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Abstract.  This work throws light on the reflection and transmission phenomenon due to incident plane longitudinal 
wave at a plane interface between inviscid fluid half-space and a nonlocal bio-thermoelastic diffusive half-space. The 
governing equations are formulated by adopting nonlocal heat conduction and mass diffusion along with dual phase 
lag (DPL) model. The amplitude ratios are obtained analytically and these amplitude ratios are used to drive energy 
ratios. The distribution of energy of incident wave among reflected and transmitted waves are obtained. The obtained 
ratios are impacted by angle of incidence, frequency and different properties of media involved. Numerically examined 
energy ratios are displayed in the form of graphs to know the effect of nonlocal parameters, lagging times, stiffness and 
blood perfusion rate. 
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1. Introduction 
 

In clinical treatment, a lot of modern thermo-therapeutics (microwave, laser, focused ultrasound, 

and radio-frequency) have been widely used. For example, the laser is focused on tumor by an 

objective lens for thermal therapy. During thermal therapy, delivering the appropriate heat energy 

to the infected tissue without affecting the healthy tissue is the biggest challenge. Thus an acute need 

is to understand how the temperature/stress fields affect the kinetics of a thermal treatment. 

In living biological tissues, heat transfer analysis is a complicated physiological process due to 

the inherent characteristics in tissues, e.g. blood circulation, sweating, metabolic heat generation, 

and heat dissipation via hair or fur. Pennes (1958) established the bioheat transfer model to describe 

this complex phenomena which is based on Fourier’s law of heat conduction. So far lots of research 

work is done based on Cattaneo (1958), Vernotte (1958) and Tzou (1995) models of heat conduction 

to understand the thermal behavior of biological tissues. 

Later, Roychoudhuri (2007) extended the idea of Tzou on Green Nagdhi III by introducing the 

third phase-lag 𝜏𝑣 in correspondence to thermal displacement and developed another generalized 
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thermoelastic theory, three phase lag (TPL) thermo-elastic theory. Kumar et al. (2019a) and (Kumar 

and Rai 2020) used this TPL theory to investigate the behavior of skin tissue. The theory of coupled 

thermoelasticity was expended by Lord and Shulman (1967) and Green and Lindsay (1972). Chen 

et al. (1968) and Chen et al. (1969) developed a new theory of thermoelasticity with two 

temperature. A comprehensive work have been done by using these theories by various investigators 

(Lotfy (2014), Lotfy and Hassan (2014), Othman et al. (2011), Othman et al. (2014)). 

Thermomass is defined according to Einstin’s mass-energy relation as the equivalent mass of 

phonon gas in dielectrics. The concept of thermal as well as mechanical fields are employed in the 

thermomass heat conduction theory. This theory is used to study the heat at micro to nano scale and 

Cao et al. (2007), Guo et al. (2008) and Guo et al. (2010) used this theory. Tzou and Guo (2010) 

developed new heat conduction law which consider nonlocal behavior with thermal lagging. Wang 

et al. (2014) proposed , a new theory of generalized thermoelasticity by taking into account the 

general heat conduction law depending thermomass theory. Sarkar (2019) formulated the new 

governing equations of thermoelasticity with nonlocal heat conduction. Yu et al. (2016) investigated 

that the model of Guyer and Krumhansl (1966) is the potential model for heat conduction at nano 

scale and Kumar et al. (2019b) extended the GK model to nonlocal dual-phase-lag (NL DPL) model 

in a bi-layer tissue during magnetic fluid hyperthermia. 

Some authors worked on the thermo-mechanical behavior of tissues. Xu et al. (2008) investigated 

the heat transfer, thermal damage and heat-induced stress of human skin. Kim et al. (2016) analyzed 

the transient thermal-mechanical responses of innocuous tactile stimulation induced by laser. Shen 

et al. (2005) developed a tissue damage model using Fourier bio-heat transfer equation. It shows 

that thermally induced mechanical deformation decreases the activation energy for protein 

denaturation, making soft tissues more easily to be damaged. Li et al. (2014) and Li et al. (2016) 

developed a model to predict thermally induced mechanical deformation and thermal damage of soft 

tissues by combining the Fourier and non Fourier bio-heat transfer equation with the theory of linear 

thermo-elasticity. 

Park et al. (2017) presented a thermoelastic deformation model of tissue contraction during 

thermal ablation. Li et al. (2018) used the generalized thermoelastic theory without energy 

dissipation to investigate bioheat transfer and heat-induced mechanical response in bi-layered 

human skin with variable thermal material properties. 

Li et al. (2018) developed the theory of modified fractional order generalized bio-

thermoelasticity with material properties. Ghanmi and Abbas (2019) studied the thermal damage 

during the thermal therapy within the skin tissue by using bioheat equation. 

In order to analyse the behavior of waves at the interface of half space, Sharma et al. (2014) 

investigated the problem of reflection and transmission of plane waves at an imperfect boundary 

between two thermally conducting micropolar elastic solid half spaces with two temperature. 

Sharma (2012) examined the reflection of plane waves from a free surface of a thermodiffusive 

elastic half space with void.  

The present work is devoted to investigate the phenomenon of reflection and transmission of 

plane waves from the interface between fluid half space and nonlocal bio-thermoelastic diffusive 

half space. The effect of nonlocal parameters, lagging time, blood perfusion rate and stiffness 

parameter on energy ratios is discussed and presented graphically. The conservation of energy at the 

interface is verified. 

 

 

2. Modeling equations 
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Following Sherief (2004) and Xiong and Guo (2017), the basic equations for a homogeneous, 

isotropic, nonlocal bio-thermoelastic diffusive medium in the absence of body forces, external heat 

sources and mass diffusion source are as follows. 

 

2.1 Constitutive equations 
 

𝜎𝑖𝑗 = 2𝜇𝑒𝑖𝑗 + 𝛿𝑖𝑗(𝜆0𝑒𝑘𝑘 − 𝛾1𝜃 − 𝛾2𝑃), (1) 

𝐶 = 𝛾2𝑒𝑘𝑘 + 𝑑𝜃 + 𝑛𝑃, (2) 

𝜌𝑆 = 𝛾1𝑒𝑘𝑘 + 𝑙1𝜃 + 𝑑𝑃, (3) 

where 𝜃 = 𝑇 − 𝑇0 denote the increment of temperature, 𝑇 is the absolute temperature, 𝑇0 is the 

initial reference temperature, 𝜆, 𝜇  are Lame’s constants. 𝑒𝑖𝑗 , 𝑃 , 𝐶  and 𝑆 are separately the 

components of strain tensor, chemical potential, concentration of diffusive materials and the entropy 

density. 

Following Yu et al. (2016), Xiong and Guo (2017) and Kumar et al. (2019b) and using the above 

set of equations, we have the following nonlocal equations.  

Nonlocal equations of motion 

(1 − 𝜉2∇2)(𝜌𝐮̈) = 𝜇∇2𝐮 + (𝜆0 + 𝜇)∇∇. 𝐮 − 𝛾1∇𝜃 − 𝛾2∇𝑃. (4) 

Nonlocal bioheat transfer equation 

(1 − 𝜍2∇2 + 𝜏𝑞

∂

∂𝑡
+

𝜏𝑞
2

2

∂2

∂𝑡2
)[𝛾1𝑇0𝑒̇𝑘𝑘 + 𝑙1𝑇0𝜃̇ + 𝑑𝑇0𝑃̇ − 𝜔𝑏𝜌𝑏𝑐𝑏𝜃] = 𝑘(1 + 𝜏𝑇

∂

∂𝑡
)∇2𝜃. (5) 

Nonlocal mass diffusion equation 

(1 − 𝜁2∇2 + 𝜏𝑣

∂

∂𝑡
+

𝜏𝑣
2

2

∂2

∂𝑡2
)[𝛾2𝑒̇𝑘𝑘 + 𝑑𝜃̇ + 𝑛𝑃̇] = 𝐷(1 + 𝜏𝑃

∂

∂𝑡
)∇2𝑃, (6) 

where ∇2 is Laplacian operator. 

Following Achenbach (1973), the constitutive relations for the inviscid fluid half space are 

𝜎𝑖𝑗
𝑓

= 𝜆𝑓𝑢𝑘,𝑘
𝑓

𝛿𝑖𝑗 , (𝑖, 𝑗, 𝑘 = 1,2,3), (7) 

and equations of motion are  

𝜎𝑖𝑗,𝑗
𝑓

− 𝜌𝑓𝑢̈𝑖
𝑓

= 0.  (𝑖, 𝑗 = 1,2,3), (8) 

where 

𝜆0 = 𝜆 −
𝛽2

2

𝑏
, 𝛾1 = 𝛽1 +

𝑎

𝑏
𝛽2, 𝛾2 =

𝛽2

𝑏
, 

𝑙1 =
𝜌𝐶

𝑇0
+

𝑎2

𝑏
, =

𝑎

𝑏
, =

1

𝑏
, 

𝛽1 = (3𝜆 + 2𝜇)𝛼𝑡 , 𝛽2 = (3𝜆 + 2𝜇)𝛼𝑐 . 
 
 
3. Statement of the problem 
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Fig. 1 Geometry of the problem 

 

 

We consider a invisid fluid half-space (FS) and a nonlocal isotropic bio-thermoelastic diffusive 

half space (NL BDS) as shown in the Fig. 1. The FS occupies the region 𝑥3 ≤ 0 and NL BDS 

occupies the region 𝑥3 ≥ 0.  

Introducing the following dimensionless quantities 

(𝑥𝑖′, 𝑢𝑖′, 𝜉′, 𝜁′, 𝜗′) =
𝜔1

∗

𝑐0
(𝑥𝑖 , 𝑢𝑖, 𝜉, 𝜁, 𝜗), 

(𝑡′, 𝜏𝑞′, 𝜏𝑝′, 𝜏𝑣′, 𝜏𝑇′) = 𝜔1
∗(𝑡, 𝜏𝑞 , 𝜏𝑝, 𝜏𝑣 , 𝜏𝑇), 

𝑢𝑖
𝑓′

=
𝑢𝑖

𝑓

𝑐0
, 𝜃′ =

𝛾1

𝜌𝑐0
2 𝜃, 𝑃′ =

𝑃

𝑏𝛾2
, 

𝑃∗𝑓′ =
𝑃∗𝑓

𝛾1𝑇0𝑐1
, 𝜎33

𝑓′
=

𝜎33
𝑓

𝛾1𝑇0
, 𝑘𝑛′ =

𝑐0

𝛾1𝑇0
𝑘𝑛, 

where 𝑐0
2 =

𝜆+2𝜇

𝜌
, 𝜔∗ =

𝜌𝑐𝑐0
2

𝑘
, 𝑖 = 1,3. 

The Helmholtz representation of the dimensionless components of the displacement vector 𝐮 =

(𝑢1, 0, 𝑢3)  in NL BDS and velocity vector 𝐮𝑓 = (𝑢1
𝑓

, 0, 𝑢3
𝑓

)  in FS and for two dimensional 

problem can be expressed in terms of the potential functions as follows 

𝑢1 =
∂𝜙

∂𝑥1
−

∂𝜓

∂𝑥3
, 𝑢3 =

∂𝜙

∂𝑥3
+

∂𝜓

∂𝑥1
, (9) 

𝑢1
𝑓

=
∂𝜙𝑓

∂𝑥1
, 𝑢3

𝑓
=

∂𝜙𝑓

∂𝑥3
. (10) 
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The following relation is used for the propagation of harmonic wave in 𝑥1 − 𝑥3 plane 

(𝜙, 𝜓, 𝜃, 𝑃, 𝜓𝑓)(𝑥1, 𝑥3, 𝑡) = (𝜙̅, 𝜓̅, 𝜃̅, 𝑃̅, 𝜓̅𝑓)𝑒−𝑖𝜔𝑡, (11) 

where 𝜔 is the angular frequency and the potential 𝜙̅ = 𝜙̅1 + 𝜙̅2 + 𝜙̅3 is determined from the 

following wave equation 

(∇2 +
𝜔2

𝑉𝑖
2)𝜙̅𝑖 = 0, 𝑖 = 1,2,3, (12) 

where 𝑉𝑖, 𝑖 = 1,2,3 are the velocities of the three longitudinal waves, that is, P, T (Thermal) and 

MD (Mass Diffusive) waves, which are derived from the roots of the following cubic equation 

𝐵4𝑉6 − 𝐵3𝜔2𝑉4 + 𝐵2𝜔4𝑉2 − 𝐵1𝜔6 = 0, (13) 

where the coefficients 𝐵𝑖, i=1,2,3,4 are given in the Appendix B. 

The potentials 𝜓̅ is determined from the wave Eq. (14) 

(∇2 +
𝜔2

𝑉4
2)𝜓̅ = 0, (14) 

where 𝑉4 = 𝛿 is the velocity of the transverse wave. 

Following Borcherdt (1982), potential functions in NL BDS are defined as 

(𝜙, 𝜃, 𝑃) = ∑

3

𝑖=1

(1, 𝑛𝑖, 𝑘𝑖)𝐷𝑖exp(𝐀𝑖. 𝐫)exp(𝑖(𝐏𝑖. 𝐫 − 𝜔𝑡)), (15) 

𝜓 = 𝐷4exp(𝐀4. 𝐫)exp(𝑖(𝐏𝟒. 𝐫 − 𝜔𝑡)). (16) 

The coefficients 𝐷𝑖, i =1, 2, 3, 4 represent the amplitudes of refracted P, MD, T and SV-waves, 

respectively. The propagation vector 𝐏𝑖, i = 1, 2, 3, 4 and attenuation factor 𝐀𝑖, i = 1, 2, 3, 4 are 

given by 

𝐏𝑖 = 𝜉𝑖𝑟𝑥1 + 𝑑𝑉𝑖𝑟𝑥3, 𝐀𝑖 = −𝜉𝑖𝑚𝑥̂1 − 𝑑𝑉𝑖𝑚𝑥3, 𝑖 = 1,2,3,4, (17) 

where 

𝑑𝑉𝑖 = 𝑑𝑉𝑖𝑟 + 𝑖𝑑𝑉𝑖𝑚 = 𝑝. 𝑣. (
𝜔2

𝑉𝑖
− 𝜉2)

1
2, 𝑖 = 1,2,3,4. (18) 

𝜉 = 𝜉𝑖𝑟 + 𝑖𝜉𝑖𝑚  is a complex wave number. The subscripts 𝑖𝑟  and 𝑖𝑚  denote the real and 

imaginary parts of the corresponding complex quantity respectively and p.v. denotes the principal 

value of the complex quantity, 𝜉𝑖𝑟 ≥ 0 denotes the propagation in the positive direction 𝑥1, and 

the complex number 𝜉 is determined as 

𝜉 = |𝐏𝑖|sin(𝜃𝑖
∗) − 𝑖|𝐀𝑖|sin(𝜃𝑖

∗ − 𝛾𝑖), (19) 

where 𝛾𝑖(𝑖 = 1,2,3,4)  is the angle between the propagation and attenuation waves and 𝜃𝑖
∗ 

(i=1,2,3,4) is the angle of refraction of the incident wave in NL BDS.  

 

 

4. Reflection and transmission 
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We consider a plane harmonic wave (P) propagating through the inviscid fluid half-space and is 

incident at the interface 𝑥3 = 0. Corresponding to the incident wave, one homogeneous wave (P) 

is reflected in FS and four inhomogeneous waves (P, T, MD and SV) are transmitted in NL BDS. 

In inviscid fluid half-space, the potential function can be written as 

𝜙𝑓 = 𝐵0
𝑓

exp[𝑖𝜔(
𝑥1sin(𝜃0) + 𝑥3cos(𝜃0))

𝑐𝑝
𝑓

− 𝑡)] + 𝐵1
𝑓

exp[𝑖𝜔(
𝑥1sin(𝜃1) + 𝑥3cos(𝜃1))

𝑐𝑝
𝑓

− 𝑡)]. (20) 

The coefficients 𝐵0
𝑓

 and 𝐵1
𝑓

 are amplitudes of the incident P and reflected P waves, 

respectively.  

 

4.1 Boundary conditions 
 

We consider two bounded half-spaces. If the boundary is imperfect and the size and spacing 

between the imperfection is much smaller than the wave length then at the interface 𝑥3 = 0, 

following Lavrentyev and Rokhlin (1998) these can be described by using boundary conditions. 

(i) The condition of continuity of the stress components 

𝜎33 = −𝑝𝑓 ,    𝜎31 = 0; (21) 

(ii) Discontinuity of the normal stress across the interface is 

𝜎33 = 𝑘𝑛(𝑢3(𝑀1)

𝑓
− 𝑢̇3(𝑀2)

); (22) 

(iii) Condition of thermal insulation of the boundary 

∂𝜃

∂𝑥3
= 0; (23) 

(iv) Condition of impermeability of the boundary  

∂𝑃

∂𝑥3
= 0. (24) 

We obtain the following system of five non-homogeneous equations in five unknowns by using 

the boundary conditions  

∑

5

𝑗=1

𝑑𝑖𝑗𝑍𝑗 = 𝑔𝑖, (25) 

with the Snell’s law  

𝜉𝑖𝑟 =
𝜔sin(𝜃0)

𝑐𝑝
𝑓

=
𝜔sin(𝜃1)

𝑐𝑝
𝑓

, (26) 

where 𝑍𝑗 (j=1,2,3,4,5) are the ratios between the amplitudes of the reflected waves 𝑃 and 𝑆𝑉, 

refracted waves 𝑃,𝑇, 𝑀𝐷 and 𝑆𝑉 waves and the amplitude of the incident wave, the values of 

𝑑𝑖𝑗 (i, j=1,2,3,4,5) are given in Appendix C and 𝜉𝑖𝑚 = 0. The coefficients 𝑔𝑖 (i=1,2,3,4,5) in the 

R.H.S. of Eq. (25) are determined as 

𝑔𝑖 = {
𝑑11, for 𝑖 = 1,

0, for 𝑖 = 2, 3,4,5.
 (27) 
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Following Achenbach (1973), the field equations can be expressed in terms of velocity potential 

for inviscid fluid as 

𝑝𝑓 = −𝜌𝑓𝜙̇𝑓. (28) 

(∇2 −
1

(𝛼𝑝
𝑓

)2

∂2

∂𝑡2
)𝜙𝑓 = 0. (29) 

𝐮𝑓 = ∇𝜙𝑓. (30) 

Applying the dimensionless quantities, we have 

𝑝𝑓 = −𝜉1𝜙̇𝑓 , (31) 

(∇2 −
1

(𝑐𝑝
𝑓

)2

∂2

∂𝑡2
)𝜙𝑓 = 0, (32) 

where 

𝜉1 =
𝜌𝑓𝑐1

2

𝛽1𝑇0
, 𝑐𝑝

𝑓
=

𝛼𝑝
𝑓

𝑐1
, (𝛼𝑝

𝑓
)2 =

𝜆𝑓

𝜌𝑓
, 

and 𝜆𝑓 is the bulk modulus, 𝜌𝑓 is the density of the liquid, 𝑢𝑓 is the velocity vector and 𝑝𝑓 is 

the acoustic pressure of the inviscid fluid. 

To calculate the partition of energy of the incident wave among the reflected and transmitted 

waves on both sides of the surface, we consider a surface element of unit area. Following Achenbach 

(1973), the representation of the energy flux across the surface element is 

𝑃∗ = 𝜎𝑖𝑗𝑙𝑗𝑢̇𝑖, (33) 

where 𝜎𝑖𝑗 is stress tensor, 𝑙𝑗 are direction cosine of unit normal 𝑙 outward of surface element and 

𝑢̇𝑗 are the components of the particle velocity.  

The average energy intensities of the waves in the FS on the surface with normal along 𝑥3-

direction are given by 

< 𝑃∗𝑓 >= 𝑅𝑒 < 𝑝𝑓 >. 𝑅𝑒 < 𝑢3
𝑓

>, (34) 

where, < 𝑃∗ > denotes the time average of 𝑃∗, represents the average energy transmission per 

unit surface area per unit time and for any two complex functions f and g, we have 

< 𝑅𝑒(𝑓), 𝑅𝑒(𝑔) >= 𝑅𝑒(𝑓, 𝑔̅)/2. (35) 

The expression for energy ratio 𝐸1 for the reflected P wave is given by 

𝐸1 = −
< 𝑃∗𝑓 >

< 𝑃0
∗𝑓

>
, (36) 

where 

< 𝑃∗𝑓 >= −(𝜉1𝜔2/(2𝑐𝑝
𝑓

))|𝑍1|2𝑅𝑒(cos(𝜃1)), (37) 

and for incident P-wave is 
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< 𝑃0
∗𝑓

>= −(
𝜉1𝜔2

2𝑐𝑝
𝑓

)cos(𝜃0), (38) 

are the average energy intensities of the reflected P- and incident P- , respectively. In Eq. (37), 

negative sign is taken because the direction of reflected waves is opposite to that of incident wave. 

For NL BDS, the average intensities of the waves on the surface with normal along 𝑥3 -direction, 

are given by 

< 𝑃𝑖𝑗
∗ >= 𝑅𝑒(< 𝜎13

𝑖 ) > 𝑅𝑒(< 𝑢̇1
𝑗 >) + 𝑅𝑒(< 𝜎33

𝑖 >)𝑅𝑒(< 𝑢̇3
𝑗 >). (39) 

The expressions for energy ratios for the refracted P-, refracted MD-, refracted T- and refracted 

SV- waves are given by 

𝐸𝑖𝑗 =
< 𝑃𝑖𝑗

∗ >

< 𝑃0
∗𝑓

>
, 𝑖, 𝑗 = 1,2,3,4. (40) 

The diagonal entries of energy matrix 𝐸𝑖𝑗 in Eq. (40) represents the energy ratios of P, T, MD- 

SV- waves respectively, whereas sum of the non diagonal entries of 𝐸𝑖𝑗 give the share of interaction 

energy among all refracted waves in the medium and is given by 

𝐸𝑅𝑅 = ∑

3

𝑖=1

(∑

3

𝑗=1

𝐸𝑖𝑗 − 𝐸𝑖𝑖). (41) 

The energy ratio 𝐸1 , diagonal entries of the matrix 𝐸𝑖𝑗  and 𝐸𝑅𝑅  yield the conservation of 

incident energy across the interface, through the relation  

𝐸1 + 𝐸2 + ∑

4

𝑖=1

𝐸𝑖𝑖 + 𝐸𝑅𝑅 = 1. (42) 

 

4.2 Validation 
 
In the absence of metabolic heat source (𝜔𝑏 = 0), nonlocal parameters (𝜉 = 0, 𝜁 = 0, 𝜍 = 0), the 

problem reduced to the reflection and transmission of P wave at the interface of inviscid fluid and 

thermoelastic diffusive media with the changed value of 𝑑31 = 𝑖
𝑑𝑉𝛼

𝜔
, 𝑑3𝑗 = −

𝑑𝑉𝑗

𝜔
, 𝑑35 = −

𝜉𝑅

𝜔
 

where j=2,3,4. The results obtained are in agreement with the results of Kumar and Gupta (2015) 

which leads to the validation of our results.  

 

 

5. Results and discussion 
 

In this work, the energy ratios for ES and BDS are obtained for the different angle of incidence. 

The computation has been made using MATLAB (R2016a) software and the results are presented 

graphically. The numerical data for parameters of blood, parameters of diffusion, material constants, 

nonlocal parameters are given in Tables 1-4 respectively. The values of other parameters are given 

in figures. 
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Table 1 Parameters of blood (Kumar et al. 2019b) 

Parameters Units Values 

𝜌𝑏 kgm−3 1060 

𝑐𝑏 Jkg−1K−1 3600 

𝜔𝑏 Wm−1K−1 1.87 × 10−3 

 
Table 2 Diffusion parameters (Xiong and Guo 2017) 

Parameters Units Values 

𝐷 kgsm−3 0.85 × 10−8 

𝑎 m2s−2K−1 1.2 × 104 

𝑏 kg−1s−2m5 9 × 105 

 
Table 3 Material Constants (Li et al. 2018) 

Parameters Units Values 

𝜆 kgm−1s−2 8.27 × 108 

𝜇 kgm−1s−2 3.446 × 107 

𝛼 K−1 1 × 10−4 

𝜌 kgm−3 1190 

𝑐 Jkg−1K−1 4196 

 
Table 4 Nonlocal parameters (Kumar et al. 2019b) 

Parameters Units Values 

𝜉 m 0.02 

𝜁 m 0.02 

𝜗 m 0.02 

 

 

Fig. 2 shows the effects of blood perfusion rate 𝜔𝑏 on energy ratios along angle of incidence. 

Fig. 2(a) shows that energy ratio 𝐸11  decreases for 𝜔𝑏 = 1.87 × 10−3  𝑡𝑜  𝜔𝑏 = 3.87 × 10−3 

but for 𝜔𝑏 = 4.87 × 10−3 the profile of 𝐸11 increases. Other energy ratios show similar behavior 

as shown in Fig. 2(b)-2(d). From these figures it is noticed that for 𝜔𝑏 = 1.87 × 10−3 energy ratios 

are almost zero but as 𝜔𝑏 the profile of energy ratios show the constant behavior.  

Fig. 3 shows the effect of stiffness parameter 𝑘𝑛 on the energy ratios along angle of incidence. 

Fig. 3(a) shows that the energy ratio 𝐸1 increases along the angle of incidence 𝜃0 and the 𝐸1 

profile decreases as the value of stiffness parameter 𝑘𝑛 increases. From the Fig. 3(b) it is noticed 

that as the value of 𝑘𝑛 increases profile of 𝐸11 also increases and each profile increases for 0∘ ≥
𝜃0 ≤ 45∘ and decreases for 45∘ ≤ 𝜃0 ≤ 90∘. Energy ratios 𝐸22, 𝐸33 and 𝐸44 show the same 

behavior as of 𝐸11. The behavior of 𝐸22 increases for 0∘ ≤ 𝜃0 ≤ 45∘ and decreases for 45∘ ≤
𝜃0 ≤ 90∘ . 𝐸33  increases for 0∘ ≤ 𝜃0 ≤ 55∘  and decreases for 55∘ ≤ 𝜃0 ≤ 90∘ . 𝐸44  increases 

for 0∘ ≤ 𝜃0 ≤ 65∘ and decreases for 65∘ ≤ 𝜃0 ≤ 90∘. 
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(a) (b) 

  
(c) (d) 

Fig. 2 Effect of blood perfusion rate 𝜔𝑏 on energy ratios 

 

 

Fig. 4 shows the effect of nonlocal parameters 𝜉, 𝜁, and 𝜍 on the energy ratios along angle of 

incidence. From these figures it is observed that as the value of nonlocal parameters increases the 

energy ratios profile 𝐸11, 𝐸22, 𝐸33, and, 𝐸44 decreases. The trend of energy ratios (𝐸11, 𝐸22) is 

similar and (𝐸33, 𝐸44) is similar. 

Fig. 5 shows the effect of phase lag parameters on the energy ratios along angle of incidence. It 

is clear from the figure that behavior of all energy ratios is same but with different magnitude values. 

The energy ratios achieved maximum value near the 65∘ of angle of incidence.  

 

 

6. Conclusions 
 

In this work, the reflection and transmission phenomena of plane waves from the interface 

between the FS and NL BDS is studied. In NL BDS the four basic waves are found to vibrate with 

distinct speed. The speed of propagation of all the waves are found to be complex valued and 

frequency dependent. Numerical results show that the energy ratios of various reflected and 

transmitted waves are affected significantly by non local, phase lag, stiffness parameters and blood 
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(a) (b) 

  
(c) (d) 

 
(e) 

Fig. 3 Effect of stiffness parameter 𝑘𝑛 on energy ratios 
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(a) (b) 

  
(c) (d) 

Fig. 4 Effect of nonlocal parameters 𝜉, 𝜁, and  𝜍 on energy ratios 

 

  
(a) (b) 

  
(c) (d) 

Fig. 5 Effect of phase lag parameters 𝜏𝑞 , 𝜏𝑇 , 𝜏𝑣and 𝜏𝑃 on energy ratios 
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perfusion rate. It is found that the sum of energy ratio of the boundary surface is approximately unity 

at each angle of incidence. This shows that there is no dissipation of energy during the reflection 

and transmission phenomena at the boundary surface. Phenomena of wave propagation in NL BDS 

contains significance in field of bio-mechanical engineering for detecting disease. 
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Appendix 
 

Appendix A 

𝑅1 =
𝑙1𝑇0𝑐0

2

𝜔1
∗𝑘

, 𝑅2 =
𝛾1

2𝑇0

𝜌𝜔1
∗𝑘

, 𝑅3 =
𝑑𝑇0𝑏𝛾1𝛾2

𝜌𝜔1
∗𝑘

, 𝑅4 =
𝜔𝑏𝜌𝑏𝑐𝑏𝑐0

2

𝜔1
∗2𝑘

, 

𝑞1
∗ =

𝑐0
2

𝐷𝑏𝜔1
∗ , 𝑞2

∗ =
𝑑𝜌𝑐0

4

𝛾1𝛾2𝐷𝑏𝜔1
∗ , 𝑞3

∗ =
𝑛𝑐0

2

𝐷𝜔1
∗, 

𝜏𝑇2 = (1 − 𝑖𝜔𝜏𝑇), 𝜏𝑝2 = (1 − 𝑖𝜔𝜏𝑝), 𝜏𝑞2 = (1 − 𝑖𝜔𝜏𝑞 + (−𝑖𝜔)2
𝜏𝑞

2

2
), 

𝜏𝑣2 = 1 − 𝑖𝜔𝜏𝑛 + (−𝑖𝜔)2
𝜏𝑛

2

2
, = 𝑅2𝜏𝑞2, 𝐵 = 𝑅2𝜁2, 𝐶 = (𝑅1 +

𝑅4

𝑖𝜔
)𝜏𝑞2, 

𝐷 = −(𝑅1 +
𝑅4

𝑖𝜔
)𝜁2 +

𝜏𝑇2

𝑖𝜔
, 𝐸 = 𝑅3𝜏𝑞2, 𝐹 = 𝑅3𝜁2, 

𝐺 = 𝜏𝑣2𝑞1
∗, 𝐻 = 𝜍2𝑞1

∗, 𝐼 = 𝜏𝑣2𝑞2
∗, 𝐽 = 𝜍2𝑞2

∗ , 𝐾 = 𝜏𝑣2𝑞3
∗,

𝐿 = 𝜍𝑞3
∗ −

𝜏𝑝2

𝑖𝜔
. 

 

Appendix B 

𝐵1 = (1 − 𝜔2𝜉2)𝐴1 − 𝐴7 + Γ𝐴4, 𝐵2 = 𝜔2𝐴1 + (1 − 𝜔2𝜉2)𝐴2 − 𝐴8 + Γ𝐴5, 

𝐵3 = 𝐴2𝜔2 + (1 − 𝜔2𝜉2)𝐴3 − 𝐴9 + Γ𝐴6, 𝐵4 = 𝜔2𝐴3, Γ =
𝑏𝛾2

2

𝜌𝑐0
2 , 

𝐴1 = 𝐹𝐽 + 𝐷𝐿, 𝐴2 = 𝐿𝐶 − 𝐷𝐾 − 𝐹𝐼 − 𝐽𝐸, 𝐴3 = 𝐾𝐼 − 𝐾𝐶, 

𝐴4 = 𝐵𝐽 + 𝐻𝐷, 𝐴5 = 𝐻𝐶 − 𝐷𝐺 − 𝐵𝐼 − 𝐴𝐽, 𝐴6 = 𝐴 − 𝐶𝐺, 

𝐴7 = 𝐵𝐿 − 𝐻𝐹, 𝐴8 = 𝐹𝐺 + 𝐻𝐸 − 𝐴𝐿 − 𝐵𝐾, 𝐴9 = 𝐴𝐾 − 𝐸𝐺, 

𝐴 = 𝑅2𝜏𝑞2, 𝐵 = 𝑅2𝜍2, 𝐶 = (𝑅1 +
𝑅4

𝑖𝜔
)𝜏𝑞2, 

𝐷 = −(𝑅1 +
𝑅4

𝑖𝜔
)𝜍2 +

𝜏𝑇2

𝑖𝜔
, 𝐸 = 𝑅3𝜏𝑞2, 𝐹 = 𝑅3𝜍2, 

𝐺 = 𝜏𝑣2𝑞1
∗, 𝐻 = 𝜁2𝑞1

∗, 𝐼 = 𝜏𝑣2𝑞2
∗, 𝐽 = 𝜁2𝑞2

∗, 𝐾 = 𝜏𝑣2𝑞3
∗ ,

𝐿 = 𝜁2𝑞3
∗ −

𝜏𝑃2

𝑖𝜔
, 

𝑛𝑖 =
−(𝐵𝐿 − 𝐻𝐹)𝜔6 + (𝐹𝐺 + 𝐻𝐸 − 𝐴𝐿 − 𝐵𝐾)𝜔4𝑉1

2 − (𝐴𝐾 − 𝐸𝐺)𝜔2𝑉1
4

(𝐹𝐽 + 𝐷𝐿)𝜔4𝑉1
2 − (𝐶𝐿 − 𝐷𝐾 − 𝐹𝐼 − 𝐽𝐸)𝜔2𝑉1

4 + (𝐸𝐼 − 𝐾𝐶)𝑉1
6 , 

𝑘𝑖 =
(𝐵𝐽 + 𝐻𝐷)𝜔6 + (𝐻𝐶 − 𝐷𝐺 − 𝐵𝐼 − 𝐴𝐽)𝜔4𝑉1

2 − (𝐴 − 𝐶𝐺)𝜔2𝑉1
4

(𝐹𝐽 + 𝐷𝐿)𝜔4𝑉1
2 − (𝐶𝐿 − 𝐷𝐾 − 𝐹𝐼 − 𝐽𝐸)𝜔2𝑉1

4 + (𝐸𝐼 − 𝐾𝐶)𝑉1
6 , 𝑖 = 1,2,3. 
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Appendix C 

𝑑11 =
𝑖𝜌𝑓𝑐1

2

𝜔
, 𝑑1𝑗 = 𝜆0(

𝜉𝑅

𝜔
)2 + 𝜌𝑐0

2(
𝑑𝑉𝑗

𝜔
)2 + 𝜌𝑐0

2
𝑛𝑗

𝜔2
+ 𝑏𝛾2

2
𝑘𝑗

𝜔2
, 𝑑15

= (𝜌𝑐0
2 − 𝜆0))(

𝜉𝑅

𝜔
)(

𝑑𝑉4

𝜔
), 

𝑑21 = 0, 𝑑2𝑗 = 2𝜇
𝜉𝑅

𝜔

𝑑𝑉𝑗

𝜔
, 𝑑25 = 𝜇[(

𝜉𝑅

𝜔
)2 − (

𝑑𝑉4

𝜔
)2], 

𝑑31 = 𝑐1′

𝑑𝑉𝛼

𝑖𝜔

𝑘𝑛

𝑐0
, 𝑑3𝑗 = 𝜆0(

𝜉𝑅

𝜔
)2 + 𝜌𝑐0

2(
𝑑𝑉𝑗

𝜔
)2 + 𝜌𝑐0

2
𝑛𝑗

𝜔2
+ 𝑏𝛾2

2
𝑘𝑗

𝜔2
− 𝑖𝑘𝑛

𝑑𝑉𝑗

𝜔
, 𝑑35

= (𝜌𝑐0
2 − 𝜆0)

𝜉𝑅

𝜔

𝑑𝑉4

𝜔
− 𝑖𝑘𝑛

𝜉𝑅

𝜔
, 

𝑑41 = 0, 𝑑4𝑗 = 𝑖𝑛𝑗

𝑑𝑉𝑗

𝜔
, 𝑑45 = 0, 

𝑑51 = 0, 𝑑5𝑗 = 𝑖𝑘𝑗

𝑑𝑉𝑗

𝜔
, 𝑑55 = 0, 

𝑔1 = 𝑑11, 𝑔𝑖 = 0, 𝑖 = 2,3,4,5, 𝑗 = 2,3,4. 

 

Appendix D 

< 𝑃𝑖𝑗
∗ >= −

𝜔4

2
𝑅𝑒[2𝜇

𝜉𝑅

𝜔

𝜉𝑅

𝜔

𝑑𝑉𝑖

𝜔
+

𝑑𝑉2

𝜔
(𝜆0(

𝜉𝑅

𝜔
)2 + 𝜌𝑐0

2
𝑑𝑉1

𝜔
+

𝜌𝑐0
2𝑛𝑖

𝜔2
+

𝜌𝑐0
2𝑘𝑖

𝜔2
)𝑍𝑖𝑍̅𝑗], 

< 𝑃𝑖4
∗ >= −

𝜔4

2
𝑅𝑒[−2𝜇

𝜉𝑅

𝜔

𝑑𝑉4

𝜔

𝑑𝑉𝑖

𝜔
+

𝜉𝑅

𝜔
(𝜆0(

𝜉𝑅

𝜔
)2 + 𝜌𝑐0

2(
𝑑𝑉𝑖

𝜔
)2 +

𝜌𝑐0
2𝑛𝑖

𝜔2
+

𝜌𝑐0
2𝑘𝑖

𝜔2
)𝑍𝑖𝑍̅4], 

< 𝑃4𝑗
∗ >=

−𝜔4

2
𝑅𝑒[[𝜇((

𝜉𝑅

𝜔
)2 − (

𝑑𝑉4

𝜔
)2)

𝜉𝑅̅

𝜔
−

𝜉𝑅

𝜔
.
𝑑𝑉4

𝜔
+ 𝜆0

𝑑̅𝑉𝑗

𝜔
+

𝜉𝑅

𝜔

𝑑𝑉4

𝜔

𝑑𝑉̅𝑗

𝜔
𝜌𝑐0

2]𝑍4𝑍̅𝑗], 

< 𝑃44
∗ >=

−𝜔4

2
𝑅𝑒[[−𝜇((

𝜉𝑅

𝜔
)2 − (

𝑑𝑉4

𝜔
)2)

𝑑̅𝑉4

𝜔
+ 2𝜇

𝜉𝑅

𝜔

𝜉𝑅̅

𝜔

𝑑𝑉4

𝜔
]𝑍4𝑍̅4], 

𝑖, 𝑗 = 1,2,3. 
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