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Abstract. This research focuses on controlling robots and their formations using rough mereology as a
means for spatial reasoning. The authors present the state of the art theory behind path planning, robot
cooperation domains and ways of creating robot formations. Furthermore, the theory behind RoughMere-
ology as a way of implementing mereological potential field based path creation and navigation for single
and multiple robots is described. An implementation of the algorithm is shown in simulation using Ro-
boSim simulator. Five formations are tested (Line, Rhomboid, Snake, Circle, Cross) along with three
decision systems (First In, Leader First, Horde Mode) as compared to other methods.
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1. Introduction

Investigations into problems of multiple–robot systems extend not only the single robot problem
studies, but also they allow for a study of a plethora of new problems resulting from collective be-
havior of robots. In this paper the autors propose a way of introducing Rough Mereology in the field
of mobile robotics teams after successfully implementing the methods for single robots. The method
uses spatial reasoning (by the notion of a part from Rough Mereology) to implement geometric path
planning in a known environment, for mobile robots. The authors test, if proposed methods give
valid results and are adequate for implementation for teams of robots. Each of these robots can be re-
garded as an intelligent mobile agent and those agents have to communicate, cooperate, divide tasks,
allocate them, plan collision–free trajectories for agents and implement them, i.e., navigate together
to achieve the cooperative goal. Passing from a single robot to teams of robots can be motivated also
by pragmatic reasons as seen in Cao et al. (1997):

1. Tasks for robots can be too complex for a single robot or many robots can do the task easier at
a lesser cost,
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2. Teams can perform the task more reliably with a smaller margin of error,

3. Study of robot teams can provide insight into problems of social sciences like cognitive theo-
ries, biology, ethology, organization, as well as provide new solutions to problems of artificial
intelligence and help to work out new techniques and heuristics.

In Cao et al. (1997), authors single as exemplary the following task domains which have stimulated
the developments in multiple–robot systems.

• TRAFFIC CONTROL. Robots moving in a common environment face problems of collision–
avoidance (resource conflicts, traffic rules, priorities, path planning as a geometric problem in
configuration space, collision–avoidance behaviors).

• COOPERATIVEMANIPULATION.Cooperative task performing involves box–pushing (com-
munication), large objects manipulation (problems with mutual robot visibility).

• FORAGING. Consists of a group of robots finding and picking objects (food) dispersed in the
environment.

From those research domains, Cao et al. (1997) extract five main research ”axes”:

1. Group Architecture. It features problems of centralization / decentralization: whether con-
trol is performed by a dedicated robot or there is no such agent. Decentralization is divided
into distributed or hierarchical. In particular, control may be implemented by means of some
”leaders” i.e., agents on which others are locally oriented. Decentralized architectures often
lead to ”emergent behavior” or ”self–organization”.

2. Resource Conflict. It does arise when many robots request usage of certain means like com-
munication channels, space including paths or objects to manipulate (e.g., food). The most
studied problem has been space sharing centered on path planning, collision–avoidance and
deadlock–avoidance. To solve those problems, robots are provided with a priori chosen routes
and traffic rules as well as with deadlock avoiding communication means, Caloud et al. (1990).

3. Emergence of Cooperation. A study of mechanisms leading to cooperation has led to two
principal types of collective behavior: eusocial behavior and cooperative behavior, McFar-
land (1994). Eusocial behavior is characteristic for lower biological organisms like ants, bees
etc. leading to cooperative behavior through interactions of individual efforts, stimulated often
by biochemical mechanisms. Cooperative behavior is characteristic for higher vertebrates and
consists in conscious desire to join efforts in order to achieve better utility; simulations of emer-
gent cooperation were done with robots bound to cooperate for e.g. surviving with minimal
energy, McFarland (1994).

4. Learning. The problem of learning that is central for machine intelligence in Mitchell (1998)
has been addressed in multiple–robot systems with recourse to reinforcement learning as in
Matric (1994) in behavior–based multiple–robotic systems. Also, genetic programming was
applied in learning predator avoidance by herding by Werner and Dyer (1992) and in learning
flocking behavior as in Reynolds (1992).
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5. Geometric Problems. This topic is central to our work as it does involve multiple–robot path
planning, formation maintaining, moving to formations, pattern generation.

6. Simulation versus Experiment. As discussed in the context of multiple–robot systems issue
is the simulation/real experiment dilemma. Some authors argue that simulation ignores most
difficult problems related to perception and actuation, hence it does over–simplify problems
and produces over–successful systems which could be impossible to render in real conditions
- Brooks (1991). On the other hand, according to many researchers - ”it is unlikely that truly
large–scale collective behavior involving hundreds or thousands of real robots will be feasible
at any time in near future. This, cooperative mobile robot researchers have used a variety of
techniques to simulate perception”, Cao et al. (1997). In Matric (1994), among others, it is
advocated to make simulations as prototypes and an experiment with a small number of real
robots as a proof–of–concept demonstration and this approach seems the most sensible and it
is taken in our work.

The most interesting part for our work is the Geometric Problems research ”axe”. This comes
from the fact, that we use geometric problems for controlling robot formations by means of spatial
reasoning based on rough mereology:

• Path planning involves many specialized strategies; some of them propose initial individual
paths for each robot, often straight lines to the goal, with strategies for obstacle negotiating and
conflict resolution by either negotiations between robots or by a supervising agent.

• Formation problem as well as Marching Problem require of robots to move into a prescribed
formation and march to the goal maintaining the formation. Quoting Cao et al. (1997): ”The
Formation problem seems very difficult, e.g., no published work has yet given a distributed
”circle forming” algorithms that guarantees the robots will actually end up in a circle”.

1.1 Potential fields for planning and navigation

For our work we use potential field approach for path and formation planning, but there are several
other methods, that were presented in the literature that are characteristic to the robotic state of the
art. These methods include:

• Behavior–based aproach, based often on the ”boid” algorithms that imitate simple bird groups
behaviors like: collision–avoidance, velocity matching, flock centering and geometric posi-
tions, Reynolds (1987). Such behaviors are described in this work, where teams of robots can
adapt to the changing environment and change their formations based on surroundings.

• Potential field aproach, defines interaction forces among robots forcing them to keep at de-
sired distance from another. Virtual leaders are moving reference points for robots to control
the group movement and maintain group geometry. In this approach, the already mentioned by
us biological behaviors of swarms like: avoidance of close neighbors, keeping distance to the
group, velocity matching are encoded by means of artificial local potentials defined as func-
tions of relative distances between pairs of neighbors are implemented; control forces are then
defined as negative gradients of the sum of potentials affecting a given robot. By their action,
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robots are driven to minimum of the global potential function; local potentials can be designed
as to correspond to a given geometry of the group.

• Metric aproach, where geometric formation relies on a direct usage of using ametric described
by various parameters: threshold, robot diameters, path length ratio, average position error or
percentages regarding formation time.

It is worth noticing, that the potential field method is considered for current research for various
robotic problems such as behaviors of pedestrians in a lane in Wei et al. (2015) where potential field
callular automaton is applied to the study of avoidance and following behaviors or path planning in
Ahmed et al. (2015) where a modification of the classical attracive-repulsive Coulomb-style potential
is applied, or Orozco-Rosas et al. (2015) where bacterial genetic programming is the tool in studying
navigation problems of robots..

1.2 Potential fields

Classical methodology of potential fields works with integrable force field given by formulas of
Coulomb or Newton which prescribe force at a given point as inversely proportional to the squared
distance from the target. In consequence the potential is inversely proportional to the distance from
the target. The basic property of the potential is that its density (=force) increases in the direction
toward the target. We observe this property in our construction. We start in our construction with
a rough inclusion – a similarity measure formalized in the theory of rough mereology. Its basic
construct is a rough inclusion. Rough inclusion is a ternary relation µ : U × U × [0, 1] and its
primitive formulas of the form µ(x, y, r) read ‘the object x is a part to object y to a degree of at
least r’. A rough inclusion can be used to induce a distance function as well as primitive relations of
elementary geometry: betweenness and nearness.

Geometry induced by means of a rough inclusion can be used to define a generalized potential
field: the force field in this construction can be interpreted as the density of squares that fill the
workspace and the potential is the integral of the density. We present now the details of this construc-
tion, see also Ośmiałowski (2010), Ośmiałowski (2009).

1.3 Potential field construction

The potential field generation methods called Square Fill Algorithm introduced by Ośmiałowski
(2009) was presented with some alternative modifications in Polkowski et al. (2018), Zmudzinski
and Artiemjew (2017) and Gnys (2017) as follows:

1. Define initial values:

• Set current distance to the goal: d = 0,
• Set algorithm direction to clockwise,

2. Create an empty queue Q
Q = ∅ (1)
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3. Add to queueQ the first potential field p(x, y, d), where x, y describe the location of the field
and d represents the current distance to the goal

Q ∪ {p(x, y, d)} (2)

4. Enumerate through Q,
5. If ({pk(x, y, d)} ∩ F ) ∨ ({pk(x, y, d)} ∩C) where pk(x, y, d) is the current potential field, F

is a set of already created potential fields and C is a set of collision objects, then remove the
current field pk(x, y, d) from Q and go back to point 4,

6. Add the current potential field pk(x, y, d) to the created potential fields set F

F ∪ {pk(x, y, d)} (3)

7. Increase the current distance to the goal

d = d(pk) + 0.01 (4)

8. Define neighbours depending on the current direction:

• clockwise as N

N =



p0 = p(x− d, y, d),
p1 = p(x− d, y + d, d),
p2 = p(x, y + d, d),
p3 = p(x+ d, y + d, d),
p4 = p(x+ d, y, d),
p5 = p(x+ d, y − d, d),
p6 = p(x, y − d, d),
p8 = p(x− d, y − d, d)


(5)

• anticlockwise as N ′

N ′ =



p0 = p(x− d, y − d, d),
p1 = p(x, y − d, d),
p2 = p(x+ d, y − d, d),
p3 = p(x+ d, y, d),
p4 = p(x+ d, y + d, d),
p5 = p(x, y + d, d),
p6 = p(x− d, y + d, d),
p8 = p(x− d, y, d)


(6)

9. Add neighbours to queue Q depending on current direction:

• If direction is clockwise then: Q ∪N ,
• If direction is anticlockwise then: Q ∪N ′,

10. Change the current direction to the opposite,
11. Remove the current potential field pk(x, y, d) from the queue Q,
12. if Q(p) = ∅ then finish, else go to 4.
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1.4 Planning for multirobot systems

Planning for multiple robots is based on planing methodology for a single robot, with necessary
modifications, see Hwang and Ahuja (1992) or Latombe (1991) for surveys. As with a single robot,
approaches to planning for multi-robots can be divided into centralized or decoupled. Centralized
approach makes works by finding a path in a complex configuration space describing the whole
system provides complete planners which always find a path for the system if it exists; however,
this comes at the cost of exponential complexity: the problem of planning for rectangular robots
in the rectangular workspace is P–space complete Hopcroft et al. (1984). Planners of polynomial
complexity based on cell decomposition, for disc shaped robots in polygonal obstacle world were
described in Schwartz and Sharir (1983).

Variants of the method of potential fields were applied as well in centralized planning: a potential
field approach in which centralization was introduced as a local optimization problem. In Barraquand
and Latombe (1990), a randomized path planner, a potential field based planner with random fluctu-
ations escaping local minima was described. Such methods require the use of geometric methods for
describing the potential fields generated by robots and obstacles. Similar methodologies can be seen
in Alonso-Mora et al. (2016) where authors use that approach for distributed multi-robot formation
control.

In the area of decoupled planning, the problem is to merge plans for individual robots into one
general plan for the whole system; here, the idea of prioritizationwas put forth Erdmann and Lozano–
Perez (1986). A decoupled planner based on a scheduling technique was described in O’Donnel and
Lozano–Perez (1989). Liu et al. (1989) described a decoupled approach in which conflicts among
paths were resolved by means of a Petri net. An approach resting on an incremental merging of
plans for individual robots on the basis of current information about the merged plan and actions of
remaining robots is presented in Alami et al. (1995). Some schemes in decoupled planning rely on
using traffic rules Grossman (1988). High complexity of centralized planning and incompleteness
of decoupled planning prompted research in the between area and the idea of separate roadmaps for
robots emerged inwhich separate roadmaps are combined into a global roadmapValle andHutchinson
(1999). A graph–based approach to roadmap coordination was presented in Svestka and Overmars
(1998) leading to a probabilistically complete planner.

We now describe in short some of these works in order to give a more detailed view into solutions
adopted. Prioritized planning in Erdmann and Lozano–Perez (1986) is a compromise between de-
mands of centralized planning and computational feasibility: in this approach, motions are planned
one object at a time, thus central planning becomes a sequence of autonomous planning operations.
However, the lower the priority of an object, the more heavy demands are placed on its plan to
avoid collisions with earlier objects. Also, completeness is not assured and the goal may not be
reached. The implementation of this idea requires a construction of space–time configuration which
reflects the state of the system at each moment of time; planning for an object involves motion on that
space. Building of the configuration space is facilitated by assumption that obstacles are translation–
invariant with regard to shape; thus, translation of an obstacle in the real world is associated with
translation of the configuration space obstacle representation. Search for collision–free paths is per-
formed by examining segment paths meeting adjacent slices, with endpoints in vertices of obstacles,
see visibility graphs; segments intersecting obstacles at non–vertex points are ignored and remaining
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segments are joined into paths. A prioritization method which maximizes the number of robots able
to move from start to goal in the straight line is proposed in Buckley (1989).

A stochastic approach in Barraquand and Latombe (1990) makes use of a configuration space
discretized into a grid of n–dimensional rectangloids whose resolution conforms to resolution of the
bitmap representation of the workspace as to ensure that small movement in the grid is reflected
in a small movement of robots. The goal assignment is achieved by the idea of a control point:
control points on robots are assigned for their goal positions and the system reaches the goal when
each control point has reached its goal position. With each control point p, a potential function is
associated: Up : Wfree → R+ sending each point q ∈ Wfree in the free workspace Wfree into a
real positive value. Those potentials are combined in the configuration space into a global potential
function U : q ∈ Cfree → G({Up(c(p, q)) : p ∈ {control points}) where c(p, q) is the coordinate
set of p at a configuration space coordinates q. Authors have worked out techniques that ensure that
the potential U has the only global minimum at the goal and local minima resulting from combining
by means of G of control point potentials are easy to be bypassed.

The algorithm described by the authors, begins with the initial configuration point qinit and pro-
ceeds by following the negative gradient of U . The gradient following motion stops when a local
minimum qloc is reached; if it is the minimum, the algorithm stops. Otherwise, it does execute a
series of random motions each of them followed by the gradient following motion until a new local
minimum q′loc is detected; then, qloc and q′loc are connected with an edge. This graph is incrementally
built until the global minimum is reached and then the graph provides a path to the goal. The gradient
motion is organized on the ”best–first” search basis: neighboring grid cells are searched for the lowest
value; in high dimensions the number of neighbors may be prohibitive and then the search is random;
a variant of depth–first search is also discussed. The random motion applied is modeled as the Brow-
nian motion (the Wiener–Levy stochastic process) which assures that the planner is probabilistically
complete (i.e., it reaches the goal with probability 1).

A view of a planner for many robots as a concurrent system with constraints on concurrency is
presented in Liu et al. (1989). The case studied is of two planar robots circular in shape in presence
of obstacles. The configuration space is represented as a quadtree with nodes marked with respect
to meeting obstacles: yes, no and partial. A two level hierarchical planner is used to build a Petri
net representing conflicting situations. The higher level planner plans paths for robots by searching
the quadtree through obstacle–free nodes, and the lower level planner solves the conflict problem.
The higher level planner finds the shortest path obstacle–free to the goal for each robot. The lower
level planner examines the paths and finds nodes where paths intersect for which it finds neighboring
nodes on paths excluding other path (avoidance nodes). By means of avoidance nodes, conflicts can
be resolved. A means for conflict resolution is provided by a Petri net whose sequence of firing
transition is such that it prevents robots from simultaneously entering the same node on their paths.

A more general problem of mission planning for multiple vehicles and concurrent goals is ad-
dressed in Brumitt et al. (2001) where a distributed planner is introduced in the context of a dynamic
allocation of goals to autonomous vehicles. Planning is effected in the environment of amission gram-
marMG:m→M(r, g)|m∧m|m∨m|m⇒ m|(m); r → Ri|r∧r|r∨r|(r); g → Gj |g∧g|g∨g|g ⇒ g|(g)
where a ⇒ b means ”a followed by b”, a ∧ b means ”a and b”, a ∨ b means ”a or b”, Ri means
”robot i”, Gi means ”goal i”,M(r, g) means ”move robot r to goal g”. For instance, the expression
M((R1 ∧R2), G1 ⇒ G2) means that robots 1 and 2 are to go to goal 1 and then to goal 2.
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This simple grammar expressions are examined by the mission planner and parsed into sequences
of executable commands and planning of paths for them usesD∗ search algorithm.

Finally, we return to already mentioned paper by Švestka and Overmars, in which a coordinated
approach to decoupled planning is developed. For each robot, a probabilistic roadmap, see sect. 2,
is constructed. Then, roadmaps for individual robots are combined into a roadmap for the system.
The global roadmap is constructed as a graph structure called a super–graph. In constructing a super–
graph, few steps are taken. Robots are modeled as copies of a single robot a. For this robot, given a
workspace, a configuration space is built and then paths in the free space are found for a. This gives
a roadmap for a as a graph (V, E). Then, a coordinated roadmap is constructed for the group of robots
a1, a2, ..., an by defining coordinated paths as n–tuples (p1, ..., pn) where pi is a path for the robot
ai and paths pi, pj are collision free for i ̸= j. Authors consider such coordinated paths on which
only one robot moves at a time, therefore the robot movement is sequential. The super–graph is then
constructed as a graph whose nodes are n–tuples (x1, x2, ..., xn) of collision–free nodes in (V, E) and
edges are coordinated paths joining two nodes. The search for a path for the system is performed
on the super–graph; authors provide a retraction of the configuration space onto the super–graph in
order to refer the former to the latter. A number of technical operations on a super–graph is available,
improving the performance, smoothing the paths etc.

2. Rough mereology

Mereology introduced as the formal system of reasoning by Stanisław Leśniewski replaces the
notion of an element basic for set theory with the notion of a part Leśniewski (1982). It is therefore
suited best for reasoning about solids, figures etc. as relations among them can often be expressed by
means of parts not by elements, consider an example: ‘The circle is a part of the disc’ but not ‘The
circle is an element of the disc’. Mereology is founded on the notion of a part, formally rendered by
the formula π(x, y) which reads:‘x is a part of y’. The relation π is supposed to satisfy the following
requirements: (1) If pi(x, y) then x ̸= y (2) If π(x, y) and π(y, z) then π(x, z). Hence, π(x, y)means
that x is a proper part of y which can be visualized by saying that x is ‘smaller than y and inside y’.
The relation of being possibly the whole of y is expressed by the notion of a Part, Π, defined as

Π(x, y) if and only if π(x, y) or x = y. (7)

Rough mereology which is concerned with the relation of cutting a piece off y but neither being
any part of y nor the whole of y, requires for its expression a new language in which one can express
degrees to which y is in x, and this language is many-valued logic over the interval [0, 1], see Hájek
Hajek (1998). The basic notion is that of rough inclusion µ(x, y, r) which reads ‘x is a part of y to a
degree of at least r’. Rough mereology was proposed by Polkowski cf. Polkowski (2011), Polkowski
and Skowron (1996), Polkowski and Skowron (1994), Polkowski (2017). As with the part relation,
rough inclusions are subject to requirements which are:

1. µ(x, y, 1) if and only if Π(x, y). This means that a rough inclusion can be defined only on a
universe on which the mereological structure is set.

2. If µ(x, y, 1) and µ(z, x, r) then µ(z, y, r). This is the monotonicity condition: the ‘bigger’ y
cuts from z at least the fraction cut by ‘smaller’ x.
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3. If µ(x, y, r) and s < r then µ(x, y, s). This is the condition which justifies the phrase ‘... is a
part to a degree at least ...’.

Rough mereological geometry Spatial reasoning requires as well a formal system in which to
carry out reasoning. Such system was constructed by Polkowski cf. Polkowski (2011) on basis of
ideas and results by Tarski Tarski (1959) and van Benthem van Bethem (1983). This system which
renders the Euclidean geometry of finite-dimensional spaces is based on two relations: equidistance
and betweenness. Equidistance captures the metric aspect of geometry while betweenness responds
for the affine properties. Equidistance relation denotedEq(x, y, u, z) (or, as a congruence: xy ≡ uz)
means that the distance from x to y is equal to the distance from u to z (pairs x, y and u, z are
equidistant) is subject to requirements:

• Eq–REFLEXIVITY: Eq(x, y, y, x).

• Eq–IDENTITY: If Eq(x, y, z, z) then x = y.

• Eq–TRANSITIVITY: If Eq(x, y, u, z) and Eq(x, y, v, w) then Eq(u, z, v, w).

Betweenness relation B(x, y, z) (y is between x and z) is required to satisfy the requirements:

• B–IDENTITY: If B(x, y, x) then x = y.

• B–PASCH AXIOM:
If B(x, u, z) and B(y, v, z) then there is some a such that B(u, a, y) and B(v, a, x).

• B–CONTINUITY: Let ϕ(x) andψ(y) be first–order formulas in which objects a, b do not occur
as free, and, x is not free in ψ(y) and y is not free in ϕ(x). If there is a such that for each pair
x, y [from ϕ(x)and ψ(y) it follows that B(a, x, y)], then there is b such that for each pair x, y
[from ϕ(x) textrmand ψ(y) it follows that B(b, x, y)].

• B–LOWER DIMENSION: For some triple a, b, c [not B(a, b, c) and not B(b, c, a) and not
B(c, a, b)].

For our purpose, we need to exploit the notion of betweenness in combination with rough in-
clusions. To this end, we introduce the notion of the mereological distance, κ(x, y) cf. Polkowski
(2011). We need some auxiliary notions

µ+(x, y) = r if and only if µ(x, y, r) and not µ(x, y, s) for any s > r. (8)

Hence, µ+(x, y) denotes the largest degree to which x is a part of y. We assume that this value
exists. We are able now to define the distance κ.

κ(x, y) = min{µ+(x, y), µ+(y, x)}. (9)

Let us observe that κ(x, y) = 1means that x = y, contrary to the Euclidean distance whose value
in that case would be zero. On the other hand, κ(x, y) = 0means that x, y can only touch themselves
on their boundaries. This will become more clear when we introduce an example of a rough inclusion
suitable for solids, e.g., rendering mobile robots in the plane or 3-D space. We denote with the symbol
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V n(x) the n-dimensional volume in the n-dimensional space. Then, we define the rough inclusion
µV (x, y, r) for bounded measurable sets x, y in the n-space

µV (x, y, r) if and only if
V n(x ∩ y)
V n(x)

≥ r. (10)

It is easy to see that the rough inclusion µV (x, y, r) does satisfy requirements (1)-(3) for rough
inclusions. In order to include betweenness in our discussion, we first recall the notion of nearness
relation, N(x, y, z) in symbols, which reads ‘x is nearer y than z’ due to van Benthem van Bethem
(1983)

N(x, y, z) if and only if κ(x, y) ≥ κ(z, y). (11)
The distance between x and y is greater than the distance between z and y, i.e., in mereological

terms, it is nearer from x to y than from z to y.
In terms of nearness, we define after van Benthem (loc.cit.) the relation of betweenness in the

sense of van Benthem V B(x, y, z) which reads ‘x is between y and z’

V B(x, y, z) if and only if for each w : either x = w or N(x, y, w) or N(x, z, w). (12)

In plain wording: V B(x, y, z)means that given any w, either x = w or x is nearer to one of y, z than
w. Betweenness in that sense can be applied to characterize mutual robot positions among robots in
a team of robots. To that end, we assume that our robots are modeled as planar rectangles positioned
regularly, i.e., with sides parallel to coordinate axes. For robots a, b, we define their extent, ext(a, b),
as the minimal rectangle containing a and b and positioned regularly. The main result in this section
is the following

Theorem 1 Given robots a, b modeled as planar disks enveloped in rectangular safety regions A
and B, the extent ext(A,B) is between A and B, i.e., the formula V B(ext(A,B), A,B) is true.

For completeness’ sake, we recall the proof, see Polkowski (2011) Ch. 6.10.

Proof 1 As linear stretching or contracting along an axis does not change the area relations, it is
sufficient to consider two unit squares A,B of which A has (0,0) as one of vertices whereas B has
(a,b) with a, b > 1 as the lower left vertex (both squares are regularly positioned). Then the distance
κ between the extent ext(A,B) and either of A,B is 1

(a+)(b+1) .
For a rectangle R : [0, x]× [0, y] with x ∈ (a, a+ 1), y ∈ (b, b+ 1), we have that,

κ(R,A) =
(x− a)(y − b)

xy
= κ(R,B). (13)

For ϕ(x, y) = (x−a)(y−b)
xy , we find that

∂ϕ

∂x
=

a

x2
· (1− b

y
) > 0, (14)

and, similarly, ∂ϕ
∂y > 0, i.e., ϕ is increasing in x, y reaching the maximum when R becomes the

extent of A,B.
An analogous reasoning takes care of the case when R has some (c,d) with c, d > 0 as the lower

left vertex.
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We use this result by saying for robots a, b, c enveloped in safety regions A,B,C that the robot c is
r-between robots a and b in case c is contained in the extent ext(A,B).

For a team T = {R1, R2, ..., Rk} of planar mobile robots, we say that they make a formation
whenever they are endowed with a betweeness relation on T .

3. Formation control

Although it is impossible to draw a separating line between formerly discused topics and formation
control, we find it convenient to separately mention a few works on the specific theme of formation
control.

The aim of works in that area is to maintain formations by controlling relative position and orienta-
tion of robots in a teamwhile moving the group as a whole Toibero et al. (2008). This subject involves
assignment of feasible formations, moving into formation, maintaining a formation and changing for-
mations.

Desai et al. (2001) represent formations by means of graphs with nodes representing robots and
edges representing relations leader–follower. In their approach there is an unique ”global” leader and
many local leader–follower pairs corresponding to edges in the graph. The graph is represented by
means of an adjacency matrix and transition from one formation to the other in this context requires
a transition matrix with entries -1, +1, where the former value means that the edge in the graph is
removed, the latter value means that the edge is added. Control laws express the state of the follower
robot in terms of the state parameters of the leader robot, parameters being the linear and angular
velocities of the axle center of each robot and state variables being the distance and angle between
the robots.

Toibero et al. (2008) discuss the same problem ofmobile formation control in presence of obstacles
with objectives: (i) to place robots in their desired positions in the formation before staring the leader
robot navigation; (ii) reduce large formation errors; (iii) avoid static obstacles while maintaining the
given formation geometry. Authors propose a hybrid approach, in which the continuous formation
controller is augmented with an orientation controller for each robot follower, along with the presence
of switching supervisor responsible for indicating the active controller at a specific moment. For
obstacle avoidance, the contour–following strategy by the leader robot is applied.

Lawton et al. (2003) propose three behavior–based strategies for control of a formation. In their
approach, robot positions are estimated by a combination of dead reckoning and an overhead camera
system. The behavior–based strategy applied is the coupled dynamics. A pattern is defined as the set
of hand positions of robots, and the optimized criterion is the error of formation coordination. Coupled
dynamics formation control is the behavior which compels the robot knowing relative positions and
velocities of its two neighbors in communication ring to keep up with them. Coupled dynamics
formation control with passivity–based interrobot damping is like the former except it does dispense
with information about relative velocities, compensating the lack of those with additional damping
factors to prevent robot oscillations. Saturation control variant adds upper bounds on the force and
torque in dynamics equations of robots.

A vision–based formation control approach is proposed and presented in Das et al. (2002). The
goal of this research is to develop a method for bottom–up buildup of a controller for formation con-
trol from simple controllers and estimators. The described idea resembles that of behavior–based
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architecture yet differs in more formal control–oriented approach. Simple controllers are responsible
for obstacle avoidance, collision recovery, target pursuing, while complex controllers are responsi-
ble for formation maintenance. A sequential composition of controllers is aimed at maintaining or
changing formations along a given trajectory. The main sensing ability is performed by an omnidi-
rectional camera mounted on each robot. The paradigm implemented is that of the leader-followers;
there is the lead robot whose movement determines the group movement and other robots refer to the
leader for their positions and orientations. This is represented via a graph as in Desai et al. (2001).
Leader–follower and leader–obstacle controls are provided to ensure local formation maintenance
and obstacle avoidance by the follower with distance ensurance to the leader. Strategy for changing
formations is guided by robot camera readings and the presence of the leader in their images.

A leaderless strategy for formation control based on the notion of a Virtual Structure is described in
Lewis and Tan (1997). In defining a Virtual Structure, authors are motivated by a rigid body definition
as a finite system of point masses any two of which are kept at a constant distance. Transferring
this image to the robot world, authors call a Virtual Structure a system of stationary points with
respect to a reference frame moving through space and such that distances among points are enforced
by a control system. The idea poses itself: given a Virtual Structure, of n points, with position
vectors in the reference frame pRi , i = 1, 2, ..., n, and a mapping TR,W from reference to world
frame with TR,W (pRi ) = pWi consider n robots with position vectors in the world reference frame
rWi : i = 1, 2, ..., n; declare that robots are in a formation if at each point of the trajectory we have
rWi = TR,W (pRi ). In other words: robots mimic in a sense movement of the Virtual Structure being
guided to respective points images in the world frame.

Recently, much attention is devoted to swarm robotics, i.e., large teams of robotic agents and
some distinct approaches are proposed for the task of controlling robots in order, e.g., to keep them in
prescribed patterns or formations. Oikawa et al. (2015) propose a mobile software agents system for
keeping robots in a team in certain prescribed positions. Their approach is rooted in ant algorithms
theory and applies a combination of acting by ant agents and pheromone agents. Xu et al. (2014)
describe a behavior-based approach to robot control. Biological-based paradigms involved in studies
of robotic swarms control involve membrane computing Paun (2010), seeFlorea and Buiu (2017).

We propose an approach based on ideas of rough mereology Polkowski (2011) based on the no-
tion of a part to a degree. A rough mereological approach to formation buildup was originated in
Polkowski and Osmialowski (2008), Polkowski and Osmialowski (2010) which is extended in this
work in the following sections.

4. Testing in simulation

We performed testing using an open-source project called RoboSim RoboSim. It is a Python 3.6
based solution for emulating intelligent agent (including robotic) behavior in randomly generated
environments - each map is created using the Random Walk Algorithm Revesz (1990). The library
is using pygame PyGame to present realtime results, which were passed to the spatial reasoning
algorithm that was based on Rough Mereology. An example of the approach can be seen in Fig.
1, where a group of robots in the romboid formation is traveling from the starting point to the goal
through a narrow passage using the First In decision system as aggregated from images taken in
RoboSim.
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Fig. 1 Representation of a full path coverage by a team of intelligent agents that are using the rhomboid for-
mation. The aggregated data is presented for three points of the robot journey: point 1 represents the starting
position of the team, point 2 the First In decision system for narrow passages and finally point 3 is the target
goal of the path algorithm

4.1 Path creation

The path was created using the provided Rough Mereology algorithm, see section 3.2. We have
used the default version of the Square Fill Algorithmwithout later alterations and smoothing as seen
in Fig. 2.

The path was connected with the central robot, which performed the role of the team leader. Other
robots in the formation were following the main robot at specified distances between each teammem-
ber (up to a degree of error). Using such approach gave us the possibility of performing less calcula-
tions. In case the main robot would be unavailable due to external reasons, a new robot would take
command and calculate the path to the goal. Moreover, using the system in simulation allowed the
authors to take shortcuts in probability distribution of incorrect sensor readings, which is present in
current algorithm tests.

4.2 Robot formations

The formations we created were parameter based (metric), where each robot was checking the
distance to another, designated robot in the formation. The data was taken from x and y positions of
the intelligent agents in the simulation environment, updated every frame of the pygame engine. The
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Fig. 2 Square Fill Algorithm potential field example with marked start and goal positions and two obstacles.
Due to the fact, that the potential field is created as a gradient, you can observer that the closer to the goal, the
more potential fields are present

data was used to calculate the heading of the robot and preffered distances to other units. We have
tested several robot formations as seen on Fig. 3:

• Line formation - with robots moving as a straight line, having the main unit placed in the
middle of the line,

• Rhomboid formation - with robot team shaped as a rhombus, with the main unit placed in the
center,

• Snake formation - immitating the movement of a snake, with the main unit placed in the
”head”,

• Circle formation - with robot team shaped as a circle, with the main unit placed in the center,
• Cross formation - shaped as a cross, with the main unit in the center.

4.2.1 Decision systems
Of course using such formations, required specified decision systems for places, where such for-

mation wouldn’t be possible eg. narrow passages. We have created three simple cases, to test how
they would work in simulation:

• First In decision system, which was based on the distance of each robot to the tunnel entrance.
If a robot was closer to the entrance, it went in first into the tunnel, with other robots following
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Fig. 3 Tested formations where, 1 stands for rhomboid, 2 for line, 3 for snake, 4 for cross and 5 for circle
formation

in the same manner. The robot formation was changed to Snake Formation as they navigated
to the end of the narrow passing,switching back to their original formation afterwards.

• Leader First decision system prioritized the leader robot. As all the other robots were already
following the main unit, it was obvious to change the formation, with the same robot still
remaining at lead. In testing it was denoted, that the solution wasn’t efficient, because the
amount of movement needed to bring the leader forward in more complicated formations was
too high.

• Horde Mode decision system, which was based on swarms, where each robot tried to push
itself first on the built path to the goal. This model was prone to error and some robots got
stuck in some tunnels, which was presented as a bad outcome. In simpler tunnels, the decision
system has proven better in two things: calculation time and amount of time needed to get
through obstacles.

5. Conclusions

In this work we have presented the problem of path planning and navigation for teams of robots.
Moreover, we have presented a working in simulation solution, using the state of the art RoughMere-
ologymethods for calculating potential fields and robot formations that solve presented problems. We
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describe the domains of robot team control from literature with specified ”axes” taken from research
task domains, fromwhich theGeometric Problem suits the best for RoughMereology spatial reason-
ing. Moreover, we describe the Rough Mereology theory that was used to build the rough mereology
potential field, which is used for path building for single and multiple robots.

The proposed algorithms were tested using the Python 3.6 based RoboSim simulator with the
following robot formations: line, rhomboid, snake, circle and cross. Moreover each team of robots
had a built-in decision system, that was responsible for formation changes during transport through
narrow passages. The authors created three decision systems, that consisted of First In, Leader First
and Horde Mode variants. The experiments show, that some connections of formations – decision
systemsworkedwell, e.g., Rhomboid andHordeMode, while others failed to deliver satisfying results
like Cross formation with Leader First decision system.

In our future work, we plan on transferring the simulation code to mobile robots for navigating
through populated university buildings, to test possible uses of the algorithms as guide robots for the
University visitors.
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