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Abstract.  This work reports on the kinematic analyses of a non-redundant spatial robot built with a 

translational manipulator assembled in series connection with a parallel wrist. The first mechanism is a fully-

decoupled, fully-isotropic and singularity-free translational manipulator while the second mechanism is a 

spherical parallel manipulator equipped with rotational actuators. The parallel wrist is free of revolute joints 

with concurrent axes. Numerical examples are provided in order to show the application of the method. 
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1. Introduction 
 

In the mid-1900s Gough developed a six-legged parallel manipulator with the purpose to study 

the performance of tires under the action of combined loads simulating aero landing operations 

(Gough 1957, 1962). Nowadays, the invention of Gough is one of the most investigated 

mechanisms whose topologies are based on parallel kinematic architectures. In fact, the 

characteristics of the hexapod have been widely discussed by kinematicians. In particular the 

forward displacement analysis (FDA) of the general hexapod has been one of the most challenging 

problems of modern kinematics. It is worth to note the formidable work done in order to formulate 

and simplify the FDA of the general hexapod, see for instance Wampler 1996, Raghavan 1993, 

Husty 1996, Innocenti 2001, Rolland 2005, Gan et al. 2009. An option to overcome this problem 

is the development of the so-called series-parallel manipulators. The term series-parallel 

manipulator was proposed by Zoppi et al. 2006 and refers to a hybrid mechanism where two 

parallel manipulators are assembled in series-connection. It is interesting to note that while the 

FDA of the general hexapod yields a 40-th univariate polynomial equation, which implies a high 

computational complexity, all solutions of the same analysis stem from two 8-th univariate 

polynomial equations for most series-parallel manipulators (Gallardo-Alvarado et al. 2008). 

However, the loss of stiffness is a drawback that must be taken into proper account in order to take 

advantage of the benefits of series-parallel manipulators. On the other hand, in order to simplify  
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the kinematics and control of robot manipulators, parallel manipulators with decoupled 

kinematics, or decoupled architecture, is a viable option to do it. In that concern, the development 

of series-parallel manipulators appears to be an excellent option. Romdhane (1999) introduced a 

robot built with a translational parallel manipulator assembled in series connection with a spherical 

parallel manipulator, the decoupled motion is evident in that proposal. Tanev (2000) introduced a 

series-parallel manipulator where closed-form solutions are available for the Inverse/Forward 

displacement analysis. Zheng et al. (2004) reported on the kinematic analysis of a decoupled 

series-parallel manipulator obtained by assembling in series connection two 3UPU parallel 

manipulators with different schemes of actuation. Gallardo-Alvarado et al. (2010) introduced a 

3UPS+2(3RPS) limited-dof robot with partially decoupled kinematics. Altuzarra et al. (2010) 

proposed a method for the type synthesis of lower mobility robots based on partially decoupled 

equation sets associated to the displacement analysis. Legnani et al. (2012) introduced two 

isotropic robots with decoupled kinematics in desired configurations. In this work a novel six-

degrees-of-freedom series-parallel manipulator with decoupled kinematics is introduced. 

The rest of the contribution is organized as follows. In section “Description of the series-

parallel manipulator” the proposed decoupled robot is outlined. In section “The translational 

manipulator” the kinematics of the robot responsible to keep constant the orientation of the end-

effector platform as observed from the fixed platform is provided. Afterwards, the kinematics of 

the spherical parallel manipulator is approached in section “The parallel wrist” by means of the 

theory of screws, regarding with the infinitesimal kinematics. In order to show the application of 

the method, in section “Case study”, a numerical example concerned with the forward kinematics 

of the series-parallel manipulator is provided. Finally, some conclusions are given at the end of the 

contribution. 

 

 

2. Description of the series-parallel manipulator 
 

The robot under study is depicted in Fig. 1. It consists of a translational manipulator assembled 

in series connection with a parallel wrist. The robot is equipped with six motors in order to obtain 

arbitrary poses of the end-effector platform with respect to the fixed platform. 

Let X Y Z  be a reference frame attached to the center of the fixed platform. The motors M4, M5 

and M6 have the function to control the position of the center of the spherical joint connecting the 

middle platform to the end-effector platform, the point P=(p
X 

, p
Y 
, p

Z
) located by vector P. To this 

end, the generalized coordinates q
4
, q

5
 and q

6
 are related, respectively, with the X, Y and Z axes, 

i.e., P=(q
4
, q

5
, q

6
). On the other hand, the motors M4, M5 and M6 are devoted to control the 

orientation of the end-effector platform; the associated generalized coordinates are noted as q
1
, q

2
 

and q
3
. 

In what follows the kinematic analyses of the translational and spherical parallel manipulators 

are provided. 

 

 

3. The translational manipulator 
 

As shown in Fig. 1 the chosen translational manipulator, a variant of the mechanism introduced 

by Gallardo-Alvarado et al. (2012), for this application consists mainly of a fixed platform, a cross  
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Fig. 1 The proposed series-parallel manipulator 

 

 

body and a middle platform. The cross body is connected to the fixed platform through two ball 

screw systems and two double prismatic joints. A double prismatic joint is a passive element where 

the directions of the two prismatic joints are mutually orthogonal. Furthermore, the cross body is 

connected to the end-effector platform by means of an active prismatic joint. It is straightforward 

to demonstrate that owing the decoupled orthogonal arrangement of the generalized coordinates q
4
, 

q
5
 and q

6
, it is possible to easily establish the following Input/Output displacement relationship 

ttt P qBA                                (1) 

where At=Bt is the identity matrix of order 3 and q
t
=[q

4
 q

5
 q

6
]

T
 is the translational displacement 

first-order driver matrix. This follows that the velocity and acceleration analyses are 

straightforward. Furthermore, taking into account that each related Jacobian given in expression 

(1) is precisely the identity matrix, then the translational manipulator hand is a fully-isotropic 

parallel manipulator, i.e., the condition number equals 1 at any posture of the mechanism. On the 

other hand, due to the simplicity of the Input/Output relationships, see Eq. (1), the theoretical 

workspace, i.e., the locus of the points that the reference point P on the end-effector platform can 

reach, is directly found to be a parallelepiped of edges q
i
(i=4, 5, 6). 

Concluding this brief section, it is demonstrated that the translational manipulator is fully-

decoupled, fully-isotropic, singularity-free in the entire workspace and possesses the maximum 

available workspace. Even though that the translational manipulator considered in this section is 

an asymmetrical manipulator, it can be considered as a subclass of TPMs with linear Input/Output 

equations (Kong and Gosselin 2002, Kong and Gosselin 2004, Gosselin et al. 2004). 
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4. The parallel wrist 

 

A typical spherical parallel manipulator, also known as a parallel wrist, consists of a moving 

platform and a fixed platform connected each other by means of three limbs provided with 

multiple revolute joints whose axes intersect at a common point, see for instance Cox 1981, Di 

Gregorio (2001, 2004). The complexity of such mechanical arrangement is evident. In fact, in 

order to achieve successfully the intersection of such axes, higher manufacturing conditions must 

be satisfied otherwise jamming or higher internal loads emerge that can damage the robot. In that 

concern it is worth to note that the intersection of revolute axes is a mandatory condition not only 

for most parallel wrists but also for four-five degrees-of-freedom parallel manipulators, see for 

instance Zlatanov and Gosselin (2001), Li et al. (2004), Zhu et al. (2009). This overconstrained 

condition may be eliminated by connecting the moving and fixed platforms through a fixed 

spherical joint which plays the role of the fixed rotation center Innocenti and Parenti-Castelli 

(1993), Wohlhart (1994), Alici and Shirinzadeh (2004). After, the limbs may be designed freely. 

 
4.1 Description of the parallel wrist 

 

With the purpose to enhance the advantages of the selected parallel wrist, a mechanism 

introduced by Gallardo-Alvarado et al. (2013), for the series-parallel manipulator it is advisable 

firstly to recall some typical spherical parallel manipulators reported in the literature. The 3-RRR 

parallel wrist is a symmetric manipulator with revolute joints whose axes intersect at a common 

point, namely the rotation center of the manipulator, in order to achieve spherical motions. This 

parallel manipulator has been extensively studied. Certainly, some relevant kinematic properties of 

the 3RRR parallel wrist had been deeply investigated, and not diffusely as it is pointed in Di 

Gregorio (2007), such as displacement analysis, optimum kinematic design, singularity analysis, 

control and so forth, for detailed information the reader is referred to Gosselin and Angeles (1988), 

Gosselin et al. (1996), Liu et al. (2000), Gosselin and Wang (2002), Bonev and Gosselin (2006), 

Bonev et al. (2006), Bai et al. (2009). It is worth to mention that the most celebrated spherical 

parallel manipulator based on a 3RRR topology is the famous robot called Agile Eye developed at 

Laval University. On the other hand, the 3S{P,R}S+S parallel wrist is another option concerning 

with the spherical motion of a rigid body. This robot consists of a moving platform and a fixed 

platform connected each other through a passive constrained spherical joint, locating the rotation 

center of the manipulator, and three S{P,R}S-type limbs, its forward displacement analysis was 

addressed successfully by Innocenti and Parenti-Castelli (1993), who conclude that there are at 

most eight distinct orientations that the moving platform can reach with respect to the fixed 

platform given the limb lengths of the manipulator. This compact in-parallel manipulator brings 

interesting characteristics such as the possibility to use linear actuators when the version 3SPS+S 

is chosen; moreover, clearly a non-overconstrained parallel manipulator, like this, support 

manufacturing errors due to the use of spherical joints instead of revolute joints. Certainly, in a 

glance it seems that a 3S{P,R}S+S parallel manipulator has poor manipulability and reduced 

workspace when it is compared with the 3RRR parallel wrist, however it is worth to mention that 

Alici and Shirizandeh (2004) proved that this parallel wrist possesses, in reality, a considerable 

workspace with the possibility to alleviate singularities when a topology optimization method is 

employed. With these considerations in mind, the spherical parallel manipulator considered in this 

work is a variant of the 3S{P,R}S+S parallel wrist. 

The parallel wrist of the contribution, see Fig. 2, is a 3RRRS+S spherical parallel manipulator.  
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Fig. 2 The parallel wrist 

 

 

A triangular fixed platform (A1 A2 A3), labeled 0, is connected to an orthogonal moving platform 

(OD1 D2 D3), labeled m also known as the end-effector platform, through a passive constrained 

spherical joint, located at origin O in this case O = P of the fixed reference frame, and three 

identical limbs. The orientation of the moving platform is controlled by means of three actuators R 

mounted on the middle platform. The axes of the actuated revolute joints are parallel to each other 

and perpendicular to the axes of the passive revolute joints. Furthermore, the 3RRRS+S parallel 

wrist is free of revolute joints with axes intersecting at a common point, the main advantage of this 

robot. Owing symmetry of the moving platform, its link parameters are ||ODi||=a and ||DiDj||=b  

(i, j=1, 2, 3 mod(3)). Finally, in order to simplify the analysis, the reference frame X Y Z  and the 

moving reference frame x y z , attached respectively to platforms 0 and m, share a common origin 

O=P. 

 
4.2 Displacement analysis of the parallel wrist 

 

In this section the displacement analysis of the spherical parallel manipulator is presented. For 

simplicity and without loss of generality consider that the reference frame X Y Z  is located at the 

center of the spherical joint connecting the end-effector platform to the middle platform. The 

forward position analysis consists of finding the orientation of the moving platform with respect to 

the fixed platform given the input joint angles qi (unless otherwise, in the remainder of the 

contribution i=1, 2, 3). To this end, consider that passive revolute joints affect the displacement of 

the center of the spherical joint in the same limb in such a way that 

0ˆ)(   iii uDB                               (2) 
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where kuziuxkqjiq iii
ˆˆˆ)cos(ˆ0ˆ)sin(ˆ u  is the unit vector along the axes of the passive 

revolute joints in the same limb in accordance with the kji ˆ,ˆ,ˆ  unit vectors of the axes X, Y, Z of 

the fixed reference frame, and the bullet (·) denotes the inner product of the usual three-

dimensional vector algebra. Hence, considering that Di=(Xi, Yi, Zi) are the unknown coordinates 

associated to vector Di whereas Bi=(Bxi, Byi, Bzi)are the coordinates associated to vector Bi then 

the unknowns Xi are obtained based on Eq. (2) as follows 

iiii BZAX
~~

                               (3) 

where ii uxuzA  and .)(
~

iiiiii uxBzuzuxBxB   Furthermore, it is evident that closure 

equations for parameter a may be expressed as 

2aii DD                                 (4) 

Thus, the substitution of Eq. (3) into Eq. (4) allows to express the unknowns Yi as 

2222
~~~

2)
~

1( iiiiiii BaZBAZAY                      (5) 

Finally, consider the following closure equations associated to parameter b 

)3(mod3,2,1,)()( 2  jibjiji DDDD                   (6) 

Later on, the substitution of Eqs. (3) and (5) into Eq. (6) yields a nonlinear system of three 

equations in the unknowns Z1, Z2, and Z3 as 

)3(mod3,2,1,0
~~~

~~~~~~
222222





jiKZJZI

ZZHZGZFZZEZZDZZC

ijjijiij

jiijjijiijjiijjiijjiij

         (7) 

where the coefficients of Eq. (7) are all functions of the generalized coordinates and parameters of 

the parallel wrist. In fact 
2)

~~
(4

~
ji

ij
AAC   

)
~~

(
~

8
~

jijij AABD   

)
~~

(
~

8
~

jiiij AABE   

222 ~
4)

~
1(4

~
ji

ij
BAaF   

222 ~
4)

~
1(4

~
ijij BAaG   

)2(
~~

4
~~

884
~ 2222 abAABBabH jijiij   

)2(
~~

4
~~

8
~ 222 abBAaBAI jiiiij   

)2(
~~

4
~~

8
~ 222 abBAaBAJ ijjjij   

)2(
~~

4)
~~

(4
~

2222224 baBBbBBabK
jijiij

  

Expressions (7) are reduced systematically into an 8-th order univariate polynomial equation by 

resorting to the Sylvester's dialytic method of elimination, for details the reader is referred to Tsai 

(1999), Merlet (1989), Gallardo-Alvarado et al. (2008). Once the coordinates of points Di are 
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calculated, the orientation of the moving platform is determined from the computation of the 

rotation matrix 
0
R

m
. In fact, it is possible to form a linear system of nine equations in the nine 

unknown elements of the rotation matrix taking into proper account that 

i
m

i DD  R
0                                  (8) 

where 
















333231

232221

131211
0

rrr

rrr

rrr
m

R                               (9) 

so that iD are the coordinates of the center of the i-th spherical joint, as expressed in the reference 

frame xyz . Furthermore, see Craig (1955), the roll, pitch and yaw angles are computed, 

respectively, as 

 

 
  














1121

2
21

2
1131

3332

arctan

arctan

arctan

rr

rrr

rr







                        (10) 

Finally, the points Ci, located by vectors Ci, are obtained taking into proper account the closure 

equations 





















0ˆ)(

)()(

)()(

2

2

iii

iiii

iiii

d

c

uBC

DCDC

BCBC

                           (11) 

On the other hand, the inverse position analysis is concerned with determining the actuated-

joint angles qi given the orientation of the moving platform with respect to the fixed platform. This 

analysis is somewhat trivial from a mathematical point of view; in fact, consider as an intermediate 

step that the coordinates of points Di can be obtained easily, upon the known rotation matrix 
0
R

m
, 

as 

i
m

i DD  R
0                             (12) 

where Di are the coordinates of the center of the i-th spherical joint as expressed in the moving 

reference frame xyz . After that, the angles qi are obtained by resorting to Eq. (2). 

 

 

5. Infinitesimal kinematics of the parallel wrist 
 

In this section the velocity and acceleration analyses of the spherical parallel manipulator are 

addressed by means of the screw theory. 

 
5.1 Input/Output equation of velocity 

 

Let 0m
O

m v00 andω  be the angular and linear velocity vectors of body m as measured from 
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body 0 taking O=P as the reference pole. The velocity state between bodies m and 0, the six-

dimensional vector 










 

0

m

m
O

m
m

O

ωω
V

0

0

0
0

v
 may be written through the RRRS-type limbs of the 

parallel wrist as a linear combination of the joint-rate velocities in the same leg as follows 

m
Oi

i
i

i
i

i
iiq V065

65
54

54
21

21
10 $$$$                   (13) 

or 

m
Oii V0ΩJ                               (14) 

where 

 655443322110 $$$$$$ iiiiiii J  is the screw-coordinate Jacobian matrix of the i-th limb 

 Tiiiii
ii q

6554433221
Ω is the matrix containing the joint-rate velocities in the i-th limb 

Please note that the screw 43 $i  is reciprocal to all the screws, excepting 10 $i
, in the same limb. 

Thus, the application of the Klein form {*;*}
1
 of 43 $i  to both sides of Eq. (13), with the 

reduction of terms, leads to 

   m
Oiiii q V0431043 ;$$;$                         (15) 

After a few computations, it follows that the I/O velocity equation of the parallel wrist is given 

by 

vBA mω0                             (16) 

where 

 )$()$()$( 4
3

34
2

34
1

3 DDDA  
















}$;${00

0}$;${0

00}$;${

1
3

04
3

3

1
2

04
2

3

1
1

04
1

3

B  

 T
qqq 321
v  

Likewise, the vector mω0 can be obtained considering that resorting to the central spherical 

joint it is possible to write an auxiliary vector equation as 

      m
OV032

32
21

21
10

10 $$$         (17) 

After, since the screws 10 $ , 21$  and 32 $  are reciprocal to each other, then it is evident that 

      0;$;$;$ 032021010  m
O

m
O

m
O VVV       (18) 

Casting into a matrix-vector form expressions (15) and (18) it follows that the Input/Output 

                                           
1
Let $1= (s1, s O1) and $2= (s2, s O2) be two elements of the Lie algebra se(3), which is isomorphic to the screw 

theory, of the Euclidian group SE(3). Then, the Klein form, denoted as {* ; *}, is defined as {$1 ; $2}= s1·s 

O1+ s2·s O2 
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equation of velocity is also given by 













0
v

I0
0B

ΔJ m
O

T V0                            (19) 

where 

 3221104
3

34
2

34
1

3 $$$$$$J  is the active screw-coordinate Jacobian matrix of the manipulator 







0I
I0

Δ  is a partitioned matrix defined by the zero matrix 0 and the identity matrix I that plays 

the role of an operator of polarity, Lipkin and Duffy 1985. 

 
5.2 Input/Output equation of acceleration 

 

Let 0m
O

m aω 00 and  be the angular and linear acceleration vectors of body m with respect to 

body 0, where the origin O=P is the reference pole. The reduced acceleration state between bodies 

m and 0, the six-dimensional vector 










 




0

m

m
O

mm
O

m
m
O

ω
ωa
ω

A
 0

000

0
0

v
, may be written through the 

RRRS-type limbs as follows 

m
Oii

i
i

i
i

i
iiq A065

65
54

54
21

21
10 $$$$  L                 (20) 

or 
m
Oiii A0LΩJ                             (21) 

where  Tiiiii
ii q 6554433221   Ω  is a matrix containing the joint-rate accelerations of 

the i-th limb and Li is the i-th Lie screw of acceleration which are computed as 

 
 

 
   65

65
54

54
65

65
54

54
43

43

65
65

54
54

43
43

32
32

65
65

54
54

43
43

32
32

21
21

65
65

54
54

21
21

10

$$$$$

$$$$

$$$$$

$$$$

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

iii q















 L

             (22) 

where the brackets [* *] denote the lie product of the Lie algebra se(3) of the Euclidean group 

SE(3). Furthermore, through the central spherical joint, the accelerator m
OA0  may be obtained as 

32
32

21
21

10
10

0 $$$   m
OA                     (23) 

Following the trend of the velocity analysis, the Input/Output equation of acceleration results in 

CaBA mω0                           (24) 

where 

 T
qqq 321
a  

      T

3
4
3

3
2

4
2

3
1

4
1

3 ;$;$;$ LLLC  is the complementary matrix of acceleration. 

Whereas according to the central spherical joint, the Input/Output equation of acceleration of 
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the parallel wrist may be obtained as 

















 

0
C

0
a

I0
0B

ΔJ m
O

T A0                          (25) 

 

 

6. Case study 
 

In this section a numerical example concerned with the forward kinematics of the robot is 

provided. Conveniently, the numerical example is subdivided into two parts: i) kinematics of the 

translational manipulator, ii) kinematics of the parallel wrist. Furthermore, SI units are used 

thorough the case study. 

 
6.1 Forward kinematics of the translational manipulator 

 

In the home position of the series-parallel manipulator the center of the movable cross body is 

located at the origin of the XYZ  reference frame. Furthermore, consider that the corresponding 

generalized coordinates are commanded to follow periodical functions given by q4=0.5sin(t)cos(t), 

q5=-0.75-0.5sin(t)cos(t) and q6=0.75sin(t)cos(t) where the interval for time t is given by 0≤t≤2π. 

Hence the position of point P with respect to the origin of the fixed reference frame XYZ results 

in P=(0.5sin(t)cos(t), -0.75-0.5sin(t)cos(t), 0.75sin(t)cos(t)). After, the computation of the velocity 

and acceleration of point P is straightforward. The benefits of a fully-decoupled mechanism are 

evident. 

 

6.2 Forward kinematics of the spherical parallel manipulator 
 

The values for the basic parameters of the parallel wrist are chosen as a=0.1414, b=0.1732, 

c=0.1803, d=0.2915, e=0.3354, A1=(0.15, 0.4, 0), A2=(-0.075, 0.4, -0.1299), A3=(-0.075, 0.4, 

0.1299), B1=(0.15, 0.3, 0), B2=(-0.075, 0.3, -0.1299), and B3=(-0.075, 0.3, 0.1299). Furthermore, at 

the time t=0 the unit vectors along the axes of the passive revolute joints are selected as: 

kikik ˆ5.0ˆ866.0ˆ,ˆ5.0ˆ866.0ˆ,ˆˆ
321  uuu . With these data, there are three resulting available 

real solutions for the forward displacement analysis. These are listed in Table 1. 

The next part of the exercise requires the application of the formulae developed to solve the 

forward infinitesimal kinematics of the parallel wrist. Let solution 1 of Table 1 be the home 

 

 
Table 1 Real solutions for the forward displacement analysis of the parallel wrist 

Sol. Coordinates 

1 

D1=(0.099, -0.1, 0) 

D2=(-0.05, -0.099, -0.086) 

D3=(-0.05, -0.098, 0.086) 

2 

D1=(-0.1, -0.099, 0) 

D2=(-0.069, 0.022, -0.121) 

D3=(0.05, -0.098, -0.086) 

3 D1=(0.099, -0.1, 0) 
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D2=(-0.05, -0.099, -0.086) 

D3=(0.069, -0.063, -0.121) 
 

 

 

 

Fig. 3 Time history of the components of the angular velocity and acceleration of the end-effector 

platform as measured from the fixed platform 

 

 

position of the robot, or in other words the configuration of the spherical parallel manipulator at 

the time t=0. Moreover, consider that the input joint angles are governed by periodical functions 

given by q1=-1.5sin(t)cos(t), q2=2.0944+sin(t)cos(t), and q3=1.0472-0.5sin(t)cos(t) in the interval 

0≤t≤2π. After, the corresponding resulting temporal behavior of the angular velocity and 

acceleration of the end-effector platform is provided in Fig. 3. 

 

 

7. Conclusions 
 

It is well known that the forward displacement analysis of the general Gough platform, a non-

redundant six-legged parallel manipulator introduced almost six decades ago, is one of the most 

challenging and complicated problems of modern kinematics. The development of series-parallel 

manipulator is a viable option to ameliorate such problem preserving some benefits of the original 

hexapod.  

In this work a series-parallel manipulator built with two different robot manipulators is 

introduced. The first mechanism is a fully-decoupled, fully-isotropic and singularity-free 

translational manipulator while the second manipulator is a parallel wrist with partially decoupled 

kinematics equipped with rotational generalized coordinates with the advantage that the parallel 
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wrist is free of revolute joints with axes intersecting at a common point. Hence, taking into 

account that a decoupled manipulator is a robot where the orientation of the end-effector platform 

may be computed disregarding the corresponding position, the proposed robot is decoupled series-

parallel manipulator. Simple kinematics and control are the main benefits of the proposed series-

parallel manipulator. Finally, in order to exemplify the method of kinematic analysis, a numerical 

example is included. 
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