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Abstract.  The present paper deals with the study of Stoneley wave propagation at the interface of two dissimilar 
homogeneous orthotropic thermoelastic solids with three phase lags in the context of fractional order theory of 
thermoelasticity. By using appropriate boundary conditions the secular equations of Stoneley waves are derived in the 
form of the determinant. The wave characteristics like phase velocity, attenuation coefficient are computed numerically. 
The numerical simulated results have shown with the help of graphs to show the effect of fractional parameter on the 
phase velocity, attenuation coefficient, displacement components, stress components and temperature change. 
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1. Introduction 
 

During the last few decades, the study of surface waves propagating in different media along the 

interface of two dissimilar half spaces in perfect contact is one of the interested and important areas 

of research in the scientific community. These elastic waves propagate through earth’s surface have 

variable properties when they travel through different interfaces or mediums. These waves not only 

give us the information about the internal structure of the earth but also helpful in the study of 

materials like minerals, crystals and metals, etc. The interface waves require at least one of the two 

mediums is solid while the other may be a vacuum, air, a liquid or solid. However, the boundary or 

interface wave which occurs at the interface of two solid mediums is known as Stoneley wave. The 

penetration depth of these waves is similar as that of Rayleigh wave and are highly dispersive in 

nature. Stoneley waves are well known in the study of geophysics, ocean acoustics and non-

destructive evaluation, etc. 

The wave that can propagate along a fluid-solid interface is referred to as Scholte wave. Stoneley 

waves have high intensity at the boundary and decreases exponentially far away from it. Sonic tool 

generates a wave in a borehole is an example of Stoneley wave. The dispersion equation for the 

propagation of Stoneley waves was derived by Stoneley (1994). Tajuddin (1995) investigated the 

existence of Stoneley waves at an interface between two micropolar elastic spaces. Moreover, the 
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fractional order theory of generalized thermoelasticity is an important branch of solid mechanics. 

Fractional calculus is used by several researchers and scientists to find the solution of many practical 

problems, which contains differential equations of non-integer order. Fractional calculus has been 

applied in many fields like in quantum mechanics, nuclear physics, chemistry, astrophysics, control 

theory, etc. The growing popularity of fractional calculus is due to its global dependency, which is 

more appropriate to solve some particular problems of physical processes. Caputo (1967) was the 

one who gave the definition of fractional derivative of order ‘α’ where 0 < α ≤1. Ezzat (2010) 

proposed a model by using Taylor’s series expansion in fractional heat conduction equation with 

fractional order.  

Abbas (2018) studied the effect of fractional parameter in a two dimensional problem in the 

context of thermal shock with three types of conductivity weak, normal and strong conductivity. 

Abbas and Youssef (2015) studied the two dimensional problem with the help of fractional order 

theory with one relaxation time for porous materials. Ezzat and Ezzat (2016) formulated fractional 

thermoelasticity applications for porous asphaltic materials. Kumar and Gupta (2013) studied the 

plane wave propagation in anisotropic thermoelastic medium with fractional order derivative and 

voids with two-phase-lag and three-phase-lag model of heat transfer. Abd-Alla and Ahmed (2003) 

studied the Stoneley and Rayleigh waves in a non-homogeneous orthotropic elastic medium under 

the effect of gravity. Kumar et al. (2013) investigated the propagation of Stoneley waves at the 

boundary of two couple stress thermoelastic medium by using LS and GL theories. Tomar and Singh 

(2006) investigated the propagation of Stoneley waves at an interface between two microstretch 

elastic half-spaces. Markov (2009) discussed the propagation of Stoneley elastic wave at the 

boundary of two fluid-saturated porous media. Mahmoud (2014) studied the Rayleigh wave 

propagation of an initially stressed non-homogeneous orthotropic solid under the effect of magnetic 

field, gravity field, and rotation. Kumar et al. (2013) investigated the propagation of Stoneley waves 

at the boundary of two couple stress thermoelastic medium by using LS and GL theories. Markov 

(2009) discussed the propagation of Stoneley elastic wave at the boundary of two fluid-saturated 

porous media. Mahmoud (2014) studied the Rayleigh wave propagation of an initially stressed non-

homogeneous orthotropic solid under the effect of magnetic field, gravity field and rotation.  

Saeed et al. (2020) investigated the effect of thermal relaxation times in a poroelastic material by 

using the finite element method. Othman et al. (2019) studied the effect of gravity field on the fibre-

reinforced thermoelastic medium with two temperature and three phase-lag model of heat transfer 

by using GN-II and GN-III theory. Kumar et al. (2017) solved the Stoneley wave propagation 

problem at the interface of two dissimilar transversely isotropic thermoelastic solids without energy 

dissipation and with two temperatures. Ahmed and Abo-Dahab (2012) studied the propagation of 

Rayleigh and Stoneley waves in a thermoelastic orthotropic granular half-space under the effect of 

initial stress and gravity. Abbas and Marin (2018) found the analytical solutions of two dimensional 

problem of half space due to laser pulse. Mohamed et al. (2009) analysed the flow, chemical reaction 

and mass transfer of a steady laminar boundary layer of an electrically conducting and heat 

generating fluid driven by a continuously moving porous surface embedded in a non-Darcian porous 

medium in the presence of a transfer magnetic field. Abbas et al. (2009) studied the effect of thermal 

dispersion on free convection in a fluid saturated porous medium. Abbas (2014) also studied the 

thermoelastic interaction in a semi-infinite medium due to ramp-type heat. Abbas (2014) studied the 

thermoelastic interactions in a three dimensional isotropic solid with temperature dependent material 

properties. Chadwick and Borejko (1994) studied the existence-uniqueness theory for Stoneley 

waves propagating along a plane interface between different isotropic elastic media. Kumar (2018) 

also studied thepropagation of Stoneley waves at the boundary surface of thermoelastic diffusion 
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solid and microstretch thermoelastic diffusion solid. Including this several researchers worked in 

different areas by using thermoelasticity theories as Marin (1996, 1997a, b), Othman and Marin 

(2017), Lata and Zakhmi (2019, 2020), Lata et al. (2017), Kaur and Lata (2020), Biswas and Abo-

Dahab (2018), Abd-Alla (1999), Ezzat (2020). 

Inspite of all the above investigations, we see that propagation of Stoneley waves using Fractional 

order theory of thermoelasticity in orthotropic medium with three phase lags has not been studied 

yet. The aim of this paper is to examine the propagation of Stoneley waves in an orthotropic media 

with Fractional order theory of generalized thermoelasticity with three phase lags. In three-phase 

lag model the heat conduction equation consists of three phase lags namely τt, τv and τq, i.e. (phase 

lag of temperature gradient, phase lag of thermal displacement and phase lag of heat flux vector. The 

effect of fractional parameter on the various components has been computed numerically. The 

variations in the normal stress, normal displacement and temperature change have been depicted 

through graphs.  

 

 

2. Basic equations 
 

Following Kumar and Chawla (2014), the constitutive relations and basic equations for 

anisotropic media in the absence of body forces and heat sources with three-phase-lag thermoelastic 

model are the following. 

𝜎𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑚𝑒𝑘𝑚 −  𝛽𝑖𝑗  𝑇 (1) 

𝜎𝑖𝑗,𝑗 =  𝜌ü𝑖 (2) 

𝐾𝑖𝑗 (1 +
𝜏𝑡
𝛼

𝛼!

𝜕

𝜕𝑡𝛼) �̇�,𝑗𝑖 + 𝐾𝑖𝑗
∗ (1 +

𝜏𝑣
𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼)𝑇,𝑗𝑖 = [( 1 + 
𝜏𝑞 
𝛼

𝛼!
) + 

𝜏𝑞
2𝛼!

2𝛼!
 ] [𝜌𝐶𝐸�̈� + 𝛽𝑖𝑗𝑇0�̈�𝑖𝑗] (3) 

In Eqs. (1)-(3), cijkm (= ckmij = cjikm = cijmk) is the tensor of elastic constant, ρ is the density, T0 is 

the reference temperature such that |
𝑇

𝑇0
| ≪ 1 , ui are the components of displacement vector u, CE is 

the specific heat at constant strain, σij = (σji) and eij = 
1

2
 (𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) are the components of stress 

and strain tensors respectively. T(x, y, z, t) is the temperature distribution from the reference 

temperature T0 and and τq, τt, τv is respectively the phase lag of the heat flux, the phase lag of the 

temperature gradient and the phase lag of the thermal displacement, βij are tensor of thermal moduli, 

Kij and  𝐾𝑖𝑗
∗   are the components of thermal conductivity and material characteristic constant 

respectively. Also in all above equations dot (.) represents the partial derivative w.r.t time and (,) 

denote the partial derivative w.r.t spatial coordinate. 

Here, the symmetries of elastic parameters Cijkm is due to 

i. The stress tensor is symmetric, which is only possible if (Cijkm = Cjikm). 

ii. If a strain energy density exists for the material, the elastic stiffness tensor must satisfy Cijkm = 

Ckmij. 

iii. From stress tensor and elastic stiffness tensor symmetries infer (Cijkm = Cijmk) and Cijkm = Cjikm 

= Cijmk. 

Following Kumar and Chawla (2014), the Eq. (1) for an orthotropic media in Cartesian 

coordinate system (x, y, z) in component form can be written as 
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  𝜎𝑥𝑥 = 𝐶11𝑒𝑥𝑥 + 𝐶12𝑒𝑦𝑦+ 𝐶13𝑒𝑧𝑧 − 𝛽1 𝑇 

  𝜎𝑦𝑦 = 𝐶12𝑒𝑥𝑥 + 𝐶22𝑒𝑦𝑦+ 𝐶23𝑒𝑧𝑧 − 𝛽2 𝑇 

   𝜎𝑧𝑧 = 𝐶13𝑒𝑥𝑥 + 𝐶23𝑒𝑦𝑦+ 𝐶33𝑒𝑧𝑧 − 𝛽3 𝑇 

   𝜎𝑦𝑧 = 2 𝐶44𝑒𝑦𝑧, 𝜎𝑥𝑧 = 2 𝐶55𝑒𝑥𝑧, 𝜎𝑥𝑦 = 2 𝐶66𝑒𝑥𝑦 

 

where 

𝑒𝑥𝑥 =
𝜕𝑢

 𝜕𝑥
, 𝑒𝑧𝑧 =

𝜕𝑤

𝜕𝑧
, 𝑒𝑥𝑧 =

1

2 
(
𝜕𝑢

𝜕𝑧
+ 

𝜕𝑤

𝜕𝑥
) (4) 

Now Eqs. (2) and (3) with the help of and above equations can be written as 

𝐶11

𝜕2𝑢

𝜕𝑥2
+ 𝐶66

𝜕2𝑢

𝜕𝑦2
+ 𝐶55

𝜕2𝑢

𝜕𝑧2
+ (𝐶12 + 𝐶66)

𝜕2𝑣

𝜕𝑥𝜕𝑦
+ (𝐶13 + 𝐶55)

𝜕2𝑤

𝜕𝑥𝜕𝑧
− 𝛽1

𝜕𝑇

𝜕𝑥
= 𝜌

𝜕2𝑢

𝜕𝑡2
 (5) 

(𝐶12 + 𝐶66)
𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 𝐶66

𝜕2𝑣

𝜕𝑥2
+ 𝐶22

𝜕2𝑣

𝜕𝑦2
+ 𝐶44

𝜕2𝑣

𝜕𝑧2
+ (𝐶23 + 𝐶44)

𝜕2𝑤

𝜕𝑦𝜕𝑧
− 𝛽2

𝜕𝑇

𝜕𝑦
= 𝜌

𝜕2𝑣

𝜕𝑡2
 (6) 

(𝐶13 + 𝐶55)
𝜕2𝑢

𝜕𝑥𝜕𝑧
+ (𝐶23 + 𝐶44)

𝜕2𝑣

𝜕𝑦𝜕𝑧
+ 𝐶55

𝜕2𝑤

𝜕𝑥2
+ 𝐶44

𝜕2𝑤

𝜕𝑦2
+ 𝐶33

𝜕2𝑤

𝜕𝑧2
− 𝛽3

𝜕𝑇

𝜕𝑧
= 𝜌

𝜕2𝑤

𝜕𝑡2
 (7) 

𝐾1 (1 +
𝜏𝑡
𝛼

𝛼!

𝜕

𝜕𝑡𝛼) �̇�,11 + 𝐾2 (1 +
𝜏𝑡
𝛼

𝛼!

𝜕

𝜕𝑡𝛼) �̇�,22 + 𝐾3 (1 +
𝜏𝑡
𝛼

𝛼!

𝜕

𝜕𝑡𝛼) �̇�,33 + 𝐾1
∗ (1 +

𝜏𝑣
𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼)𝑇,11 + 

𝐾2
∗ (1 +

𝜏𝑣
𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼 ) 𝑇,22 +  𝐾3
∗ (1 +

𝜏𝑣
𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼)𝑇,33 = [1 + 
𝜏𝑞
𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼 +
𝜏𝑞
2𝛼!

2𝛼!

𝜕2𝛼

𝜕𝑡2𝛼] [𝜌𝐶𝐸𝑇 + ̈ 𝑇0 (𝛽1�̈�1,1 + 

   𝛽2�̈�2,2 + 𝛽3�̈�3,3)]  

(8) 

 

 

3. Formulation of the problem 
 

We consider a perfectly conducting homogeneous orthotropic thermoelastic half-pace M1 

overlying another homogeneous orthotropic thermoelastic half-space M2. The origin of the 

coordinate system (x, y, z) is taken on (z = 0). We choose x-axis in the direction of wave propagation 

in such a way that all the particles on a line parallel to the y-axis are equally displaced, so that v = 0 

and u, w, T are independent of y. Medium M2 occupies the region −∞ < x ≤ 0 and the medium M1 

occupies the region 0 ≤ x < ∞. The plane x3 = 0 represents the interface between the two media M1 

and M2. We define all the quantities without bar for the medium M1 and with bar for medium M2. 

For the two dimensional problem in xz-plane, we take 

�⃗� =  𝑢 (𝑥, 𝑧, 𝑡), 𝑣 = 0, �⃗⃗� = 𝑤(𝑥, 𝑧, 𝑡)     and       𝑇 = 𝑇(𝑥, 𝑧, 𝑡) (9) 

With the aid of Eq. (9), Eqs. (5)-(8) reduce to the form 

𝐶11

𝜕2𝑢

𝜕𝑥2
+ 𝐶55

𝜕2𝑢

𝜕𝑧2
+ (𝐶13 + 𝐶55)

𝜕2𝑤

𝜕𝑥𝜕𝑧
− 𝛽1

𝜕𝑇

𝜕𝑥
= 𝜌

𝜕2𝑢

𝜕𝑡2
 (10) 

(𝐶13 + 𝐶55)
𝜕2𝑢

𝜕𝑥𝜕𝑧
+ 𝐶55

𝜕2𝑤

𝜕𝑥2
+ 𝐶33

𝜕2𝑤

𝜕𝑧2
− 𝛽3

𝜕𝑇

𝜕𝑧
= 𝜌

𝜕2𝑤

𝜕𝑡2
 (11) 

60



 

 

 

 

 

 

Stoneley wave propagation in an orthotropic thermoelastic media with fractional order theory 

𝐾1 (1 +
𝜏𝑡
𝛼

𝛼!

𝜕

𝜕𝑡𝛼) �̇�,11 + 𝐾3 (1 +
𝜏𝑡
𝛼

𝛼!

𝜕

𝜕𝑡𝛼) �̇�,33 + 𝐾1
∗ (1 +

𝜏𝑣
𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼)𝑇,11 + 𝐾3
∗(1 +

𝜏𝑣
𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼
)𝑇,33 

= [1 + 
𝜏𝑞
𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼
+

𝜏𝑞
2𝛼!

2𝛼!

𝜕2𝛼

𝜕𝑡2𝛼
 ] [𝜌𝐶𝐸�̈� + 𝑇0(𝛽1�̈�1,1 + 𝛽3�̈�3,3)] 

(12) 

Also, 

𝜎𝑥𝑥=  𝐶11 𝑒𝑥𝑥 + 𝐶13 𝑒𝑧𝑧 − 𝛽1T (13) 

  𝜎𝑧𝑧 =  𝐶13 𝑒𝑥𝑥 +𝐶33 𝑒𝑧𝑧 − 𝛽3T (14) 

  𝜎𝑥𝑧 = 2 𝐶55 𝑒𝑥𝑧 (15) 

And 𝛽𝑖𝑗 = 𝛽𝑖𝛿𝑖𝑗, 𝐾𝑖𝑗 = 𝐾𝑖 𝛿𝑖𝑗 , 𝐾𝑖𝑗
∗ = 𝐾𝑖

∗𝛿𝑖𝑗 , i is not summed; i =1, 2, 3 and 𝛿𝑖𝑗 is Kronecker 

delta. 

The following dimensionless quantities are used to find the solution 

𝑥 , =
𝑥

𝐿 
, 𝑧 , =

𝑧

𝐿 
, 𝑢, =

𝜌𝑐1
2

 𝐿𝑇0𝛽1
𝑢, 𝑤 , =

𝜌𝑐1
2

  𝐿𝑇0𝛽1
𝑤 

𝑡 , =
𝐶1

𝐿 
𝑡, 𝜎33 

, =
𝜎33

𝑇0𝛽1
, 𝜎31

, =
𝜎31

𝑇0𝛽1
, 𝑇 , =

𝑇

𝑇0
 

(16) 

where 𝑐1
2 = 

𝑐11

𝜌
 and L is a constant of dimension of length. 

With the help of dimensionless quantities given by Eq. (16) in Eqs. (10)-(12) and suppressing the 

primes we get 

𝜕2𝑢

𝜕𝑥2
+ 𝛿1

𝜕2𝑢

𝜕𝑧2
+ 𝛿2

𝜕2𝑤

𝜕𝑥𝜕𝑧
− 

𝜕𝑇

𝜕𝑥
=

𝜕2𝑢

𝜕𝑡2
 (17) 

𝛿3

𝜕2𝑤

𝜕𝑧2
+ 𝛿1

𝜕2𝑤

𝜕𝑥2
+ 𝛿2

𝜕2𝑢

𝜕𝑥𝜕𝑧
− 휀 

𝜕𝑇 

𝜕𝑧 
=

𝜕2𝑤

𝜕𝑡2
 (18) 

𝜖1𝜏𝑡

𝜕

𝜕𝑡
(
𝜕2𝑇

𝜕𝑥2
) +  𝜖2 𝜏𝑡

𝜕

𝜕𝑡
(
𝜕2𝑇

𝜕𝑧2
) +  𝜖3𝜏𝑣 (

𝜕2𝑇

𝜕𝑥2
) + 𝜖4 𝜏𝑣 (

𝜕2𝑇

𝜕𝑧2
) = 𝜏𝑞 [

𝜕2𝑇

 𝜕𝑧2
+ 𝜖5

𝜕2

𝜕𝑡2
(
𝜕𝑢

𝜕𝑥
+  휀 

𝜕𝑤

𝜕𝑧
)] (19) 

where 

𝛿1 = 
𝑐55

𝑐11
, 𝛿2 = 

𝑐13 + 𝑐15

𝑐11
, 𝛿3 = 

𝑐33

𝑐11
, 𝜏𝑡 = (1 +

𝜏𝑡
𝛼

𝛼!

𝜕

𝜕𝑡𝛼) 

𝜏𝑣 = (1 +
𝜏𝑣
𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼) , 𝜏𝑞 = (1 +
𝜏𝑞
𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼
+

𝜏𝑞
2𝛼!

2𝛼!

𝜕2𝛼

𝜕𝑡2𝛼
 ) , 𝜖1 =

𝐾1

𝜌 𝐿 𝐶1𝐶𝐸  
 

𝜖2 =
𝐾3

𝜌 𝐿𝐶1𝐶𝐸  
, 𝜖3 =

𝐾1
∗

𝜌𝑐1
2𝐶𝐸  

, 𝜖4 =
𝐾3

∗

𝜌𝑐1
2𝐶𝐸  

, 𝜖5 =
𝛽1

2𝑇0

𝜌2𝑐1
2𝐶𝐸  

 , 휀 =  
𝛽3

𝛽1
 

 

 

 
4. Solution of the problem 
 

We assume the Stoneley wave solution of the form 
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(𝑢, 𝑤, 𝑇) = (𝑢∗, 𝑤∗, 𝑇∗)(𝑧)𝑒𝑖𝜉(𝑥−𝑐𝑡) (20) 

where c = ω/ξ the phase velocity, ξ is a wave number and ω is the angular frequency of the wave. 

Using Eq. (20) in Eqs. (17)-(19) and satisfying the radiation conditions u, w, T → 0 as z → ∞, the 

values of u, w and T are obtained for the medium M1. 

On substituting the values in Eqs. (17)-(19), we get 

𝑢∗[𝑝1 + 𝛿1𝐷
2] + 𝑤∗[𝑝3𝐷] + [𝑖ξ]𝑇∗ = 0 (21) 

𝑢∗[𝑝3𝐷] + 𝑤∗[𝑝2 + 𝛿3𝐷
2] − [휀𝐷]𝑇∗ = 0 (22) 

𝑢∗[𝑝7휀5 𝜏𝑞
, ] + 𝑤∗[𝑝6휀휀5𝜏𝑞

, 𝐷] + [  𝑝4휀1𝜏𝑡
, − 𝑝5휀2𝜏𝑡

, 𝐷2 − 𝜉2휀3𝜏𝑣
,  +  휀4𝜏𝑣

, 𝐷2 + 𝑝6𝜏𝑞
, ]𝑇∗ = 0 (23) 

where 

𝐷 =
𝑑

𝑑𝑧
,              𝑝1 = 𝜉2(𝑐2 − 1) ,              𝑝2 = 𝜉2(𝑐2 − 𝛿1) 

𝑝3 = 𝑖 𝜉 𝛿2,              𝑝4 = 𝑖𝜉3𝑐,              𝑝5 = 𝑖𝜉𝑐 

𝑝6 = 𝜉2𝑐2,             𝑝7 = 𝑖𝜉3,            𝜏𝑡
, = 1 + 

𝜏𝑡
𝛼

𝛼!
 (−𝑖𝜉𝑐)𝛼 

𝜏𝑣
, = 1 + 

𝜏𝑣
𝛼

𝛼!
 (−𝑖𝜉𝑐)𝛼 ,            𝜏𝑞

, = 1 + 
𝜏𝑞
𝛼

𝛼!
 (−𝑖𝜉𝑐)𝛼 + 

𝜏𝑞
2𝛼

2𝛼!
 (−𝑖𝜉𝑐)2𝛼 

 

These above resulting Eqs. (21)-(23) have non-trivial solution if the determinant of the 

coefficients (𝑢∗, 𝑤∗, 𝑇∗) vanishes, which give the following characteristic equation. 

(𝐷6 + 𝑄𝐷4 + 𝑅𝐷2 + 𝑆 ) (𝑢∗, 𝑤∗, 𝑇∗) = 0 (24) 

where 

𝐷 =
𝑑

𝑑𝑧
 , 𝑃 = [ 𝜏𝑣

, 𝛿3𝛿1휀4 − 휀2𝛿1 𝛿3𝑝5𝜏𝑡 
, ] 

𝑄 = 𝜏𝑡
,  [−𝑝1𝑝5휀2𝛿3 – 𝑝2𝑝5𝛿1휀2 +  𝑝3

2𝑝5휀2 + 휀1𝛿1𝛿3𝑝4] + 

    𝜏𝑣
, [ 𝑝1𝛿3휀4 + 𝑝2휀4𝛿1 −  𝜉2𝛿1 𝛿3휀3 − 휀4𝑝3

2] + 𝜏𝑞  
, [ 𝑝6 𝛿1 𝛿3  + 𝑝6휀5𝛿1휀

2 ] 

𝑅 = 𝜏𝑡
, [−𝑝1𝑝2 𝑝5휀2 + 휀1𝛿3𝑝1 𝑝4 − 휀1 𝑝3

2𝑝4 + 휀1𝛿1𝑝2 𝑝4] + 𝜏𝑣
, [ 𝑝1𝑝2휀4 −  𝜉2𝑝1 𝛿3휀3 +  𝑝3

2𝜉2휀3  

        − 𝛿1 𝜉
2𝑝2휀3] + 𝜏𝑞 

, [ 𝑝1 𝑝6 𝛿3 +  𝑝1𝑝6 휀5휀
2 − 𝑝3

2𝑝6 − 𝑝3 𝑝7 휀5 휀 − 𝑖𝜉휀휀5 𝑝3𝑝6  + 𝑖𝜉𝛿3휀5 𝑝7 

        + 𝛿1 𝑝2𝑝6 ] 

𝑆 = 𝜏𝑡
,  [ 𝑝1𝑝2 𝑝4휀1 ] + 𝜏𝑣 

, [ −𝑝1 𝑝2 𝜉
2휀3] + 𝜏𝑞  

, [ 𝑝1𝑝2 𝑝6 +  𝑖𝜉휀5 𝑝2 𝑝7] 

 

For the medium M1  

(𝑢,𝑤, 𝑇) = ∑𝐴𝑗

3

𝑗=1

(1, 𝑑𝑗 , 𝑙𝑗)𝑒
−𝑚𝑗𝑧𝑒𝑖𝜉(𝑥−𝑐𝑡) (25) 

Thus, from Eqs. (20) and (25) 

 𝑢∗ = ∑𝐴𝑗

3

𝑗=1

𝑒−𝑚𝑗𝑧,     𝑤∗ = ∑𝑑𝑗𝐴𝑗𝑒
−𝑚𝑗𝑧

3

𝑗=1

,  𝑇∗ = ∑𝑙𝑗𝐴𝑗𝑒
−𝑚𝑗𝑧

3

𝑗=1
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where 

𝑑𝑗 = 
𝑚𝑗

4𝐴∗+𝑚𝑗
2𝐵∗ + 𝐶∗

𝑚𝑗
4𝐴′+𝑚𝑗

2𝐵′ + 𝐶′
, 𝑗 = 1, 2, 3 

𝑙𝑗 =
𝑚𝑗

4𝑃∗+𝑚𝑗
2𝑄∗+ 𝑅∗

𝑚𝑗
4𝐴′+𝑚𝑗

2𝐵′+ 𝐶′ ,                   𝑗 = 1, 2, 3   

 

where 

𝐴∗ = 𝜏𝑡
, [−𝛿1  𝑝5휀2] + 𝜏𝑣

, [𝛿1  휀4 ], 

𝐵∗ = 𝜏𝑡
, [−𝑝1𝑝5휀2 + 𝛿1  휀1𝑝4] + 𝜏𝑣

, [𝑝1휀4 − 𝛿1𝜉
2휀3 ] + 𝜏𝑞

, [ 𝛿1𝑝6] 

𝐶∗ = 𝜏𝑡
, [ 𝑝1𝑝4 휀1] + 𝜏𝑣

, [−𝑝1𝜉
2휀3 ] + 𝜏𝑞

,  [ 𝑝1𝑝6  − 휀5 𝑝6  𝜉
2]  

𝐴′ = 𝜏𝑡
, [− 𝑝5 휀2𝛿3 ] + 𝜏𝑣

, [ 휀4𝛿3 ]  

𝐵′ = 𝜏𝑡
, [− 𝑝2𝑝5 휀2 + 𝑝4 휀1𝛿3 ] + 𝜏𝑣

, [ 𝑝2 휀4 − 𝛿3휀3𝜉
2] + 𝜏𝑞

, [ 𝛿3𝑝6  + 휀2휀5𝑝6  ] 

𝐶′ = 𝜏𝑡
, [ 𝑝2𝑝4 휀1] + 𝜏𝑣

, [ −𝜖3𝜉
2𝑝2 ] + 𝜏𝑞

, [ 𝑝2𝑝6],             𝑃
∗ = [𝛿1𝛿3] 

𝑄∗ = [𝑝1𝛿3 + 𝑝2𝛿1 − 𝑝3
2], 𝑅∗ =  [𝑝1𝑝2] 

 

For medium M2 (z > 0) 

We attach bars for the medium M2 i.e., 

(�̅�, �̅�, �̅�) = (1, 𝑑�̅�, 𝑙�̅�)𝑒
𝑚𝑗̅̅ ̅̅ 𝑧𝐴�̅�𝑒

𝑖𝜉(𝑥−𝑐𝑡) (26) 

where quantities �̅�, �̅�, �̅�, 𝑑�̅�, 𝑙�̅�, 𝐴�̅�, 𝑚𝑗̅̅̅̅  are obtained by attaching bars in the above expressions. 

 

 
5. Boundary conditions 

 

Following Kaur and Lata (2020), we assume that the half spaces are in perfect contact. Thus, 

there is continuity of components of displacement vector, normal stress vector, tangential stress 

vector, temperatures and temperature change at the interface. 

𝜎𝑧𝑧 = �̅�𝑧𝑧, 𝜎𝑧𝑥 = �̅�𝑧𝑥 , 𝑇 = �̅�, 𝑢 = �̅� 

𝑤 = �̅�,           𝐾3
∗ 𝜕𝑇

𝜕𝑧
= 𝐾3

∗̅̅̅̅ 𝜕�̅�

𝜕𝑧
         at z = 0 (27) 

 

 

6. Derivations of the secular equations 
 

By using the values of 𝑢, 𝑤, 𝑇, �̅�, �̅�, 𝑇 ̅in Eq. (27), we get six linear equations as 

∑𝜂𝑞𝑗𝐴𝑗 + ∑𝜂𝑞(𝑗+3)�̅�𝑗 = 0

3

𝑗=1

3

𝑗=1

, 𝑞 = 1, 2, 3, 4, 5, 6  

where 
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𝜂1𝑗 = 𝑖𝜉
𝑐13

𝜌𝑐1
2 −

𝑐33

𝜌𝑐1
2 𝑑𝑗𝑚𝑗 − 휀 𝑙𝑗,                    𝑗 =  1, 2, 3                                                    

𝜂1(𝑗+3) = −𝑖𝜉 
𝑐13̅̅ ̅̅

𝜌𝑐1
2̅̅ ̅̅ ̅
+

𝑐33̅̅ ̅̅

𝜌𝑐1
2̅̅ ̅̅ ̅
𝑑�̅�𝑚𝑗̅̅̅̅ + 휀�̅��̅�,      𝑗 =  1, 2, 3 

𝜂2𝑗 = −
𝑐55

𝜌𝑐1
2 𝑚𝑗 +

𝑐55

𝜌𝑐1
2 𝑑𝑗𝑖𝜉 ,                        𝑗 =  1, 2, 3                                                                 

𝜂2(𝑗+3) =
𝑐55̅̅ ̅̅

𝜌𝑐1
2̅̅ ̅̅ ̅
𝑚𝑗 −

𝑐55̅̅ ̅̅

𝜌𝑐1
2̅̅ ̅̅ ̅
𝑖𝜉𝑑�̅�,                   𝑗 =  1, 2, 3  

𝜂3𝑗 = 𝑙𝑗,                                                        𝑗 =  1, 2, 3                                                                                               

𝜂3(𝑗+3) = −𝑙�̅�,                                             𝑗 =  1, 2, 3                                                                                      

𝜂4𝑗 = 1,                                                        𝑗 =  1, 2, 3                                                                                                  

𝜂4(𝑗+3) = −1,                                             𝑗 =  1, 2, 3                                                                                        

𝜂5𝑗 = 𝑑𝑗,                                                    𝑗 =  1, 2, 3                                                                                            

𝜂5(𝑗+3) = − 𝑑�̅�,                                        𝑗 =  1, 2, 3 

𝜂6𝑗 = −𝐾3
∗𝑚𝑗𝑙𝑗 

𝜂6(𝑗+3) = 𝐾3
∗̅̅̅̅ 𝑚𝑗̅̅̅̅ 𝑙�̅� 

(28) 

The system of Eq. (28) has a non-trivial solution if the determinant of unknowns 𝐴𝑗 , �̅�𝑗, 𝑗 =

1, 2, 3 vanishes i.e., 

|𝜂𝑖𝑗|6×6
= 0  

The whole information regarding the wavenumber, phase velocity and attenuation coefficient of 

Stoneley waves are described by secular equations. 
 

 

7. Particular cases 
 

1) If we put 𝐾1
∗ = 𝐾3

∗ = 0 in Eq. (12), we get the expressions for Stoneley wave propagation in 

orthotropic magneto-thermoelastic medium without energy dissipation with fractional order theory 

of thermoelasticity.  

2) If  𝐶11 = 𝐶33,  2𝐶44 =  𝐶11 − 𝐶33, we get the expressions for Stoneley wave propagation in 

transversely isotropic magneto-thermoelastic medium with and without energy dissipation with 

three phase lags and fractional order theory of thermoelasticity.  

3) If  𝐶11 = 𝐶33 = 𝜆 + 2𝜇, 𝐶13 = 𝜆 , 𝐶55 = 𝜇,    𝛽1 = 𝛽3 = 𝛽, 𝐾1 = 𝐾3 = 𝐾, 𝐾1
∗ = 𝐾3

∗ = 𝐾∗, 
we obtain the expressions for Stoneley wave propagation for isotropic materials with and without 

energy dissipation for three phase-lag model of heat transfer with fractional order theory of 

thermoelasticity. 

4) If we put   𝜏𝑡 =   𝜏𝑣 =  𝜏𝑞 = 0  and 𝐾1
∗ = 𝐾3

∗ = 0  in Eq. (12), then the resulting equation 

represents heat equation for coupled theory of thermoelasticity. 

5) If we put 𝐾1
∗ = 𝐾3

∗ = 0 in Eq. (12), we obtain the heat equation for dual-phase-lag model with 

fractional order theory of thermoelasticity. 
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Table 1 Following Biswas et al. (2017), cobalt material has been taken for the purpose of numerical 

computation for the medium M1 with non-dimensional parameter L = 1 

Quantity Value Unit 

c11 3.071 × 1011 kgm−1s−2 

c13 1.650 × 1011 kgm−1s−2 

c33 3.581 × 1011 kgm−1s−2 

c55 1.510 ×  1011 kgm−1s−2 

cE 4.27 × 102 JKg−1K−1 

β1 7.04× 106 Nm2K−1 

β3 6.90× 106 Nm2K−1 

T0 298 K 

K1 6.90 × 102 Wm−1K−1 

K3 7.01 × 102 Wm−1K−1 

𝐾1
∗ 1.313 × 102 Ws−1 

𝐾3
∗ 1.54 × 102 Ws−1 

ρ 8.836 × 103 kgm−3 

  𝜏𝑡  1.5 × 10−7 s 

 𝜏𝑣 1.0 × 10−7 s 

 𝜏𝑞  2.0 × 10−7 s 

 
Table 2 Following Kumar and Chawla (2014), we take the following values of the relevant parameter for an 

orthotropic thermoelastic material for numerical computations for the medium M2 with non-

dimensional parameter L = 1 

Quantity Value Unit 

𝑐1̅1 18.78 × 1010 kgm−1s−2 

𝑐1̅3 8.0 × 1010 kgm−1s−2 

𝑐3̅3 10.2 × 1010 kgm−1s−2 

𝑐5̅5 10.06 × 1010 kgm−1s−2 

T̅0 293 K 

�̅�1 1.96 × 10−5 Nm−2K−1 

�̅�3 1.4 × 10−5 Nm−2K−1 

�̅� 8.836 × 103 kgm−3 

𝐶�̅� 4.27 × 102 JKg−1K−1 

𝐾1
∗
 1.313 × 102 Ws−1 

𝐾3
∗
 1.54 × 102 Ws−1 

𝐾1 0.12 × 103 wm−1k−1 

𝐾3 0.33 × 103 wm−1k−1 

𝜏�̅� 1.5 × 10−7 s 

𝜏�̅� 1.0 × 10−8 s 

𝜏�̅� 2.0 × 10−7 s 
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Fig. 1 Variation of phase velocity with wave number ξ 

 

 

Fig. 2 Variation of Attenuation coefficient with wave number ξ 

 

 

 

 

8. Numerical results and discussion 
 

Using above values of parameters, the graphical representation of phase velocity, attenuation 

coefficient depth of Stoneley wave, stress component and temperature change with wave number 

‘ξ’ has been made for an orthotropic body by using different values of fractional parameter α = 0.25, 

α = 0.5, α =1.0 respectively. 

• Effect of fractional parameter: 

(1) The red dashed line with centre symbol triangle (∆) for an orthotropic material corresponds 

to α = 0.25. 

(2) The green dashed line with centre symbol plus (o) for an orthotropic material corresponds to 

α = 0.5. 

(3) The blue dashed line with centre symbol circle (◊) for an orthotropic material corresponds to 

α = 1.0. 

Fig. 1 gives the variation of phase velocity w.r.t. ‘ξ’ for α = 0.25, α = 0.5 and α = 0.1, respectively.  
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Fig. 3 Variation of normal displacement w with wave number ξ 

 

 

Fig. 4 Variation of stress component σzz with wave number ξ 

 

 

It is clear from the graphs that the value of phase velocity decreases sharply in the range 0 ≤ ξ ≤ 2.5 

then exhibits a steady state behaviour in the rest of the range for all values of α = 0.25, α = 0.5 and 

α = 0.1, respectively. Fig. 2 demonstrates the Stoneley wave’s attenuation coefficient w.r.t. ‘ξ’ for 

different values of fractional parameter α. It can be noticed that for α = 0.25 and α = 0.5, the value 

of attenuation coefficient declines in the range 0 ≤ ξ ≤ 5 then remains constant in the rest of the 

range. Moreover, for α = 0.1 near the interface of the two material the magnitude values of 

attenuation coefficient of Stoneley wave shows the opposite behaviour in the range 0 ≤ ξ ≤ 5. Fig. 3 

displays the behaviour of displacement component w w.r.t. ‘ξ’. We see that for α = 0.25, α = 0.5 and 

α = 0.1 in the range 0 ≤ ξ ≤ 5 it decreases then shows a steady state behaviour in the remaining range. 

The variation of stress component σzz with wave number ‘ξ’ has shown in Fig. 4. It can be noticed 

that in the starting range 0 ≤ ξ ≤ 2.5 for α = 0.25, α = 0.5 and α = 0.1 the value of stress component 

σzz declines after that it increases in the range 2.5 ≤ ξ ≤ 5. The peak value attains near ξ = 5.3 then it 

comes to steady state in the rest of the range for all values of α. Fig. 5 gives the variation of 

temperature change T w.r.t.  𝜉 for α = 0.25, α = 0.5 and α = 0.1, respectively. In the starting range 

0 ≤ ξ ≤ 4 its value decreases sharply then remains same in the rest of the range. 
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Fig. 5 Variation of temperature change T with wave number ξ 

 

 

9. Conclusions 
 

In the present work, the propagation of Stoneley waves in a homogeneous orthotropic solid by 

using fractional order heat conduction equation with three phase lags has been studied. The effect 

of fractional parameter on the Stoneley wave phase velocity, attenuation coefficient, displacement 

component and stress component as well as on temperature change has been investigated. It can be 

observed that for small value of non-dimensional wave number, the effect of fractional parameter 

has a significant impact on dispersion curve for lower value and negligible effect is observed for 

higher value. It is also observed that the velocity of surface (Stoneley) waves not only influenced by 

the direction of wave propagation but as well as on the elastic properties and density of materials. 

Stoneley wave’s analysis provides information about the positions of fractures and permeability of 

the formation. These waves not only deliver better information about the internal structure of the 

earth but are also helpful in the assessment of valuable materials under the earth’s surface. The 

results of this research may provide useful information for experimental scientists, researchers and 

seismologists which are working in this field. 
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