. 

• The critical buckling temperature increases with the increase of aspect ratio a/b. This increase 

is again more pronounced for thick, compared to thin laminates. For a/b > 2 the increase of critical 

temperature is almost linear, and thus the same for all buckling mode shapes. 

• For the same materials, angle-ply has a greater critical temperature buckling than cross-ply. 
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Appendix 
 

For stiffness cross-ply: 

s11 = A11α
2 + A66β

2 ,  s12 = (A12 + A66)αβ , s13 = −B11α
3 − (B12 + 2B66)αβ

2,  

s14 = −B11
s α3 − (B12

s + 2B66
s )α ,  s22 = A66α

2 + A22β
2,  s23 = −(B12 + 2B66)α

2β − B22β
3, 

s24 = −(𝐵12
𝑠 + 2𝐵12

𝑠 )α2β − 𝐵22
𝑠 β3,  s33 = D11α

4 + 2(𝐷12 + 2𝐷66)α
2β2 + 𝐷22β

4, 

s34 = 𝐷11
𝑠 𝛼4 + 2(𝐷12

𝑠 + 2𝐷66
𝑠 )𝛼2𝛽2 + 𝐷22

𝑠 𝛽4, s44 = 𝐻11
𝑠 𝛼4 + 2(𝐻12

𝑠 + 2𝐻66
𝑠 )𝛼2𝛽2 + 𝐻22

𝑠 𝛽4 
+𝐴55

𝑠 𝛼2 + A44
s β2, s45 = A55

a α2 + A44
a β2, s55 = A55α

2 + A44β
2 

𝐴16 = 𝐴26 = 𝐷16 = 𝐷26 = 𝐷16
𝑠 = 𝐷26

𝑠 = 𝐻16
𝑠 = 𝐻26

𝑠 = 𝐵16 = 𝐵26 = 𝐵12
𝑠 = 𝐵16

𝑠 = 𝐵26
𝑠 = 𝐴45 

= 𝐴45
𝑎 = 𝐴45

𝑠 = 0 

For stiffness angle-ply: 

𝑠11 = 𝐴11𝛼
2 + 𝐴66𝛽

2,  𝑠12 = (𝐴12 + 𝐴66)𝛼𝛽, 𝑠13 = −(3𝐵16𝛼
2𝛽 + 𝐵26𝛽

3),  
𝑠14 = −(3𝐵16

𝑠 𝛼2𝛽 + 𝐵26
𝑠 )𝛽3,  𝑠22 = 𝐴66𝛼

2 + 𝐴22𝛽
2,  𝑠23 = −(𝐵16𝛼

3 + 3𝐵26𝛼𝛽
2),  

𝑠24 = −(𝐵16
𝑠 𝛼3 + 3𝐵26

𝑠 𝛼𝛽2),  𝑠33 = 𝐷11𝛼
4 + 2(𝐷12 + 2𝐷66)𝛼

2𝛽2 + 𝐷22𝛽
4,  

𝑠34 = 𝐷11
𝑠 𝛼4 + 2(𝐷12

𝑠 + 2𝐷66
𝑠 )𝛼2𝛽2 + 𝐷22

𝑠 𝛽4,  
𝑠44 = 𝐻11

𝑠 𝛼4 + 2(𝐻12
𝑠 + 2𝐻66

𝑠 )𝛼2𝛽2 + 𝐻22
𝑠 𝛽4 + 𝐴55

𝑠 𝛼2 + 𝐴44
𝑠 𝛽2,  

𝑠45 = 𝐴55
𝑎 𝛼2 + 𝐴44

𝑎 𝛽2, 𝑠55 = 𝐴55𝛼
2 + 𝐴44𝛽

2 

𝐴16 = 𝐴26 = 𝐷16 = 𝐷26 = 𝐷16
𝑠 = 𝐷26

𝑠 = 𝐻16 = 𝐻26 = 𝐻16
𝑠 = 𝐻26

𝑠 = 𝐵11 = 𝐵12 = 𝐵22 = 𝐵66 = 𝐵11
𝑠  

= 𝐵12
𝑠 = 𝐵22

𝑠 = 𝐵66
𝑠 = 0   

𝐴45 = 𝐴45
𝑎 = 𝐴45

𝑠 = 0 

The plane stress reduced stiffness 𝑄𝑖𝑗 are Reddy (2004) 

𝑄11 =
𝐸1

1−𝑣12𝑣21
 ,  𝑄12 =

𝑣12𝐸2

1−𝑣12𝑣21
, 𝑄11 =

𝐸2

1−𝑣12𝑣21
 ,  𝑄66 = 𝐺12, 𝑄44 = 𝐺23 ,  𝑄55 = 𝐺13 

𝛼 =  
𝑚𝜋

𝑎
, 𝛽 =

𝑚𝜋

𝑏
, 𝑎𝑛𝑑 (𝑈𝑚𝑛 , 𝑉𝑚𝑛 ,𝑊𝑏𝑚𝑛 ,𝑊𝑏𝑚𝑛 ,𝑊𝑏𝑚𝑛) 𝑎𝑟𝑒 𝑐𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 
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