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Abstract.  The aim of the present investigation is to examine the propagation of plane harmonic waves in 

transversely isotropic homogeneous magneto visco thermoelastic rotating medium with fractional order heat transfer 

and two temperature. It is found that, for two dimensional assumed model, there exist three types of coupled 

longitudinal waves (quasi-longitudinal, quasi-transverse and quasi-thermal) in frequency domain. phase velocities, 

specific loss, penetration depth, attenuation coefficients of various reflected waves are computed and depicted 

graphically. The effects of viscosity and fractional order parameter by varying different values are represented 

graphically. 
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1. Introduction 

 
Magneto-thermoelasticity deals with the interactions of the strain, temperature, and magnetic 

field. Its applications includes geophysics, for understanding the effects of the earth's magnetic field 

on seismic waves, damping of acoustic waves in a magnetic field, emission of electromagnetic 

radiations from nuclear devices, etc. Study of the plane wave propagation in a thermoelastic solid 

gained considerable importance because of its applications in the area of geophysics, nuclear fields, 

and related topics. In the last few decades, significant attention has been given in the area of 

magneto-thermoelastic harmonic plane wave propagation in a medium. 

Ting (2004) explored a surface wave propagation in an anisotropic rotating medium. Othman and 

Song (2006, 2008) presented different hypotheses about magneto-thermo-elastic waves in a 

homogeneous and isotropic medium. Kumar and Chawla (2011) discussed the plane wane 

propagation in the anisotropic three-phase lag model and two-phase lag model. Deswal and Kalkal 

(2015) discussed the problem in a surface suffering a time-dependent thermal shock for thermo-

viscoelastic interactions in a homogeneous, isotropic three-dimensional medium. 
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The effects of reflection and refraction are studied by Kumar and Gupta (2015) at the boundary 

of elastic and a thermoelastic diffusion media, for plane waves by expanding the Fick law with dual-

phase-lag diffusion model with delay times of both mass flow as well as the potential gradient. 

Besides, Kumar et al. (2016a) had depicted the effect of time and thermal and diffusion phase lags 

for axisymmetric heat supply in a ring by using Laplace and Hankel transform technique for the 

dual-phase-lag model for the transfer of heat and diffusion for upper and lower surfaces of the ring 

which were considered as traction free. 

Bayones and Abd-Alla (2017) discussed the 2D problem of thermoelasticity regarding 

thermoelastic wave propagation in a rotating medium under magnetic field and time-dependent heat 

source effects due to the thermomechanical source. Kumar and Kansal (2017) found reflected and 

refracted waves occurrence due to longitudinal and transverse wave’s incident implicitly at a plane 

interface between uniform elastic solid half-space and magneto-thermoelastic diffusive solid half-

space with voids as a function of the angle of incidence and frequency of the incident wave. Maitya 

et al. (2017) presented plane wave propagation in a rotating elastic fiber-reinforced medium with 

magnetic and thermal fields under GN –I and II type theories. Said (2017) investigated the effect of 

hydrostatic initial stress and the gravity field on a thermoelastic medium which is fiber-reinforced 

with its own heat and constant motion by three-phase-lag model and types II G-N theory. Lata (2018a, 

b) studied the effect of energy dissipation on plane waves in sandwiched layered thermoelastic 

medium of uniform thickness, with combined effects of two temperature, rotation, and Hall current 

in the context of GN Type-II and Type-III theory of thermoelasticity. 

Alesemi (2018) demonstrated the efficiency of the thermal relaxation time depending upon LS 

theory, Coriolis and Centrifugal Forces on the reflection coefficients of plane waves in an anisotropic 

magneto-thermoelastic rotating with stable angular velocity medium. Othman et al. (2019) dealt 

with the deformation of an infinite micro stretch generalized thermoelastic rotating medium under 

the effects of initially applied magnetics and gravitational field in GN Theory of thermoelasticity. 

Despite of this several researchers worked on different theory of thermoelasticity as, Marin (1994, 

1995, 2009, 2010), Craciun and Soós (2006), Abbas and Marin (2017), Mohamed et al. (2009), 

Craciun et al. (2014), Kumar et al. (2016b), Othman et al. (2017), Ezzat and El-Bary (2017), Sharma 

and Marin (2014), Youssef (2013, 2016), Mahmoud et al. (2015), Lata et al. (2016), Mahmoud 

(2012), Othman and Marin (2017), Lata and Kaur (2019a, b), Riaz et al. (2019), Bhatti et al. (2019). 

Abd-Elaziz et al. (2019), Kaur and Lata (2019a, b, 2020), Lata et al. (2020a, b) and Lata and Kaur 

(2019a). 

In spite of these, not much work has been carried out in harmonic plane wave propagation due 

to fractional order heat transfer in transversely isotropic magneto visco thermoelastic rotating 

medium with two temperature. Keeping these considerations in mind plane harmonic wave 

propagation problem in transversely isotropic magneto visco thermoelastic rotating medium with 

viscosity is studied by using reflection techniques. 

 

 

2. Basic equations 
 

Following Kumar et al. (2017), The simplified Maxwell’s linear equation of electrodynamics for 

a slowly moving and perfectly conducting elastic solid are 

 

𝑐𝑢𝑟𝑙 ℎ⃗ =  𝑗 + 𝜀0

𝜕𝐸⃗ 

𝜕𝑡
, (1) 
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𝑐𝑢𝑟𝑙 𝐸⃗ = − 𝜇0

𝜕ℎ⃗ 

𝜕𝑡
, (2) 

 

𝐸⃗ = − 𝜇0 (
𝜕𝑢⃗ 

𝜕𝑡
+ 𝐻⃗⃗ 0), (3) 

 

𝑑𝑖𝑣 ℎ⃗ = 0. (4) 

 

The constitutive relations for anisotropic thermoelastic medium are given by 

 

𝑡𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝑒𝑘𝑙 − 𝛽𝑖𝑗𝑇. (5) 

 

Equation of motion as described by Schoenberg and Censor (1973) for a transversely isotropic 

thermoelastic medium rotating uniformly with an angular velocity 𝛀 =  Ω𝒏, where n is a unit vector 

representing the direction of the axis of rotation and taking into account Lorentz force 

 

𝑡𝑖𝑗,𝑗 + 𝐹𝑖 =  𝜌{𝑢̈𝑖 + (Ω × (Ω × u)𝑖 + (2Ω × 𝑢̇)𝑖 }, (6) 

 

where 𝐹𝑖 = 𝜇0(𝑗 × 𝐻⃗⃗ 0) are the components of Lorentz force, 𝐻⃗⃗ 0 is the external applied magnetic 

field intensity vector, 𝑗  is the current density vector, 𝑢⃗  is the displacement vector, 𝜇0  and 𝜀0  

are the magnetic and electric permeabilities respectively and 𝑡𝑖𝑗 the component of Maxwell stress 

tensor. The terms Ω × (Ω × u) and 2Ω × 𝑢̇ are the additional centripetal acceleration due to the 

time-varying motion and Coriolis acceleration respectively. The heat conduction equation following 

Youssef (2006, 2010) is 
 

𝐾𝑖𝑗 (1 +
(𝜏𝑡)

𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼
) 𝑇̇,𝑗𝑖 + 𝐾𝑖𝑗

∗ (1 +
(𝜏𝑣)

𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼
)𝑇,𝑗𝑖

= (1 +
(𝜏𝑞)

𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼
+ 

(𝜏𝑞)
2𝛼

2𝛼!

𝜕2𝛼

𝜕𝑡2𝛼
) [𝜌𝐶𝐸𝑇̈ + 𝛽𝑖𝑗𝑇0ё𝑖𝑗], 

where 

{

0 < 𝛼 < 1  for weak conductivity,
𝛼 = 1 for normal conductivity,

1 < 𝛼 ≤ 2 for strong conductivity,
 

𝛽𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝛼𝑖𝑗 , 

𝑒𝑖𝑗 = 
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖),                                  𝑖, 𝑗 = 1, 2, 3. 

𝛽𝑖𝑗 = 𝛽𝑖𝛿𝑖𝑗 ,  𝐾𝑖𝑗 = 𝐾𝑖𝛿𝑖𝑗 ,                   𝑖  is  not  summed. 

(7) 

 

Here 𝐶𝑖𝑗𝑘𝑙  are elastic parameters and having symmetry (𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑘𝑙𝑖𝑗 = 𝐶𝑗𝑖𝑘𝑙 = 𝐶𝑖𝑗𝑙𝑘). The 

basis of these symmetries of  𝐶𝑖𝑗𝑘𝑙  are 

i. The stress tensor is symmetric, which is only possible if (𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑗𝑖𝑘𝑙) 

ii. If a strain energy density exists for the material, the elastic stiffness tensor must 

satisfy 𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑘𝑙𝑖𝑗 
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iii. From stress tensor and elastic stiffness tensor symmetries infer (𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑖𝑗𝑙𝑘) and 𝐶𝑖𝑗𝑘𝑙 =

 𝐶𝑘𝑙𝑖𝑗 = 𝐶𝑗𝑖𝑘𝑙 = 𝐶𝑖𝑗𝑙𝑘 

 

 𝛽𝑖𝑗 is the thermal elastic coupling tensor, 𝑇 is the absolute temperature, 𝑇0 is the reference 

temperature, 𝜑 is the conductive temperature, 𝑡𝑖𝑗 are the components of the stress tensor, 𝑒𝑖𝑗 are 

the components of strain tensor, 𝑢𝑖 are the displacement components, 𝜌  is the density, 𝐶𝐸  is the 

specific heat, 𝐾𝑖𝑗 is the materialistic constant, 𝛼𝑖𝑗 is the coefficient of linear thermal expansion, 

𝜏0 is the relaxation time, which is the time required to maintain steady-state heat conduction in an 

element of volume of an elastic body when sudden temperature gradient is imposed on that volume 

element, 𝛿𝑖𝑗 is the Kronecker delta, Ω is the angular velocity of the solid, 𝜏𝑡 is the phase lag of 

heat flux, 𝜏𝑣 is the phase lag of temperature gradient, 𝜏𝑞 is the phase lag of thermal displacement, 

𝛼 is the fractional parameter. 

 

 

3. Formulation and solution of the problem 
 

We consider a homogeneous transversely isotropic magneto-visco-thermoelastic medium 

initially at a uniform temperature 𝑇0 . Following Kaliski (1963) the viscoelastic nature of the 

material is described by the Voigt model of linear viscoelasticity as 
 

𝐶𝑖̅𝑗𝑘𝑙 = 𝐶𝑖𝑗𝑘𝑙 (1 + 𝜏
𝜕

𝜕𝑡
), (8) 

 

where, 𝜏 is viscosity. 

Now using (8) in (5) we have 

 

𝑡𝑖𝑗 = 𝐶𝑖̅𝑗𝑘𝑙𝑒𝑘𝑙 − 𝛽𝑖𝑗𝑇. (9) 

 

Let the medium be permeated by an initial magnetic field 𝐻⃗⃗ 0 = (0,𝐻0, 0) acting along 𝑡ℎ𝑒 𝑦-

axis. The rectangular Cartesian coordinate system (𝑥, 𝑦, 𝑧) having origin on the surface (𝑧 = 0) 

with 𝑧-axis pointing vertically into the medium is introduced. In addition, we consider that 
 

𝛀 = (0, Ω, 0). 
 

From the generalized Ohm’s law (Lata and Kaur 2018) 
 

𝑬 = −𝜇0𝐻0(−𝑤̈, 0, 𝑢̈) (10) 

 

𝒋 = (−
𝜕𝐻𝑦

𝜕𝑧
− 𝜀0𝐸̇𝑥 , 0, −

𝜕𝐻𝑦

𝜕𝑥
− 𝜀0𝐸̇𝑧). (11) 

 

𝑭 = (𝜇0𝐻0
2 (

𝜕𝑒

𝜕𝑥
− 𝜀0𝜇0𝑢̈) , 0, 𝜇0𝐻0

2 (
𝜕𝑒

𝜕𝑧
− 𝜀0𝜇0𝑤̈)) (12) 

 

In addition, the equations of displacement vector (𝑢, 𝑣, 𝑤) and conductive temperature 𝜑 for 

transversely isotropic magneto visco thermoelastic solid 

292



 

 

 

 

 

 

Reflection of plane harmonic wave in rotating media with fractional order heat transfer 

𝑢 = 𝑢(𝑥, 𝑧, 𝑡), 𝑣 = 0,𝑤 = 𝑤(𝑥, 𝑧, 𝑡) 𝑎𝑛𝑑 𝜑 = 𝜑(𝑥, 𝑧, 𝑡). (13) 
 

following Slaughter (2002) and using appropriate transformations on (7) and (9) with the aid of (12)-

(13), yield 
 

𝐶1̅1

𝜕2𝑢

𝜕𝑥2
+ 𝐶1̅3

𝜕2𝑤

𝜕𝑥𝜕𝑧
+ 𝐶4̅4 (

𝜕2𝑢

𝜕𝑧2
+ 

𝜕2𝑤

𝜕𝑥𝜕𝑧
) − 𝛽1 

𝜕

𝜕𝑥
{𝜑 − (𝑎1

𝜕2𝜑

𝜕𝑥2
+ 𝑎3

𝜕2𝜑

𝜕𝑧2
)} 

+𝜇0𝐻0
2 (

𝜕𝑒

𝜕𝑥
− 𝜀0𝜇0𝑢̈) = 𝜌 (

𝜕2𝑢

𝜕𝑡2 − 𝛺2𝑢 + 2𝛺
𝜕𝑤

𝜕𝑡
), 

(14) 

 

(𝐶1̅3 + 𝐶4̅4 )
𝜕2𝑢

𝜕𝑥𝜕𝑧
+ 𝐶4̅4

𝜕2𝑤

𝜕𝑥2
+ 𝐶3̅3 

𝜕2𝑤

𝜕𝑧2
− 𝛽3 

𝜕

𝜕𝑧
{𝜑 − (𝑎1

𝜕2𝜑

𝜕𝑥2
+ 𝑎3

𝜕2𝜑

𝜕𝑧2
)} 

+𝜇0𝐻0
2 (

𝜕𝑒

𝜕𝑧
− 𝜀0𝜇0𝑤̈) = 𝜌 (

𝜕2𝑤

𝜕𝑡2
− 𝛺2𝑤 − 2𝛺

𝜕𝑢

𝜕𝑡
), 

(15) 

 

𝐾1 (1 +
(𝜏𝑡)

𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼
)

𝜕2𝜑

𝜕𝑥2
+ 𝐾3 (1 +

(𝜏𝑡)
𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼
)

𝜕2𝜑̇

𝜕𝑧2
 

+𝐾1
∗ (1 +

(𝜏𝑣)
𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼
)

𝜕2𝜑

𝜕𝑥2
+ 𝐾3

∗ (1 +
(𝜏𝑣)

𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼
)

𝜕2𝜑

𝜕𝑧2
 

= (1 +
(𝜏𝑞)

𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼
+ 

(𝜏𝑞)
2𝛼

2𝛼!

𝜕2𝛼

𝜕𝑡2𝛼
) 

    [𝜌𝐶𝐸

𝜕2

𝜕𝑡2
{𝜑 − (𝑎1

𝜕2𝜑

𝜕𝑥2
+ 𝑎3

𝜕2𝜑

𝜕𝑧2
)} + 𝑇0 {𝛽1

𝜕𝑢̈

𝜕𝑥
+ 𝛽1

𝜕𝑤̈

𝜕𝑧
} + 𝑏𝑇0𝜙̈], 

(16) 

 

and 
 

𝑡11 = 𝐶1̅1𝑒11  +  𝐶1̅3𝑒13 − 𝛽1 𝑇, (17) 

 

𝑡33 = 𝐶1̅3𝑒11  +  𝐶3̅3𝑒33 − 𝛽3 𝑇, (18) 

 

𝑡13 = 2𝐶4̅4𝑒13, (19) 
 

𝛽1 = (𝐶1̅1 + 𝐶1̅2)𝛼1 + 𝐶1̅3𝛼3, 

𝛽3 = 2𝐶1̅3𝛼1 + 𝐶3̅3𝛼3, 

𝑒 =
𝜕𝑢

𝜕𝑥
+

𝜕𝑤

𝜕𝑧
 

 

To simplify the solution, mention below dimensionless quantities are used 

 

𝑥′ = 
𝑥

𝐿
,           𝑧′ = 

𝑧

𝐿
,                𝑢′ = 

𝜌𝑐1
2

𝐿𝛽1𝑇0
𝑢,            𝑤′ = 

𝜌𝑐1
2

𝐿𝛽1𝑇0
𝑤,          𝑡′ = 

𝑐1
𝐿

𝑡, 

𝑇′ = 
𝑇

𝑇0
,         𝑡11

′ = 
𝑡11

𝛽1𝑇0
, 𝑡33

′ = 
𝑡33

𝛽1𝑇0
,               𝑡31

′ = 
𝑡31

𝛽1𝑇0
,               ℎ′ =

ℎ

𝐻0
, 

Ω′ =
L

𝐶1
Ω,      (𝜏′, 𝜏𝑇

′ , 𝜏𝑣
′ , 𝜏𝑞

′ , 𝑡′) =
𝑐1
𝐿

(𝜏, 𝜏𝑇 , 𝜏𝑣 , 𝜏𝑞 , 𝑡). 

(20) 
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Making use of (20) in Eqs. (14)-(16), after suppressing the primes, yield 

 

[(1 + 𝜏
𝜕

𝜕𝑡
) + 𝛿5]

𝜕2𝑢

𝜕𝑥2
+ [𝛿4 (1 + 𝜏

𝜕

𝜕𝑡
) + 𝛿5]

𝜕2𝑤

𝜕𝑥𝜕𝑧
+ 𝛿2 (1 + 𝜏

𝜕

𝜕𝑡
) (

𝜕2𝑢

𝜕𝑧2
+ 

𝜕2𝑤

𝜕𝑥𝜕𝑧
) 

−
𝜕

𝜕𝑥
{𝜑 − (𝑎1

𝜕2𝜑

𝜕𝑥2
+ 𝑎3

𝜕2𝜑

𝜕𝑧2
)} = (

𝜀0𝜇0
2𝐻0

2

𝜌
+ 1)

𝜕2𝑢

𝜕𝑡2
− Ω2𝑢 + 2Ω

𝜕𝑤

𝜕𝑡
, 

(21) 

 

[𝛿1 (1 + 𝜏
𝜕

𝜕𝑡
) + 𝛿5]

𝜕2𝑢

𝜕𝑥𝜕𝑧
+ 𝛿2 (1 + 𝜏

𝜕

𝜕𝑡
)
𝜕2𝑤

𝜕𝑥2
+ [𝛿3 (1 + 𝜏

𝜕

𝜕𝑡
) + 𝛿5]

𝜕2𝑤

𝜕𝑧2
 

−
𝛽3

𝛽1

𝜕

𝜕𝑧
{𝜑 − (𝑎1

𝜕2𝜑

𝜕𝑥2
+ 𝑎3

𝜕2𝜑

𝜕𝑧2
)} = (

𝜀0𝜇0
2𝐻0

2

𝜌
+ 1)

𝜕2𝑤

𝜕𝑡2
− 𝛺2𝑤 − 2𝛺

𝜕𝑢

𝜕𝑡
, 

(22) 

 

[1 +
𝐶1

𝐿

𝜏𝑇
𝛼

𝛼!

𝜕𝛼+1

𝜕𝑡𝛼+1
] [𝐾1

𝜕2

𝜕𝑥2
+ 𝐾3

𝜕2

𝜕𝑧2
] 𝜑 + [1 +

𝜏𝑣
𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼
] [𝐾1

∗
𝜕2

𝜕𝑥2
+ 𝐾3

∗
𝜕2

𝜕𝑧2
] 𝜑 

= [1 +
𝜏𝑞
𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼
+

𝜏𝑞
2𝛼

2𝛼!

𝜕2𝛼

𝜕𝑡2𝛼
] 

    [𝐶1
2𝜌𝐶𝐸

𝜕2

𝜕𝑡2
{𝜑 − (𝑎1

𝜕2𝜑

𝜕𝑥2
+ 𝑎3

𝜕2𝜑

𝜕𝑧2
)} + 𝛽1𝑇0 (𝛽1

𝜕𝑢̈

𝜕𝑥
+ 𝛽3

𝜕𝑤̈

𝜕𝑧
)], 

(23) 

 

where 
 

𝛿1 = 
𝐶13 + 𝐶44

𝐶11
, 𝛿2 = 

𝐶44

𝐶11
, 𝛿3 = 

𝐶33

𝐶11
, 𝛿4 = 

𝐶13

𝐶 11
, 𝛿5 =  

𝛽1𝑇0𝜇0𝐻0
2

𝐿𝜌2𝐶1
4  .  

 

Making use of dimensionless quantities defined by (20) in Eqs. (17)-(19) and after suppressing 

the primes, yields 
 

𝑡11(x, z, t) = (1 + 𝜏
𝜕

𝜕𝑡
)
𝜕𝑢

𝜕𝑥
 + 𝛿4 (1 + 𝜏

𝜕

𝜕𝑡
)
𝜕𝑤

𝜕𝑧
− {𝜑 − (𝑎1

𝜕2𝜑

𝜕𝑥2
+𝑎3

𝜕2𝜑

𝜕𝑧2
)} (24) 

 

𝑡33(x, z, t) = 𝛿4 (1 + 𝜏
𝜕

𝜕𝑡
)
𝜕𝑢

𝜕𝑥
 + 𝛿3 (1 + 𝜏

𝜕

𝜕𝑡
)
𝜕𝑤

𝜕𝑧
−

𝛽3 

𝛽1 
{𝜑 − (𝑎1

𝜕2𝜑

𝜕𝑥2
+𝑎3

𝜕2𝜑

𝜕𝑧2
)}, (25) 

 

𝑡13(x, z, t) = 𝛿2 (1 + 𝜏
𝜕

𝜕𝑡
) (

𝜕𝑢

𝜕𝑧
+ 

𝜕𝑤

𝜕𝑥
), (26) 

 

 

4. Plane-wave propagation 
 

We pursue plane wave to be a time-harmonic solution of the equations of the form 

 

(

𝑢
𝑤
𝜑

) =  (
𝑈
𝑊
𝜑∗

) 𝑒𝑖(𝜉(𝑥𝑛1+𝑧 𝑛3)−𝜔𝑡) (27) 

294
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where 𝑛1 = sin 𝜃 , 𝑛3 = cos 𝜃 denotes the projection of wave normal on to the x-z plane, 𝜉 and 

𝜔 are the wavenumbers and angular frequency of plane waves propagating in x-z plane respectively. 

Upon using Eq. (27) in Eqs. (21)-(23) we get 

 

𝑈[𝜁1𝜉
2 + 𝜁2] + 𝑊[𝜁3𝜉

2 + 𝜁4] + 𝜑∗(𝜁5𝜉 + 𝜁6𝜉
3) = 0, 

𝑈[𝜁7𝜉
2 − 𝜁4] + 𝑊[𝜁8𝜉

2 + 𝜁2] + 𝜑∗(𝜁9𝜉 + 𝜁10𝜉
3) = 0, 

−𝜁11𝑈 − 𝜁12𝑊 + 𝜑∗[𝜁13𝜉
2 + 𝜁14𝜉

4] = 0. 
 

and then eliminating 𝑈, 𝑊and 𝜑∗
 from the resulting equations yields the following characteristic 

equation 

(𝐴𝜉6 + 𝐵𝜉4 + 𝐶𝜉2 + 𝐷)𝜉2 = 0, (28) 
 

Where 

 

𝐴 = 𝜁1𝜁14𝜁8 − 𝜁3𝜁7𝜁14, 
𝐵 = 𝜁1𝜁8𝜁13 + 𝜁8𝜁2𝜁14 + 𝜁2𝜁14𝜁1 + 𝜁12𝜁1𝜁10 − 𝜁3𝜁7𝜁13 
         −𝜁4𝜁7𝜁14 − 𝜁3𝜁4𝜁14 − 𝜁3𝜁10𝜁11 − 𝜁6𝜁7𝜁12 + 𝜁11𝜁8𝜁6, 
𝐶 =  𝜁2𝜁8𝜁13 + 𝜁1𝜁2𝜁13 + 𝜁2𝜁2𝜁14 + 𝜁1𝜁12𝜁9 + 𝜁12𝜁10𝜁2 − 𝜁4𝜁7𝜁13 
         −𝜁4𝜁4𝜁14 − 𝜁3𝜁11𝜁9 − 𝜁7𝜁12𝜁5 − 𝜁6𝜁4𝜁12 + 𝜁5𝜁8𝜁11 − 𝜁3𝜁11𝜁9 + 𝜁6𝜁11𝜁2, 
𝐷 =  −𝜁2𝜁2𝜁13 + 𝜁1𝜁12𝜁9 − 𝜁4𝜁4𝜁13 − 𝜁11𝜁4𝜁9 − 𝜁4𝜁12𝜁5 + 𝜁11𝜁2𝜁5, 
𝜁1 = −(1 + 𝛿5)(1 − 𝑖𝜔𝜏)𝑛1

2 − 𝛿2(1 − 𝑖𝜔𝜏)𝑛3
2, 

𝜁2 = (
𝜀0𝜇0

2𝐻0
2

𝜌
+ 1)𝜔2 + Ω2, 

𝜁3 = (𝛿4 + 𝛿5 + 𝛿2)(1 − 𝑖𝜔𝜏)𝑛1𝑛3, 
𝜁4 = −2𝜔Ω𝑖, 
𝜁5 = 𝑖𝑛1, 
𝜁6 = 𝑛1𝑖(𝑎1𝑛1

2 + 𝑎3𝑛3
2), 

𝜁7 = (𝛿1 + 𝛿5)(1 − 𝑖𝜔𝜏)𝑛1𝑛3, 
𝜁8 = −𝛿2(1 − 𝑖𝜔𝜏)𝑛1

2 − (𝛿3 + 𝛿5)(1 − 𝑖𝜔𝜏)𝑛3
2, 

𝜁9 = −𝑖
𝛽3

𝛽1
𝑛3, 

𝜁10 = −
𝛽3

𝛽1
𝑛3𝑖(𝑎1𝑛1

2 + 𝑎3𝑛3
2) 

𝜁11 = −
𝛽1

2𝑇0

𝜌
𝜔2𝑖𝑛1 , 

𝜁12 =
𝛽1𝛽3

𝜌
𝑇0𝜔

2𝑖𝑛3, 

𝜁13 = [1 +
𝐶1

𝐿

𝜏𝑇
𝛼

𝛼!
(𝑖𝜔)𝛼+1] [−𝐾1𝑛1

2 − 𝐾3𝑛3
2] + [1 +

𝜏𝑣
𝛼

𝛼!
(𝑖𝜔)𝛼] [−𝐾1

∗𝑛1
2 + 𝐾3

∗𝑛3
2] 

            −𝐶1
2𝜌𝐶𝐸𝜔2 [1 +

𝜏𝑞
𝛼

𝛼!
(𝑖𝜔)𝛼 +

𝜏𝑞
2𝛼

2𝛼!
(𝑖𝜔)2𝛼] , 

𝜁14 = (𝑎1𝑛1
2 + 𝑎3𝑛3

2)𝜁13, 
 

The six non zero roots of Eq. (28) give six roots of 𝜉 that is, ±𝜉1 ,±𝜉2 and ±𝜉3, in which we 
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are interested in those roots whose imaginary parts are positive. Corresponding to these roots, there 

exist three waves corresponding to descending order of their velocities namely a quasi-longitudinal 

(QL), quasi-transverse (QTS) and quasi-thermal waves (QT). The phase velocities, attenuation 

coefficients, specific loss and penetration depth of these waves are obtained by the following 

expressions. 
 

4.1 Phase velocity 
 

The phase velocities are given by 
 

𝑉𝑖 = 
𝜔

𝑅𝑒(𝜉𝑖)
,          i =  1, 2, 3 

 

where 𝑉1, 𝑉2, 𝑉3 are the velocities of QL, QTS, and QT waves respectively. 

 

4.2 Attenuation coefficient 
 

The attenuation coefficient is defined as 
 

𝑄𝑖 = 𝐼𝑚𝑔(𝜉𝑖),          i =  1, 2, 3. 
 

where 𝑄1, 𝑄2, 𝑄3 are the attenuation coefficients of QL, QTS, and QT waves respectively. 

 

4.3 Specific loss 
 

The specific loss is the ratio of energy (∆W) dissipated in taking a specimen through the cycle, 

to elastic energy (W) stored in a specimen when the strain is maximum. The specific loss is the most 

direct method of defining internal friction for a material. For a sinusoidal plane wave of small 

amplitude, it was shown by Kaliski (1963) that specific loss 
Δ𝑊

𝑊
 equals 4π times the absolute value 

of the imaginary part of 𝜉 to the real part of 𝜉 i.e. 
 

𝑊𝑖 = (
Δ𝑊

𝑊
) 𝑖 = 4𝜋 |

𝐼𝑚𝑔(𝜉𝑖)

𝑅𝑒(𝜉𝑖)
| ,           i =  1, 2, 3. 

 

where 𝑊1,𝑊2,𝑊3 are specific loss of QL, QTS, and QT waves respectively. 

 

4.4 Penetration depth 
 

The penetration depth is defined by 
 

𝑆𝑖 =
1

𝐼𝑚𝑔(𝜉𝑖)
,           i =  1, 2, 3. 

 

where 𝑆1, 𝑆2, 𝑆3 are penetration depth of QL, QTS, and QT waves respectively. 
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Reflection of plane harmonic wave in rotating media with fractional order heat transfer 

 

Fig. 1 Geometry of the problem 

 

 

5. Reflection and transmission at the boundary surfaces 
 
We consider a homogeneous transversely isotropic magneto visco thermoelastic half-space 

occupying the region z ≥ 0. Incident quasi-longitudinal or quasi-transverse or quasithermal waves 

at the stress free, thermally insulated surface (z = 0) will generate reflected QL, reflected QTS and 

reflected QT waves in the half-space z > 0. The total displacements, conductive temperature are 

given by 

𝑢 = ∑ 𝐴𝑗𝑒
𝑖𝑀𝑗

6

𝑗=1
, (29) 

 

𝑤 = ∑ 𝑑𝑗𝐴𝑗𝑒
𝑖𝑀𝑗

6

𝑗=1
, (30) 

 

𝜑 = ∑ 𝑙𝑗𝐴𝑗𝑒
𝑖𝑀𝑗

6

𝑗=1
,           𝑗 = 1,2,3, … ,6 (31) 

 

Where 

𝑀𝑗 =  𝜔𝑡 − 𝜉𝑗(𝑥𝑛1𝑗 − 𝑧𝑛3𝑗),           𝑗 = 1, 2, 3, 

𝑀𝑗 =  𝜔𝑡 − 𝜉𝑗(𝑥𝑛1𝑗 + 𝑧𝑛3𝑗),           𝑗 = 4, 5, 6. 
 

Here subscripts j = 1, 2, 3 respectively denote the quantities corresponding to incident QL, QTS 

and QT-mode, whereas the subscripts j = 4, 5, 6 denote the corresponding reflected waves, 𝜉𝑗 are 

the roots obtained from Eq. (25), 𝑛1𝑗 = sin 𝜃𝑗; 𝑛3𝑗 = cos 𝜃𝑗. 

 

𝑑𝑗 = 
(𝜁2𝜁13𝑗 + 𝜁12𝑗𝜁9𝑗) + (𝜁8𝑗𝜁13𝑗+𝜁2𝜁14𝑗 + 𝜁12𝑗𝜁10𝑗)𝜉𝑗

2 + 𝜁8𝑗𝜁14𝑗𝜉𝑗
4

𝜁7𝑗𝜁14𝑗𝜉𝑗
4 + (𝜁1𝑗𝜁13𝑗+𝜁2𝜁14𝑗 + 𝜁6𝑗𝜁11𝑗)𝜉𝑗

2 − (𝜁2𝜁13𝑗 + 𝜁11𝑗𝜁5𝑗)
,                  j = 1, 2, 3. 
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𝑙𝑗 = 
(𝜁2

2 + 𝜁4
2) + (𝜁2𝜁1𝑗 + 𝜁2𝜁8𝑗 + 𝜁4𝜁3𝑗 − 𝜁4𝜁7𝑗)𝜉𝑗

2 + (𝜁4𝑗𝜁8𝑗 − 𝜁7𝑗𝜁3𝑗)𝜉𝑗
4

𝜁7𝑗𝜁14𝑗𝜉𝑗
4 + (𝜁1𝑗𝜁13𝑗+𝜁2𝜁14𝑗 + 𝜁6𝑗𝜁11𝑗)𝜉𝑗

2 − (𝜁2𝜁13𝑗 + 𝜁11𝑗𝜁5𝑗)
,         j = 1, 2, 3. 

𝑑𝑗 =  
(𝜁2𝜁13𝑗 − 𝜁12𝑗𝜁9𝑗) + (𝜁8𝑗𝜁13𝑗+𝜁2𝜁14𝑗 + 𝜁12𝑗𝜁10𝑗)𝜉𝑗

2 + 𝜁8𝑗𝜁14𝑗𝜉𝑗
4

−𝜁7𝑗𝜁14𝑗𝜉𝑗
4 + (𝜁1𝑗𝜁13𝑗+𝜁2𝜁14𝑗 + 𝜁6𝑗𝜁11𝑗)𝜉𝑗

2 − (𝜁2𝜁13𝑗 + 𝜁11𝑗𝜁5𝑗)
,               j = 4, 5, 6. 

𝑙𝑗 = 
(𝜁2

2 + 𝜁4
2) + (𝜁2𝜁1𝑗 + 𝜁2𝜁8𝑗 − 𝜁4𝜁3𝑗 + 𝜁4𝜁7𝑗)𝜉𝑗

2 + (𝜁4𝑗𝜁8𝑗 + 𝜁7𝑗𝜁3𝑗)𝜉𝑗
4

−𝜁7𝑗𝜁14𝑗𝜉𝑗
4 + (−𝜁1𝑗𝜁13𝑗+𝜁2𝜁14𝑗 + 𝜁6𝑗𝜁11𝑗)𝜉𝑗

2 − (𝜁2𝜁13𝑗 + 𝜁11𝑗𝜁5𝑗)
,          j = 4, 5, 6. 

 

 

6. Boundary conditions 
 

The dimensionless boundary conditions at the free surface z = 0, are given by 
 

𝑡33 = 0, (32) 

 

𝑡31 = 0, (33) 

 
𝜕𝜑

𝜕𝑧
= 0. (34) 

 

Making use of Eq. (26) into the boundary conditions Eqs. (32)-(34), and using Eqs. (29)-(31) we 

obtain 
 

∑𝐴𝑗𝑒
𝑖(𝜔𝑡−𝜉𝑗(𝑥𝑠𝑖𝑛𝜃𝑗))

3

𝑗=1

[−𝛿4(1 − 𝑖𝜔𝜏)𝑖𝜉𝑗𝑠𝑖𝑛𝜃𝑗 + 𝛿3(1 − 𝑖𝜔𝜏)𝑖𝑑𝑗𝜉𝑗𝑐𝑜𝑠𝜃𝑗

−
𝛽3

𝛽1
𝑙𝑗(1 + 𝑎1𝜉𝑗

2 sin2 𝜃𝑗 + 𝑎3𝜉𝑗
2 cos2 𝜃𝑗)] 

+∑𝐴𝑗𝑒
𝑖(𝜔𝑡−𝜉𝑗(𝑥𝑠𝑖𝑛𝜃𝑗))

6

𝑗=4

[−𝛿4(1 − 𝑖𝜔𝜏)𝑖𝜉𝑗𝑠𝑖𝑛𝜃𝑗 − 𝛿3(1 − 𝑖𝜔𝜏)𝑖𝑑𝑗𝜉𝑗𝑐𝑜𝑠𝜃𝑗

−
𝛽3

𝛽1
𝑙𝑗(1 + 𝑎1𝜉𝑗

2 sin2 𝜃𝑗 + 𝑎3𝜉𝑗
2 cos2 𝜃𝑗)] = 0, 

(35) 

 

∑𝐴𝑗𝑒
𝑖(𝜔𝑡−𝜉𝑗(𝑥𝑠𝑖𝑛𝜃𝑗))

3

𝑗=1

[𝜉𝑗𝑐𝑜𝑠𝜃𝑗 − 𝑑𝑗𝜉𝑗𝑠𝑖𝑛𝜃𝑗] 

−∑𝐴𝑗𝑒
𝑖(𝜔𝑡−𝜉𝑗(𝑥𝑠𝑖𝑛𝜃𝑗))

6

𝑗=4

[𝜉𝑗𝑐𝑜𝑠𝜃𝑗 + 𝑑𝑗𝜉𝑗𝑠𝑖𝑛𝜃𝑗] = 0, 

(36) 

 

∑𝐴𝑗𝑒
𝑖(𝜔𝑡−𝜉𝑗(𝑥𝑠𝑖𝑛𝜃𝑗))

3

𝑗=1

[𝑖𝑙𝑗𝜉𝑗𝑐𝑜𝑠𝜃𝑗] − ∑𝐴𝑗𝑒
𝑖(𝜔𝑡−𝜉𝑗(𝑥𝑠𝑖𝑛𝜃𝑗))

6

𝑗=4

[𝑖𝑙𝑗𝜉𝑗𝑐𝑜𝑠𝜃𝑗] = 0, (37) 

 

The Eqs. (35)-(37) are satisfied for all values of 𝑥, therefore we have 
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𝑀1(𝑥, 0) = 𝑀2(𝑥, 0) = 𝑀3(𝑥, 0) = 𝑀4(𝑥, 0) = 𝑀5(𝑥, 0) = 𝑀6(𝑥, 0) (38) 

 

From Eqs. (26) and (33), we obtain 
 

𝜉1𝑠𝑖𝑛𝜃1 = 𝜉2𝑠𝑖𝑛𝜃2 = 𝜉3𝑠𝑖𝑛𝜃3 = 𝜉4𝑠𝑖𝑛𝜃4 = 𝜉5𝑠𝑖𝑛𝜃5 = 𝜉6𝑠𝑖𝑛𝜃6 (39) 

 

which is the form of Snell’s law for the stress-free, the thermally insulated surface of transversely 

isotropic magneto-visco-thermoelastic medium with rotation. Eqs. (35)-(37) and (39) yield 
 

∑ 𝑋𝑖𝑗𝐴𝑗 + ∑ 𝑋𝑖𝑗𝐴𝑗 = 0,         (𝑖 = 1,2,3)
6

𝑗=4

3

𝑗=1
 (40) 

 

Where for p = 1, 2, 3 we have 
 

𝑋1𝑝 = −𝛿4(1 − 𝑖𝜔𝜏)𝑖𝜉𝑝𝑠𝑖𝑛𝜃𝑝 + 𝛿3(1 − 𝑖𝜔𝜏)𝑖𝑑𝑝𝜉𝑝𝑐𝑜𝑠𝜃𝑝 

             −
𝛽3

𝛽1
𝑙𝑝(1 + 𝑎1𝜉𝑝

2 sin2 𝜃𝑝 + 𝑎3𝜉𝑝
2 cos2 𝜃𝑝) 

𝑋2𝑝 = 𝜉𝑝𝑐𝑜𝑠𝜃𝑝 − 𝑑𝑝𝜉𝑝𝑠𝑖𝑛𝜃𝑝, 

𝑋3𝑝 =  𝑖𝑙𝑝𝜉𝑝𝑐𝑜𝑠𝜃𝑝 

 

And for j = 4, 5, 6 we have 
 

𝑋1𝑗 = −𝛿4(1 − 𝑖𝜔𝜏)𝑖𝜉𝑗𝑠𝑖𝑛𝜃𝑗 − 𝛿3(1 − 𝑖𝜔𝜏)𝑖𝑑𝑗𝜉𝑗𝑐𝑜𝑠𝜃𝑗 

            −
𝛽3

𝛽1
𝑙𝑗(1 + 𝑎1𝜉𝑗

2 sin2 𝜃𝑗 + 𝑎3𝜉𝑗
2 cos2 𝜃𝑗), 

𝑋2𝑗 = −𝜉𝑗𝑐𝑜𝑠𝜃𝑗 − 𝑑𝑗𝜉𝑗𝑠𝑖𝑛𝜃𝑗 , 

𝑋3𝑗 = −𝑖𝑙𝑗𝜉𝑗𝑐𝑜𝑠𝜃𝑗 

 

Incident QL-wave 
In the case of a quasi-longitudinal wave, the subscript p takes only one value, that is p = 1, which 

means 𝐴2 = 𝐴3 = 0. Dividing the set of Eq. (40) throughout by 𝐴1, we obtain a system of three 

homogeneous equations in three unknowns which can be solved by Cramer’s rule and we have 
 

 𝐴1𝑖 = 
𝐴𝑖+3

𝐴1
=

∆𝑖
1

∆
 (41) 

 

Incident QTS-wave 
In the case of a quasi-transverse wave, the subscript q takes only one value, that is q = 2, which 

means. Dividing the set of Eq. (40) throughout by we obtain a system of three homogeneous 

equations in three unknowns which can be solved by Cramer's rule and we have 
 

 𝐴2𝑖 = 
𝐴𝑖+3

𝐴2
=

∆𝑖
2

∆
 (42) 
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Incident QT-wave 
In the case of a quasi-thermal wave, the subscript q takes only one value, that is q = 3, which 

means. Dividing the set of Eq. (40) throughout we obtain a system of three homogeneous equations 

in three unknowns which can be solved by Cramer’s rule and we have 
 

 𝐴3𝑖 = 
𝐴𝑖+3

𝐴3
=

∆𝑖
3

∆
 (43) 

 

Where 𝑍𝑖 (i = 1, 2, 3) is the amplitude ratios of the reflected QL, reflected QTS, reflected QT -

waves to that of the incident QL-(QTS or QT) waves respectively. 

Here 

∆= |𝐴𝑖(𝑖+3)|3𝑋3
 

∆𝑖
𝑝
,                     (𝑖 = 1,2,3) 

 

can be obtained by replacing, respectively, the 1st, 2nd and 3rd columns of ∆ by 

[−𝑋1𝑝, −𝑋2𝑝, −𝑋3𝑝]
′
. 

Following Achenbach (1973), the energy flux across the surface element, which is the rate at 

which the energy is communicated per unit area of the surface is represented as 
 

𝑃∗  = 𝑡𝑙𝑚𝑛𝑚𝑢̇𝑙 (44) 
 

Where 𝑡𝑙𝑚 is the stress tensor, 𝑛𝑚 are the direction cosines of the unit normal and 𝑢̇𝑙 are the 

components of the particle velocity. 

The time average of 𝑃∗
  over a period, denoted by < 𝑃∗ >  represents the average energy 

transmission per unit surface area per unit time and is given at the interface z = 0 as 

 

< 𝑃∗ > = < 𝑅𝑒(𝑡13). 𝑅𝑒(𝑢̇) + 𝑅𝑒(𝑡33). 𝑅𝑒(𝑤̇) > (45) 
 

Following Achenbach (1973), for any two complex functions f and g, we have 
 

< 𝑅𝑒(𝑓) >< 𝑅𝑒(𝑔) > =
1

2
𝑅𝑒(𝑓𝑔̅) (46) 

 

Hence 
 

< 𝑃∗ ≥
1

2
𝑅𝑒(𝑡13𝑢̅̇) +

1

2
𝑅𝑒(𝑡33𝑤̅̇) 

=
1

2
𝑅𝑒 (𝛿2(1 − 𝑖𝜔𝜏) (

𝜕𝑢

𝜕𝑧
+ 

𝜕𝑤

𝜕𝑥
) 𝑢̅̇) 

     + 
1

2
𝑅𝑒 (𝛿4(1 − 𝑖𝜔𝜏)

𝜕𝑢

𝜕𝑥
 + 𝛿3(1 − 𝑖𝜔𝜏)

𝜕𝑤

𝜕𝑧
−

𝛽3 

𝛽1 
{𝜑 − (𝑎1

𝜕2𝜑

𝜕𝑥2
+𝑎3

𝜕2𝜑

𝜕𝑧2
)} 𝑤̅̇) 

 

The expressions for energy ratios Ei (I = 1, 2, 3) for reflected QL, QTS, QT wave are given as 
 

(i) In case of incident QL- wave 
 

𝐸1𝑖 =
< 𝑃𝑖+3

∗ >

< 𝑃1
∗ >

,          𝑖 = 1, 2, 3. (47) 
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(ii) In case of incident QTS- wave 
 

𝐸2𝑖 =
< 𝑃𝑖+3

∗ >

< 𝑃2
∗ >

,          𝑖 = 1, 2, 3. (48) 

 

(iii) In case of incident QT- wave 
 

𝐸3𝑖 =
< 𝑃𝑖+3

∗ >

< 𝑃3
∗ >

,          𝑖 = 1, 2, 3. (49) 

 

Where < 𝑃𝑖
∗ > i = 1, 2, 3 are the average energies transmission per unit surface area per unit 

time corresponding to incident QL, QTS, QT waves respectively and < 𝑃𝑖+3
∗ > i = 1, 2, 3 are the 

average energies transmission per unit surface area per unit time corresponding to reflected QL, 

QTS, QT waves respectively. 
 

 

7. Particular cases 
 

(1) If 𝜏𝑇 ≠ 0, 𝜏𝑣 ≠ 0, 𝜏𝑞 ≠ 0  we obtain results for plane harmonic wave propagation in 

transversely isotropic magneto-visco-thermoelastic solid with rotation, and with and without 

energy dissipation and TPL (three-phase lag) effects and fractional order heat transfer with 

two temperature. 

(2) If 𝜏𝑇 = 0, 𝜏𝑣 = 0, 𝜏𝑞 = 0  and 𝐾∗ ≠ 0  we obtain results for plane harmonic wave 

propagation in transversely isotropic magneto-visco-thermoelastic solid with rotation and 

GN III theory (thermoelasticity with energy dissipation) and fractional order heat transfer 

with two temperature. 

(3) If 𝜏𝑇 = 0, 𝜏𝑣 = 0, 𝜏𝑞 = 0 , and 𝐾∗ = 0  we obtain results for plane harmonic wave 

propagation in transversely isotropic magneto-visco-thermoelastic solid with rotation and 

GN II theory (generalized thermoelasticity without energy dissipation) and fractional order 

heat transfer with two temperature. 

(4) If 𝜏𝑇 ≠ 0, 𝜏𝑣 ≠ 0, 𝜏𝑞 ≠ 0  and  𝐾∗ = 0  we obtain results for plane harmonic wave 

propagation in transversely isotropic magneto-visco-thermoelastic solid with rotation and 

GN II theory with TPL effect and fractional order heat transfer with two temperature. 

(5) If 𝜏𝑇 = 0, 𝜏𝑣 = 0, 𝜏𝑞 = 𝜏0 > 0  and 𝐾∗ = 0 , and ignoring 𝜏𝑞
2  we obtain results for 

Rayleigh wave propagation in transversely isotropic magneto-visco-thermoelastic solid with 

diffusion and Lord–Shulman model and fractional order heat transfer with two temperature. 

(6) If 𝜏𝑇 = 0, 𝜏𝑣 = 0, 𝜏𝑞 = 0 and if the medium is not permeated with the magnetic field i.e., 

𝜇0 = 𝐻0 = 0 then we obtain results for plane harmonic wave propagation in transversely 

isotropic visco-thermoelastic solid with rotation and without TPL effect and fractional order 

heat transfer with two temperature. 

(7) If  𝐶11 = 𝐶33 = 𝜆 + 2𝜇, 𝐶12 = 𝐶13 = 𝜆, 𝐶44 = 𝜇, 𝛼1 = 𝛼3 = 𝛼′, 𝑎1 = 𝑎3 = 𝑎 ,  𝐾1 =
𝐾3 = 𝐾,  𝐾1

∗ = 𝐾3
∗ = 𝐾∗  we obtain expressions for plane harmonic wave propagation in 

magneto-visco-thermoelastic isotropic materials with rotation and with and without energy 

dissipation with TPL effect and fractional order heat transfer with two temperature. 

(8) If 𝛼 = 1  and 𝜏𝑇 ≠ 0, 𝜏𝑣 ≠ 0, 𝜏𝑞 ≠ 0  we obtain results for plane harmonic wave 

propagation in transversely isotropic magneto-visco-thermoelastic solid with rotation, and 
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with and without energy dissipation and TPL (three-phase lag) effects with two temperature. 

(9) If 𝜏 = 0, we obtain results for plane harmonic wave propagation in transversely isotropic 

magneto- thermoelastic solid with two temperature for all the above 8 cases. 

(10) If 𝑎1 = 𝑎3 = 𝑜,  we obtain results for plane harmonic wave propagation in transversely 

isotropic magneto-visco-thermoelastic solid without two temperature for all the above 8 

cases. 
 

 

8. Numerical results and discussion 
 

To demonstrate the theoretical results and effect of fractional order parameter and two 

temperature, the physical data for cobalt material, which is transversely isotropic, is taken from 

Dhaliwal and Singh (1980) is given as 
 

𝐶11 = 3.07 × 1011𝑁𝑚−2,           𝐶33 = 3.581 × 1011𝑁𝑚−2,               𝐶13 = 1.027 × 1010𝑁𝑚−2, 
𝐶44 = 1.510 × 1011𝑁𝑚−2,        𝛽1 = 7.04 × 106𝑁𝑚−2𝑑𝑒𝑔−1,         𝛽3 = 6.90 × 106𝑁𝑚−2𝑑𝑒𝑔−1, 
𝜌 = 8.836 × 103𝐾𝑔𝑚−3,   𝐶𝐸 = 4.27 × 102𝑗𝐾𝑔−1𝑑𝑒𝑔−1, 
𝐾1 = 0.690 × 102𝑊𝑚−1𝐾𝑑𝑒𝑔−1,                 𝐾3 = 0.690 × 102𝑊𝑚−1𝐾−1, 
𝐾1

∗ = 1.313 × 102𝑊𝑠𝑒𝑐,                                  𝐾3
∗ = 1.54 × 102𝑊𝑠𝑒𝑐, 

T0  =  298 K,          H0  =  1 Jm−1nb−1,         ε0 =  8.838 × 10−12Fm−1,            L = 1. 
 

The values of frequency, rotation Ω, magnetic effect H0, are taken as 0.03,0.5, 10, respectively. 

The software MATLAB 8.0.4 has been used to determine the amplitude ratios of reflected QL, QTS 

and QT waves with respect to incident QL, QTS, and QT waves respectively. The variation of the 

magnitude of amplitude ratios has been plotted in the Figs. 2-10 with respect to the angle of 

incidence. A comparison has been made to show the effect of fractional order parameter and two 

temperature on the various quantities. 
 

(1) The black line represents 𝛼 = 0.5, τ = 0.0  , 

(2) The red line represents to 𝛼 = 1.5, τ = 0.0,  

(3) The blue line represents to 𝛼 = 0.5, τ = 1.0, 

(4) The green line represents to 𝛼 = 1.5, τ = 1.0, 
 

 

 

Fig. 2 Variations of Attenuation Coefficient Q1 with frequency 𝜔 
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Fig. 3 Variations of attenuation coefficient Q2 with frequency 𝜔 

 
 

 

Fig. 4 Variations of attenuation coefficient Q3 with frequency 𝜔 

 
 
8.1 Attenuation coefficients 
 

Figs. 2-4 show the variations of attenuation coefficients 𝑄1, 𝑄2, 𝑄3 of QL, QTS and QT waves 

with respect to frequency 𝜔 . From the graphs, we observe that the attenuation coefficients 

𝑄1, 𝑄2, 𝑄3  of QL, QTS and QT waves increase sharply with the increase in frequency 𝜔  with 

variations in magnitude for different values of 𝛼 and viscosity. 

 

8.2 Specific loss 
 

Figs. 5-7 show the variations of specific loss 𝑊1,𝑊2,𝑊3  of QL, QTS and QT waves with 

respect to frequency 𝜔. From the graphs, we observe that specific loss 𝑊1,𝑊2,𝑊3 of QL, QTS 

and QT waves decrease with increase in frequency 𝜔 with variations in magnitude for different 

values of fractional order parameter 𝛼 and viscosity. 
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Fig. 5 Variations of Specific Loss 𝑊1 with frequency 𝜔 
 

 

 

 

Fig. 6 Variations of specific loss W2 with frequency 𝜔 
 

 

 

 

Fig. 7 Variations of specific loss W3 with frequency 𝜔 
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Fig. 8 Variations of penetration depth S1 with frequency 𝜔 

 

 

 

Fig. 9 Variations of penetration depth S2 with frequency 𝜔 

 

 

 

Fig. 10 Variations of Penetration Depth S3  with frequency 𝜔 
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8.3 Penetration depth 
 

Figs. 8-10 show the variations of penetration depth 𝑆1, 𝑆2, 𝑆3 of QL, QTS and QT waves with 

respect to frequency 𝜔. From the graphs, we observe that the penetration depth 𝑆1, 𝑆2, 𝑆3 of QL, 

QTS and QT waves show an increase in values with a small difference in magnitude for the four 

different cases showing the effect of fractional order parameter 𝛼 and viscosity. 
 

 

9. Conclusions 
 

The propagation of plane harmonic wave in homogeneous transversely isotropic magneto-visco-

thermoelastic rotating medium with fractional order heat transfer and viscosity have been studied. 

From the graphs, we observe the following concluding remarks: 
 

(1) viscosity has a significant effect on the specific loss, penetration depth, attenuation 

coefficients of the plane harmonic wave. 

(2) The specific loss, penetration depth, attenuation coefficients also show variations with weak 

and strong conductivity which shows a significant effect of fractional order parameter on the 

plane harmonic wave. 

(3) Study of these waves are not only helpful in providing information about the internal 

structures of the earth but also helpful in geophysics, for understanding the effects of the 

earth's magnetic field on seismic waves, damping of acoustic waves in a magnetic field, 

emission of electromagnetic radiations from nuclear devices, etc. 
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