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Abstract.  In this study, the mathematical model that describes blood cell development in the bone marrow (i.e., 
hematopoiesis) has been studied via the Homotopy Perturbation Method (HPM). The results from the present work 
compared very well with the numerical solutions from published literature. This work has shown that the HPM is 
viable for solving delay differential equations born from hematopoiesis problem. The influence of the proliferating cells 
loss rate, time delay rate and the phase re-entry rate on the population densities of both the proliferating and resting cells 
were also determined through the underlined procedure. 
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1. Introduction 
 

The bone marrow is a thick, gelatinous tissue that fills the spinal cavities that is at the bone 
centres (Angelucci et al. 2014). There are two types of bone marrow, namely, the myeloid tissue 

branded as the red bone marrow and the fatty tissue, also known as the yellow bone marrow. The 

two-bone marrow has the capillaries and blood vessels. The bone marrow is produced by blood cells 

in the body, and two contains the hematopoietic and mesenchymal stem cells. Cell biologists divide 
the stem cells into cells that increase, and the rest (Stem Cells: Sources, types and uses). While 

resting cell is a quiescent stage in cellular development, the Proliferating cells are cells that undergo 

mitosis after entering the proliferating phase. 
Since the 1960s, cellular population problems and models have been of interest by many 

researchers. Earlier researchers like Nooney (1967) studied age showed shown that the distribution 

of age appears to be restricted for each cell population which die or divide according to age-based 
schedules. The distribution limit tends to be independent of the original age distribution. His result 

shows that non-stationary periodic behaviour in time is impossible. Other earlier researchers in this 

lineage could be found in An der Heiden and Mackey (1982) and Bélair et al. (1995). 

Recently, within a pluripotent stem cell dynastic statistical model, Adimy et al. (2005b) studied 
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the stability and Hopf bifurcation. The model was a differential equation with a time delay. They 

obtained the stability conditions independent of the delay. It was also shown that distributed delay 

could destabilise the entire system and that Hopf bifurcation can occur. A couple of work (Banerjee 
et al. 2019, Cullen et al. 2014, Kumar et al. 2019, Laurenti and Göttgens 2018, Mikkola and Orkin 

2006, Notta et al. 2016, Salem and Thiemermann 2010, Tomasetti and Vogelstein, 2015, Varn et al. 

2015) have also centred on mathematical models for hematopoiesis and the stem cells. 

Here, we consider the model for the hematopoiesis process. The focus of this work is to expand 
the application domain of the analytic HPM to solve for the Hematopoiesis process problem. The 

HPM, initiated by the Chinese mathematician Prof. Ji Huan (1999), has been the subject of detailed 

theoretical and computational studies to solve differential and integral equations, both linear and 
nonlinear. The method has a significant advantage of not requiring a small parameter in an equation. 

It offers a wide variety of linear and nonlinear applied science problems through a theoretical 

approach (Adamu and Ogenyi 2017, El-Dib 2017, He 2006, 2014, 2012a, b, Wu and He 2018). 
This algorithm was used to solve Cveticanin's (Cveticanin 2006) purely nonlinear differential 

equations of the second order. Ganji and Sadighi (2006) employed the scheme to find the solution 

to nonlinear boundary value problems and extended it to solve nonlinear travelling wave equations 

(He 2005). The method was adopted by Wang (2008) to solve nonlinear fractional partial differential 
problems, and by Ganji and Rafei (2006) for solving the nonlinear Hirota-Satsuma coupled KdV 

partial differential equations. Ganji and Sadighi (2007) addressed the nonlinear model that comes 

from convective–radiative thermodynamic cooling problem via the process. Rafei et al. (2007) have 
solved the system of nonlinear ordinary differential equations that control the issue of non-fatal 

diseases spread in people with HPM. HPM appears in the solution sequence in most situations very 

quickly converging; Just a few variations typically lead to concrete solutions. Interested readers can 

see references (Dehghan and Shakeri 2007, 2008a, b, Rafei et al. 2007) for further submissions of 
the method in several problems of engineering, mathematical physics, together with bioengineering. 

In this paper, an analytical solution for the population densities of proliferating and resting cells 

is sort. The homotopy perturbation method is employed to this end. The influence of changes in the 
values of the cell cycle time, resting cells loss rate and proliferating cells loss rate on the population 

densities of both cell types were obtained. 

 
 

2. The hematopoiesis model 
 

Let P(t) and M(t) represent the population densities of proliferating and resting cells, respectively, 

which have spent time 𝑡 ≥ 0 in their phase. Resting cells can either be lost randomly at a rate 𝛿 ≥
0 (Adimy et al. 2005a), which takes into account the cellular maturity, or entry into the proliferating 

phase at a rate 𝛽. Proliferating cells can be lost by apoptosis at a rate 𝑦 ≥ 0 and at mitosis, where 

cells with age 𝜏 divide into two daughter cells which immediately enter the 𝐺0-phase (Crauste 

2014). The conservation equations governing the hematopoiesis process have been given by Mackey 

(1978) as 

(1) 
𝑑𝑃(𝑡)

𝑑𝑡
= −𝑦𝑃(𝑡) + 𝛽(𝑀)𝑀 − 𝑒−𝛾𝜏𝛽(𝑀𝜏)𝑀𝜏 

(2) 
𝑑𝑀(𝑡)

𝑑𝑡
= −[𝛽(𝑀) + 𝛿]𝑀 + 2𝑒−𝛾𝜏𝛽(𝑀𝜏)𝑀𝜏 
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where 𝑀𝜏 = 𝑀(𝑡 − 𝜏) illustrates the time retardation/delay. The term 𝑒−𝛾𝜏𝛽(𝑀𝜏)𝑀𝜏  in Eq. (1) 

represents the fraction of surviving cells about to leave the proliferating phase that entered a time τ 

earlier, the term 𝑦𝑃(𝑡) represents the amount of proliferating cells lost by apoptosis, and the term 

𝛽(𝑀)𝑀 represents the amount of resting cells that have just entered the proliferating phase from 

the resting phase. The term 2𝑒−𝛾𝜏𝛽(𝑀𝜏)𝑀𝜏 in Eq. (2) represents the new daughter cells produced 

from the surviving mother cells, the term [𝛽(𝑀) + 𝛿]𝑀 represents the amount of resting cells lost 

as a result of the entry of the cells into the proliferation phase and also the amount of resting cells 
lost due to cellular differentiation or maturity. Since during entry into the proliferation phase, the 

stem cells require a binding affinity to combine and increase in number or spread rapidly; therefore, 

the rate of entry into the proliferation phase 𝛽 is taken to be a monotone decreasing Hill function 

(Pujo-Menjouet and Mackey 2004). Hill function coefficient provides a measure of the 

binding/ligand affinity between a biomolecule and its binding partner. Therefore, 𝛽  is given as 

(Pujo-Menjouet and Mackey 2004) 

(3) 𝛽(𝑀) = 𝛽0 [
𝜃𝑛

𝜃𝑛 +𝑀𝑛
] 

where 𝜃 is the number of resting cells at which has its maximum rate of change with respect to the 

resting phase population, 𝑛 describes the sensitivity of the reintroduction rate with changes in the 

population, and 𝛽0 is the maximal rate of re-entry in the proliferating phase. 
Substituting Eq. (3) into Eqs. (1) and (2), we have 

(4) 
𝑑𝑃(𝑡)

𝑑𝑡
= −𝛾𝑃(𝑡) + 𝛽0 [

𝜃𝑛

𝜃𝑛 +𝑀𝑛
]𝑀 − 𝑒−𝛾𝜏𝛽0 [

𝜃𝑛

𝜃𝑛 +𝑀𝜏
𝑛]𝑀𝜏 

(5) 
𝑑𝑀(𝑡)

𝑑𝑡
= −𝛽0 [

𝜃𝑛

𝜃𝑛 +𝑀𝑛
]𝑀 − 𝛿𝑀 + 2𝑒−𝛾𝜏𝛽0 [

𝜃𝑛

𝜃𝑛 +𝑀𝜏
𝑛]𝑀𝜏 

Therefore, Eqs. (4) and (5) become 

(6) 
𝑑𝑃(𝑡)

𝑑𝑡
= −𝛾𝑃(𝑡) +

𝛽0𝜃
𝑛𝑀

𝜃𝑛 +𝑀𝑛
− 𝑒−𝛾𝜏

𝛽0𝜃
𝑛𝑀𝜏

𝜃𝑛 +𝑀𝜏
𝑛 

(7) 
𝑑𝑀(𝑡)

𝑑𝑡
= −

𝛽0𝜃
𝑛𝑀

𝜃𝑛 +𝑀𝑛
− 𝛿𝑀 + 2𝑒−𝛾𝜏

𝛽0𝜃
𝑛𝑀𝜏

𝜃𝑛 +𝑀𝜏
𝑛 

Mostafa et al. (2005a) identified the values of the parameters to be 𝛿 = 0.05 𝑑𝑎𝑦−1 , 𝑦 =
0.2 𝑑𝑎𝑦−1 , 𝛽0 = 1.77 𝑑𝑎𝑦

−1 , 𝑛 = 3 , 𝜃 = 1.62 × 108 cells/kg, 𝜏 = 7 𝑑𝑎𝑦𝑠 . These values will 

also be used while investigating the influence of one or more parameters on the behaviour of the 

population densities of both the resting and proliferating cells. The resulting equations become 

(8) 
𝑑𝑃(𝑡)

𝑑𝑡
= −0.2𝑃(𝑡) + [

1.77 × (1.62 × 108)3

(1.62 × 108)3 +𝑀3
]𝑀 − 𝑒−0.2𝜏 [

1.77 × (1.62 × 108)3

(1.62 × 108)3 +𝑀3
]𝑀(𝑡 − 7) 

(9) 
𝑑𝑀(𝑡)

𝑑𝑡
= −0.05𝑀(𝑡) + [

1.77 × (1.62 × 108)3

(1.62 × 108)3 +𝑀3
]𝑀 + 2𝑒−0.2𝜏 [

1.77 × (1.62 × 108)3

(1.62 × 108)3 +𝑀3
]𝑀(𝑡 − 7) 

The initial population densities of both proliferating and resting cells are taken as 𝑀(0) = 𝑏 

and 𝑃(0) = 𝑎. 
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3. Concept of the homotopy perturbation method 
 

Consider a general nonlinear differential equation represented in the form of Eq. (10) as 

(10) 𝐿(𝑢) + 𝑁(𝑢) = 𝑓(𝑟), 𝑟 ∈ 𝛺 

with the boundary conditions 

(11) 𝐵 (𝑢,
𝜕𝑢

𝜕𝑛
) = 0, 𝑟 ∈ 𝛤 

where 𝐿 , 𝑁 , 𝐵  denote linear, and nonlinear and boundary operators correspondingly, while 𝛤 

and 𝑓(𝑟)  represent the boundary of the domain 𝛺  and the analytic function. By adopting the 

homotopy perturbation technique, a homotopy will be constructed thus: 𝑣(𝑟, 𝑝):𝛺 × [0,1] → 𝑅 

which satisfies 

(12) 𝐻(𝑣, 𝑝) = (1 − 𝑝)[𝐿(𝑣) − 𝐿(𝑢0)] + 𝑝[𝐿(𝑣) + 𝑁(𝑣) − 𝑓(𝑟)] = 0 

or 

(13) 𝐻(𝑣, 𝑝) = [𝐿(𝑣) − 𝐿(𝑢0)] + 𝑝𝐿(𝑢0) + 𝑝[𝑁(𝑣) − 𝑓(𝑟)] = 0 

where 𝑟 ∈ 𝛺, 𝑝 ∈ [0,1]  are impeding parameters and 𝑢0  is an initial approximation which 

satisfies the boundary conditions. 
 

 

4. The solution of the homotopic process through the HPM 
 

Using Eqs. (12) and (13), we can construct the deformation equation thus 

(14) 𝐻(𝑣, 0) = 𝐿(𝑣) − 𝐿(𝑢0) = 0 

(15) 𝐻(𝑣, 1) = 𝐿(𝑣) − 𝑁(𝑣) − 𝑓(𝑟) = 0 

 The cycle of transition from zero to unity is just of 𝑣(𝑟, 𝑝) from 𝑢0(𝑟) to 𝑢(𝑟). In topology, 

this is called deformation. 𝐿(𝑣) − 𝐿(𝑢0)  and 𝐿(𝑣) + 𝑁(𝑢0) − 𝑓(𝑟) are called homotopic 

functions. The premise behind this is that the result of Eqs. (12) and (13) could be represented as a 

set of power in 𝑝 

(16) 𝑣 = 𝑣0 + 𝑝𝑣1 + 𝑝
2𝑣2 + 𝑝

3𝑣3 +⋯ 

The approximate solution of Eq. (10), thereafter can be accessed conveniently as 

(17) 𝑣 = 𝑙𝑖𝑚
𝑝→1

𝑣0 + 𝑣1 + 𝑣2 + 𝑣3 +⋯ 

Using the series perturbed solution given as 

(18) 𝑃(𝑡) = 𝑃0(𝑡) + 𝑝𝑃1(𝑡) + 𝑝
2𝑃2(𝑡)+. . . +𝑝

𝑛𝑃𝑛(𝑡) 

and 

(19) 𝑀(𝑡) = 𝑀0(𝑡) + 𝑝𝑀1(𝑡) + 𝑝
2𝑀2(𝑡)+. . . +𝑝

𝑛𝑀𝑛(𝑡) 

The homotopy perturbation of Eqs. (1) and (2) could be written as 
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(20) 𝐻𝑃𝑀𝐸𝑞1 = (1 − 𝑝)
𝑑

𝑑𝑡
𝑃(𝑡) + 𝑝 (

𝑑

𝑑𝑡
𝑃(𝑡) + 𝑦𝑃(𝑡) + 𝛽𝑀(𝑡) + 𝛽𝑛𝑀(𝑡)𝑒

−𝑦𝜏) 

and 

(21) 𝐻𝑃𝑀𝐸𝑞2 = (1 − 𝑝)
𝑑

𝑑𝑡
𝑀(𝑡) + 𝑝 (

𝑑

𝑑𝑡
𝑀(𝑡) + (𝛽 + 𝛿)𝑀(𝑡) − 2𝛽𝑛𝑀(𝑡)𝑒

−𝑦𝜏) 

which in expanded forms become 

(22) 

𝐻𝑃𝑀𝐸𝑞1 = (1 − 𝑝)(
𝑑

𝑑𝑡
𝑃0(𝑡) + 𝑝

𝑑

𝑑𝑡
𝑃1(𝑡) + 𝑝

2
𝑑

𝑑𝑡
𝑃2(𝑡) + 𝑝

3
𝑑

𝑑𝑡
𝑃3(𝑡) + 𝑝

4
𝑑

𝑑𝑡
𝑃4(𝑡))

+ 𝑝

(

 
 
 

𝑑

𝑑𝑡
𝑃0(𝑡) + 𝑝

𝑑

𝑑𝑡
𝑃1(𝑡) + 𝑝

2
𝑑

𝑑𝑡
𝑃2(𝑡) + 𝑝

3
𝑑

𝑑𝑡
𝑃3(𝑡) + 𝑝

4
𝑑

𝑑𝑡
𝑃4(𝑡)

+ 𝑦(𝑃0(𝑡) + 𝑝𝑃1(𝑡) + 𝑝
2𝑃2(𝑡) + 𝑝

3𝑃3(𝑡) + 𝑝
4𝑃4(𝑡))

+ 𝛽(𝑀0(𝑡) + 𝑝𝑀1(𝑡) + 𝑝
2𝑀2(𝑡) + 𝑝

3𝑀3(𝑡) + 𝑝
4𝑀4(𝑡))

+ 𝛽𝑛(𝑀0(𝑡) + 𝑝𝑀1(𝑡) + 𝑝
2𝑀2(𝑡) + 𝑝

3𝑀3(𝑡) + 𝑝
4𝑀4(𝑡))𝑒

−𝑦𝜏)

 
 
 

 

(23) 

𝐻𝑃𝑀𝐸𝑞2 = (1 − 𝑝)(
𝑑

𝑑𝑡
𝑀0(𝑡) + 𝑝

𝑑

𝑑𝑡
𝑀1(𝑡) + 𝑝

2
𝑑

𝑑𝑡
𝑀2(𝑡) + 𝑝

3
𝑑

𝑑𝑡
𝑀3(𝑡) + 𝑝

4
𝑑

𝑑𝑡
𝑀4(𝑡))

+ 𝑝

(

 
 

𝑑

𝑑𝑡
𝑀0(𝑡) + 𝑝

𝑑

𝑑𝑡
𝑀1(𝑡) + 𝑝

2
𝑑

𝑑𝑡
𝑀2(𝑡) + 𝑝

3
𝑑

𝑑𝑡
𝑀3(𝑡) + 𝑝

4
𝑑

𝑑𝑡
𝑀4(𝑡)

+ (𝛽 + 𝛿)(𝑀0(𝑡) + 𝑝𝑀1(𝑡) + 𝑝
2𝑀2(𝑡) + 𝑝

3𝑀3(𝑡) + 𝑝
4𝑀4(𝑡))

− 2𝛽𝑛(𝑀0(𝑡) + 𝑝𝑀1(𝑡) + 𝑝
2𝑀2(𝑡) + 𝑝

3𝑀3(𝑡) + 𝑝
4𝑀4(𝑡))𝑒

−𝑦𝜏
)

 
 

 

Collecting like terms based on the power of 𝑝, and solving the decomposed equations with the 

corresponding initial conditions, the term by term solution becomes 

(24) 𝑃0(𝑡) = 𝑎 

(25) 𝑀0(𝑡) = 𝑏 

(26) 𝑃1(𝑡) = −𝑒
−𝑦𝜏𝑏𝛽𝑛𝑡 − 𝑏𝛽𝑡 − 𝑏𝑡𝑦 

(27) 𝑀1(𝑡) = 2𝑒
−𝑦𝜏𝑏𝛽𝑛𝑡 − 𝑏𝛽𝑡 − 𝑏𝛿𝑡 

(28) 𝑃2(𝑡) = (
−1/2𝑒−𝑦𝜏𝑏𝛽𝛽𝑛𝑡

2 + 1/2𝑒−𝑦𝜏𝑏𝛽𝑛𝛿𝑡
2 − 𝑒−𝑦𝜏𝑏𝛽𝑛𝑡

2𝑦 − 𝑒−2𝑦𝜏𝑏𝛽𝑛
2𝑡2

+1/2𝑏𝛽2𝑡2 + 1/2𝑏𝛽𝛿𝑡2 + 1/2𝑏𝛽𝑡2𝑦 + 1/2𝑏𝛿𝑡2𝑦
) 

(29) 𝑀2(𝑡) = (
−2𝑒−𝑦𝜏𝑏𝛽𝛽𝑛𝑡

2 − 2𝑒−𝑦𝜏𝑏𝛽𝑛𝛿𝑡
2 + 2𝑒−2𝑦𝜏𝑏𝛽𝑛

2𝑡2 + 1/2𝑏𝛽2𝑡2

+𝑏𝛽𝛿𝑡2 + 1/2𝑏𝛿2𝑡2
) 

(30) 

𝑃3(𝑡)

= (

1/2𝑒−𝑦𝜏𝑏𝛽2𝛽𝑛𝑡
3 + 1/3𝑒−𝑦𝜏𝑏𝛽𝛽𝑛𝛿𝑡

3 + 2/3𝑒−𝑦𝜏𝑏𝛽𝛽𝑛𝑡
3𝑦 − 1/6𝑒−𝑦𝜏𝑏𝛽𝑛𝛿

2𝑡3

+2/3𝑒−𝑦𝜏𝑏𝛽𝑛𝛿𝑡
3𝑦 − 2/3𝑒−3𝑦𝜏𝑏𝛽𝑛

3𝑡3 + 2/3𝑒−2𝑦𝜏𝑏𝛽𝑛
2𝛿𝑡3 − 2/3𝑒−2𝑦𝜏𝑏𝛽𝑛

2𝑡3𝑦

−1/6𝑏𝛽3𝑡3 − 1/3𝑏𝛽2𝛿𝑡3 − 1/6𝑏𝛽2𝑡3𝑦 − 1/6𝑏𝛽𝛿2𝑡3 − 1/3𝑏𝛽𝛿𝑡3𝑦 − 1/6𝑏𝛿2𝑡3𝑦

) 
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(31) 

𝑀3(𝑡)

= (
𝑒−𝑦𝜏𝑏𝛽2𝛽𝑛𝑡

3 + 2𝑒−𝑦𝜏𝑏𝛽𝛽𝑛𝛿𝑡
3 + 𝑒−𝑦𝜏𝑏𝛽𝑛𝛿

2𝑡3 + 4/3𝑒−3𝑦𝜏𝑏𝛽𝑛
3𝑡3 − 2𝑒−2𝑦𝜏𝑏𝛽𝛽𝑛

2𝑡3

−2𝑒−2𝑦𝜏𝑏𝛽𝑛
2𝛿𝑡3 − 1/6𝑏𝛽3𝑡3 − 1/2𝑏𝛽2𝛿𝑡3 − 1/2𝑏𝛽𝛿2𝑡3 − 1/6𝑏𝛿3𝑡3

) 

(32) 

𝑃4(𝑡)

=

(

 
 

−1/3𝑒−𝑦𝜏𝑏𝛽3𝛽𝑛𝑡
4 − 𝑒−𝑦𝜏𝑏𝛽2𝛽𝑛𝛿𝑡

4 − 𝑒−𝑦𝜏𝑏𝛽𝛽𝑛𝛿
2𝑡4 − 1/3𝑒−𝑦𝜏𝑏𝛽𝑛𝛿

3𝑡4

+2/3𝑒−4𝑦𝜏𝑏𝛽𝑛
4𝑡4 − 4/3𝑒−3𝑦𝜏𝑏𝛽𝛽𝑛

3𝑡4 − 4/3𝑒−3𝑦𝜏𝑏𝛽𝑛
3𝛿𝑡4 + 𝑒−2𝑦𝜏𝑏𝛽2𝛽𝑛

2𝑡4

+2𝑒−2𝑦𝜏𝑏𝛽𝛽𝑛
2𝛿𝑡4 + 𝑒−2𝑦𝜏𝑏𝛽𝑛

2𝛿2𝑡4 + 1/24𝑏𝛽4𝑡4 + 1/6𝑏𝛽3𝛿𝑡4 + 1/4𝑏𝛽2𝛿2𝑡4

+1/6𝑏𝛽𝛿3𝑡4 + 1/24𝑏𝛿4𝑡4 )

 
 

 

(33) 

𝑀4(𝑡)

=

(

 
 

−1/3𝑒−𝑦𝜏𝑏𝛽3𝛽𝑛𝑡
4 − 𝑒−𝑦𝜏𝑏𝛽2𝛽𝑛𝛿𝑡

4 − 𝑒−𝑦𝜏𝑏𝛽𝛽𝑛𝛿
2𝑡4 − 1/3𝑒−𝑦𝜏𝑏𝛽𝑛𝛿

3𝑡4

+2/3𝑒−4𝑦𝜏𝑏𝛽𝑛
4𝑡4 − 4/3𝑒−3𝑦𝜏𝑏𝛽𝛽𝑛

3𝑡4 − 4/3𝑒−3𝑦𝜏𝑏𝛽𝑛
3𝛿𝑡4 + 𝑒−2𝑦𝜏𝑏𝛽2𝛽𝑛

2𝑡4

+2𝑒−2𝑦𝜏𝑏𝛽𝛽𝑛
2𝛿𝑡4 + 𝑒−2𝑦𝜏𝑏𝛽𝑛

2𝛿2𝑡4 + 1/24𝑏𝛽4𝑡4 + 1/6𝑏𝛽3𝛿𝑡4 + 1/4𝑏𝛽2𝛿2𝑡4

+1/6𝑏𝛽𝛿3𝑡4 + 1/24𝑏𝛿4𝑡4 )

 
 

 

and the general solution for the process becomes as described below 

(34) 𝑃(𝑡) = 𝑃0(𝑡) + 𝑝𝑃1(𝑡) + 𝑝
2𝑃2(𝑡)+. . . +𝑝

𝑛𝑃𝑛(𝑡) 

and 

(35) 𝑀(𝑡) = 𝑀0(𝑡) + 𝑝𝑀1(𝑡) + 𝑝
2𝑀2(𝑡)+. . . +𝑝

𝑛𝑀𝑛(𝑡) 

Making necessary substitutions, we obtain 

(36) 𝑃(𝑡) =∑ 𝑝𝜉𝑃𝜉
𝑁

𝜉=0
              𝑝 = 1 

which in expanded form becomes 

 𝑃(𝑡) =

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

𝑎 − 𝑒−𝑦𝜏𝑏𝛽𝑛𝑡 − 𝑏𝛽𝑡 − 𝑏𝑡𝑦

+

(

 
 
−

1

2𝑒−𝑦𝜏𝑏𝛽𝛽𝑛𝑡2
+

1

2𝑒−𝑦𝜏𝑏𝛽𝑛𝛿𝑡2
− 𝑒−𝑦𝜏𝑏𝛽𝑛𝑡

2𝑦 − 𝑒−2𝑦𝜏𝑏𝛽𝑛
2𝑡2

+
1

2𝑏𝛽2𝑡2
+

1

2𝑏𝛽𝛿𝑡2
+

1

2𝑏𝛽𝑡2𝑦
+

1

2𝑏𝛿𝑡2𝑦 )

 
 

(

 
 
 
 
 

1/2𝑒−𝑦𝜏𝑏𝛽2𝛽𝑛𝑡
3 + 1/3𝑒−𝑦𝜏𝑏𝛽𝛽𝑛𝛿𝑡

3 + 2/3𝑒−𝑦𝜏𝑏𝛽𝛽𝑛𝑡
3𝑦

−
1

6𝑒−𝑦𝜏𝑏𝛽𝑛𝛿2𝑡3
+

2

3𝑒−𝑦𝜏𝑏𝛽𝑛𝛿𝑡3𝑦
−

2

3𝑒−3𝑦𝜏𝑏𝛽𝑛
3𝑡3

+
2

3𝑒−2𝑦𝜏𝑏𝛽𝑛
2𝛿𝑡3

−
2

3𝑒−2𝑦𝜏𝑏𝛽𝑛
2𝑡3𝑦

−
1

6𝑏𝛽3𝑡3
−

1

3𝑏𝛽2𝛿𝑡3

−
1

6𝑏𝛽2𝑡3𝑦
−

1

6𝑏𝛽𝛿2𝑡3
−

1

3𝑏𝛽𝛿𝑡3𝑦
−

1

6𝑏𝛿2𝑡3𝑦 )

 
 
 
 
 

+(−
1

3𝑒−𝑦𝜏𝑏𝛽3𝛽𝑛𝑡4
− 𝑒−𝑦𝜏𝑏𝛽2𝛽𝑛𝛿𝑡

4 − 𝑒−𝑦𝜏𝑏𝛽𝛽𝑛𝛿
2𝑡4)

}
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(37) 

{
 
 
 
 

 
 
 
 

+

(

 
 
 
 

−
1

3𝑒−𝑦𝜏𝑏𝛽𝑛𝛿3𝑡4
+

2

3𝑒−4𝑦𝜏𝑏𝛽𝑛
4𝑡4

−
4

3𝑒−3𝑦𝜏𝑏𝛽𝛽𝑛
3𝑡4

−

4/3𝑒−3𝑦𝜏𝑏𝛽𝑛
3𝛿𝑡4 + 𝑒−2𝑦𝜏𝑏𝛽2𝛽𝑛

2𝑡4 + 2𝑒−2𝑦𝜏𝑏𝛽𝛽𝑛
2𝛿𝑡4 +

𝑒−2𝑦𝜏𝑏𝛽𝑛
2𝛿2𝑡4 + 1/24𝑏𝛽4𝑡4 + 1/6𝑏𝛽3𝛿𝑡4 + 1/4𝑏𝛽2𝛿2𝑡4

+
1

6𝑏𝛽𝛿3𝑡4
+

1

24𝑏𝛿4𝑡4 )

 
 
 
 

}
 
 
 
 

 
 
 
 

+⋯ 

Similarly 

(38) 𝑀(𝑡) = ∑𝑝𝜉𝑀𝜉

𝑁

𝜉=0

    𝑝 = 1 

which in expanded form becomes 

(39) 𝑀(𝑡) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑏 + 2𝑒−𝑦𝜏𝑏𝛽𝑛𝑡 − 𝑏𝛽𝑡 − 𝑏𝛿𝑡

+(
−2𝑒−𝑦𝜏𝑏𝛽𝛽𝑛𝑡

2 − 2𝑒−𝑦𝜏𝑏𝛽𝑛𝛿𝑡
2 + 2𝑒−2𝑦𝜏𝑏𝛽𝑛

2𝑡2 +
1

2𝑏𝛽2𝑡2

+𝑏𝛽𝛿𝑡2 +
1

2𝑏𝛿2𝑡2

)

(

  
 

𝑒−𝑦𝜏𝑏𝛽2𝛽𝑛𝑡
3 + 2𝑒−𝑦𝜏𝑏𝛽𝛽𝑛𝛿𝑡

3 + 𝑒−𝑦𝜏𝑏𝛽𝑛𝛿
2𝑡3 + 4/3𝑒−3𝑦𝜏𝑏𝛽𝑛

3𝑡3

−2𝑒−2𝑦𝜏𝑏𝛽𝛽𝑛
2𝑡3 − 2𝑒−2𝑦𝜏𝑏𝛽𝑛

2𝛿𝑡3 −
1

6𝑏𝛽3𝑡3
−

1

2𝑏𝛽2𝛿𝑡3

−
1

2𝑏𝛽𝛿2𝑡3
−

1

6𝑏𝛿3𝑡3 )

  
 

+

(

 
 
 
 
 
 
 
 
 

−
1

3𝑒−𝑦𝜏𝑏𝛽3𝛽𝑛𝑡
4
− 𝑒−𝑦𝜏𝑏𝛽2𝛽𝑛𝛿𝑡

4 − 𝑒−𝑦𝜏𝑏𝛽𝛽𝑛𝛿
2𝑡4

−
1

3𝑒−𝑦𝜏𝑏𝛽𝑛𝛿3𝑡4
+

2

3𝑒−4𝑦𝜏𝑏𝛽𝑛
4𝑡4

−
4

3𝑒−3𝑦𝜏𝑏𝛽𝛽𝑛
3𝑡4

−
4

3𝑒−3𝑦𝜏𝑏𝛽𝑛
3𝛿𝑡4

+ 𝑒−2𝑦𝜏𝑏𝛽2𝛽𝑛
2𝑡4 + 2𝑒−2𝑦𝜏𝑏𝛽𝛽𝑛

2𝛿𝑡4

+𝑒−2𝑦𝜏𝑏𝛽𝑛
2𝛿2𝑡4 +

1

24𝑏𝛽4𝑡4
+

1

6𝑏𝛽3𝛿𝑡4
+

1

4𝑏𝛽2𝛿2𝑡4

+
1

6𝑏𝛽𝛿3𝑡4
+

1

24𝑏𝛿4𝑡4 )

 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

+⋯ 

 
 

5. Results and discussion 
 

Table 1 demonstrates the comparison between the results obtained from numerical simulations, 
previous study and analytic solutions from the homotopy perturbation method. 
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Table 1 Proliferating cells (108 cells/kg) for different number of days 

t (days) 
Proliferating cells (108 cells/kg) 

Numerical result Adimy et al. (2005a) Present study 

0 0 0 0 

20 1.69 1.65 1.68 

40 2.1 2.1 2.1 

60 2.2 2.1 2.2 

80 2.05 2.01 2.04 

100 2.1 2.1 2.1 

120 2.15 2.13 2.15 

140 2.05 2.05 2.05 

160 2.01 2.02 2.01 

180 2.01 2.01 2.01 

200 2.01 2.01 2.01 

 

 
Fig. 1 Proliferating cells population density 

 

 
Fig. 2 Resting cells population density 
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Fig. 3 Super-imposed plot of the proliferating and resting cells population 

 

 

5.1 Time history of the proliferating and resting cells population density 
 

Figs. 1 and 2 depict the visualisation of the time history of the proliferating and resting cells in 
terms of population. The proliferating function possesses a higher density function at the initial state 

but decreases through the history plot as the graph becomes asymptotic. However, the resting cells 

initially produce cells at moderate population density and increase its production after sometimes. 

This increment is maintained until similar asymptotic behaviour is also attained. One of the 
importance of these functions is that they are parameter sensitive. These parameters that directly 

affect them may be employed as monitoring devices for generating the required output. 
 

5.2 Super-imposed plot of the proliferating and resting cells 
 
Fig. 3 portrays the super-imposed scenario of the proliferating and resting cells population. The 

critical assessment shows that the quiescent cells increase throughout history while the proliferating 
cells diminish. These two cells population function can be used to augment each other to generate 

the desired output. 

 
5.3 Super-imposed plot of the proliferating and resting cells 
 

Illustrated in Fig. 4 is the influence of the resting cells loss rate 𝛿 on the proliferating cells 

population density. When 𝛿 varies from 1 𝑑𝑎𝑦−1 to 3 𝑑𝑎𝑦−1, we observe a general decrease in 

the population density of the proliferating cells as compared to the initial value of 𝛿 = 0.05 𝑑𝑎𝑦−1 
used in Fig. 1. The higher the amount of 𝛿, the lower the population density of the proliferating 

cells. It can also be observed that the variation in the value of 𝛿 results in differences in the time or 

period that the proliferating cells population density becomes asymptotic. The lower the value of 𝛿, 

the longer the periods of oscillations and the more time it takes to be asymptotically stable. We also 

note that the higher the value of 𝛿, the shorter the cell cycle of the proliferating cells. 

 
5.4 Effect of proliferating cells loss rate γ on the history of the proliferating cells 
 

Fig. 5 shows the influence of the proliferating cells loss rate 𝛾  on the proliferating cells  
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Fig. 4 Influence of the resting cells loss rate δ on the proliferating cells population 

 

 
Fig. 5 Influence of the proliferating cells loss rate γ on the proliferating cells population 

 
 

population density. When 𝛾  varies from 0.5 𝑑𝑎𝑦−1  to 1.5 𝑑𝑎𝑦−1 , we also observe a general 

decrease in the population density of the proliferating cells as compared to the initial value of 𝛾 =
0.2𝑑𝑎𝑦−1 used in Fig. 1. The higher the value of 𝛾 , the lower the population density of the 

proliferating cells. It can also be observed that the variation in the value of 𝛾  results also in 

differences in the time or period that the proliferating cells population density becomes asymptotic. 

The lower the value of 𝛾, the longer the periods of oscillations and the more time it takes to be 

asymptotically stable. It can also be established from Fig. 5 that the higher the value of 𝛾, the shorter 
the cell cycle of the proliferating cells. 

 

5.5 Effect of time delay rate 𝜏 on the history of the proliferating cell 
 

The influence of the time delay rate 𝜏 on the proliferating cells population density is depicted 

in Fig. 6. The cell cycle time is short when 𝜏 is closest to 0 and the population density of the 

proliferating cells is rapidly extinguished. As the value of 𝜏 increases, the time taken for the cells 
to die out also increases. This also tends to increase the concentration of the proliferating cells at  
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Fig. 6 Influence of the time delay rate τ on the proliferating cells population 

 

 
Fig. 7 Influence of the proliferating phase re-entry rate β on the proliferating cells population 

 

 
the initial state. This effect is annulled as the time delay is eliminated. 

 

5.6 Effect of the proliferating phase re-entry rate 𝛽 on the history of the proliferating cell 
 

It could be observed from Fig. 7, that as 𝛽 decreases from 5 𝑑𝑎𝑦−1 to 1 𝑑𝑎𝑦−1, there is a 

steep decrease in the population density of the proliferating cells. This implies that the higher the 

value of 𝛽, the higher the population density of the proliferating cells. The absence of oscillations 

could also be observed in all values of 𝛽 used. This shows that the proliferating phase re-entry rate 

does not contribute to the oscillation of the population density of the proliferating cells. 

 
 

5. Conclusions 
 

This study aimed to analyses the population density of embryonic pluripotent stem cells model 
using the homotopy perturbation method. The reports show that the homotopy perturbation method 

effectively provides comparable solutions to the hematopoiesis models considered. The parametric 
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investigation shows that:  

• The values of 𝛿, 𝛾, 𝜏 and 𝛽, all have effects on the population densities of both resting and 

proliferating cells. Both the resting cells loss rate 𝛿 and the proliferating cells loss rate 𝛾 resulted 
in a decrease in the population densities of the pluripotent stem cells with increasing values. Also, 

the lower the value of 𝛿, the longer the periods of oscillations and the more time it takes to be 

asymptotically stable. 

• The higher the value of 𝛿, the shorter the cell cycle of the cells. These features are essential in 
the prediction of certain haematological diseases.  

• The cell cycle time is short when 𝜏 is closer to 0, and the population density of the proliferating 

cells is rapidly extinguished. This can also be used to predict certain diseases that display such 

characteristics.  

The higher the value of 𝛽, the higher the population density of the proliferating cells. This shows 

that the proliferating phase re-entry rate does not contribute to the oscillation of the population 

density of the proliferating cells. 
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