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Abstract.  The novelty of this paper is the use of a simple higher order shear and normal deformation theory for 

bending and free vibration analysis of functionally graded material (FGM) beams on two-parameter elastic 

foundation. To this aim, a new shear strain shape function is considered. Moreover, the proposed theory considers a 

novel displacement field which includes undetermined integral terms and contains fewer unknowns with taking into 

account the effects of both transverse shear and thickness stretching. Different patterns of porosity distributions 

(including even and uneven distribution patterns, and the logarithmic-uneven pattern) are considered. In addition, the 

effect of different micromechanical models on the bending and free vibration response of these beams is studied. 

Various micromechanical models are used to evaluate the mechanical characteristics of the FG beams for which 

properties vary continuously across the thickness according to a simple power law. Hamilton’s principle is used to 

derive the governing equations of motion. Navier type analytical solutions are obtained for the bending and vibration 

problems. Numerical results are obtained to investigate the effects of power-law index, length-to-thickness ratio, 

foundation parameter, the volume fraction of porosity and micromechanical models on the displacements, stresses, 

and frequencies. 
 

Keywords:  functionally graded material; elastic foundation; shear deformation theory; bending; free 

vibration; stretching effect 

 
 
1. Introduction 

 
Nowadays, functionally graded (FG) materials are used in many advanced and important 

engineering structures. The material composition and volume fraction vary according to the simple 

rule of mixture i.e., power-law through the thickness. Because of this feature, the FGMs have 

some advantages such as avoiding the material discontinuity and decreasing the delamination 

failure, diminishing the stress levels and deflections. Combination of these properties attracts 

practical application of FGMs in many engineering areas such as aircraft, naval/marine, 

construction and mechanical engineering (Guerroudj et al. 2018). 

Therefore, understanding bending and free vibration responses of FG beams becomes an 

important task. Few researchers have developed elasticity solutions for the analysis of FG beams 
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(Ding et al. 2007, Ying et al. 2008, Hassaine Daouadji et al. 2013) which are analytically very 

difficult. Therefore, researchers have developed various approximate beam theories which are 

mathematically simpler compared to elasticity solutions. The Euler-Bernoulli beam theory and the 

first-order beam theory (Timoshenko 1921) are not suitable for the analysis of thick beams due to 

neglect of shear deformation effect. Therefore, higher-order beam theories have been developed by 

various researchers. These theories considered the effect of transverse shear deformation and are 

accurate for the analysis of thick beams. There exist various classes of higher-order beam theories, 

which account for the effect of transverse shear deformation, such as parabolic beam theories 

(Reddy 1984), trigonometric beam theories (Touratier 1991, Mantari et al. 2012, Sayyad et al. 

2015), hyperbolic beam theories (Soldatos 1992, Neves et al. 2012), exponential beam theories 

(Karama et al. 2003), etc. 

In the last decade, several works have been published by researchers on bending, buckling and 

free vibration analysis of functionally graded beams (Simsek 2010, Sayyad and Ghugal 2017, 

2018, Zouatnia et al. 2017, Draiche et al. 2019, Karami et al. 2018a, b, 2019a, b, c, d, Abualnour 

et al. 2019, Alimirzaei et al. 2019, Medani et al. 2019, Draoui et al. 2019, Berghouti et al. 2019, 

Bourada et al. 2019, Batou et al. 2019, Tlidji et al. 2019, Salah et al. 2019, Boussoula et al. 2020, 

Adda Bedia et al. 2019, Meksi et al. 2019, Hellal et al. 2019, Hussain et al. 2019, Belbachir et al. 

2019, Mahmoud et al. 2019, Sahla et al. 2019). Different models have been proposed to estimate 

the effective properties of FGMs with respect to reinforcement volume fractions (Shen and Wang 

2012, Jha et al. 2013). Consequently, several micromechanical models have been used to study 

and analyze the behavior of FGM structures under different loading conditions. We cite as an 

example the work of Gasik (1998) in which a micromechanical model is proposed to study FGMs 

with a random distribution of constituents. Karami et al. (2019e) studied the influence of 

homogenization schemes on vibration of functionally graded curved microbeams. Karami et al. 

(2019f) analyze the static analysis of functionally graded anisotropic nanoplates using nonlocal 

strain gradient theory. Karami et al. (2020a) developed the dynamics of two-dimensional 

functionally graded tapered Timoshenko nanobeam in thermal environment using nonlocal strain 

gradient theory. Karami et al. (2020b) investigated a novel study on functionally graded 

anisotropic doubly curved nanoshells. 

In addition, in FGM fabrication, micro voids or porosities can occur within the materials during 

the process of sintering. This is because of the large difference in solidification temperatures 

between material constituents (Zhu et al. 2001). Wattanasakulpong et al. (2012) also gave the 

discussion on porosities happening inside FGM samples made by a multistep sequential infiltration 

technique. Therefore, it is important to take into account the porosity effect when designing FGM 

structures subjected to dynamic loadings. Recently, Wattanasakulpong and Ungbhakorn (2014) 

studied linear and nonlinear vibration problems of elastically end restrained FG beams having 

porosities. In the same way Ait Yahia et al. (2015) investigated the wave propagation of an infinite 

FG plate having porosities by using various simple higher-order shear deformation theories. 

Hassaine Daouadji et al. (2016) studied the bending analysis of an imperfect FGM plates under 

hygro-thermo-mechanical loading with analytical validation. Akbaş (2017) analyze the thermal 

effects on the vibration of functionally graded deep beams with porosity. Karami et al. (2018b) 

used a high-order gradient model for wave propagation analysis of porous FG nanoplates. Karami 

et al. (2017) developed the wave propagation in fully clamped porous functionally graded 

nanoplates. She et al. (2019) studied the nonlinear bending behavior of FG porous curved 

nanotubes. Karami et al. (2020c) analyze the free vibration of FG nanoplate with poriferous 

imperfection in hygrothermal environment. 
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To study the behavior of functionally graded beams resting on elastic foundation, several 

mathematical models have been developed. Ait Atmane et al. (2017) studied the effect of thickness 

stretching and porosity on mechanical response of a functionally graded beams resting on elastic 

foundations. Khelifa et al. (2018) studied the buckling response with stretching effect of carbon 

nanotube-reinforced composite beams resting on elastic foundation. Sayyad and Ghugal (2018) 

developed an inverse hyperbolic theory for FG beams resting on Winkler-Pasternak elastic 

foundation. Zaoui et al. (2019) used new 2D and quasi-3D shear deformation theories for free 

vibration of functionally graded plates on elastic foundation. Recently, Addou et al. (2019) studied 

the influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr 

foundation using quasi 3D HSDT. Chaabane et al. (2019) developed an analytical study of bending 

and free vibration responses of functionally graded beams resting on elastic foundation. 

Boulefrakh et al. (2019) studied the effect of parameters of visco-Pasternak foundation on the 

bending and vibration properties of a thick FG plate. Boukhlif et al. (2019) used a simple quasi-3D 

HSDT for the dynamics analysis of FG thick plate on elastic foundation. Semmah et al. (2019) 

analyze the thermal buckling of SWBNNT on Winkler foundation by non local FSDT. Karami et 

al. (2019g) investigated the wave propagation of functionally graded anisotropic nanoplates 

resting on Winkler-Pasternak foundation. Shahsavari et al. (2018) used a novel quasi-3D 

hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr 

foundation. Mahmoudi et al. (2019) used a refined quasi-3D shear deformation theory for thermo-

mechanical behavior of functionally graded sandwich plates on elastic foundations. In addition, in 

recent years, many researchers have dealt the effect of stretching the thickness on FGM structures 

(Boutaleb et al. 2019, Khiloun et al. 2019, Zarga et al. 2019, Boulefrakh et al. 2019, Boukhlif et al. 

2019, Mahmoudi et al. 2019, Zaoui et al. 2019). 

The purpose of this study is to establish a simple higher order shear and normal deformation 

theory to investigate the bending and free vibration of FG beams on elastic foundation. The 

novelty of this theory is the use of a new shear strain shape function which considers an adequate 

distribution of the transverse shear strains across the beam thickness and tangential stress-free 

boundary conditions on the beam boundary surface without introducing a shear correction factor. 

Undetermined integral terms are employed in the proposed displacement field in which the normal 

stresses effects are considered in the present shear deformation theory. Different patterns of 

porosity distributions (including even and uneven distribution patterns, and the logarithmic-uneven 

pattern) are considered. In addition, the effect of different micromechanical models on the bending 

and free vibration response of these beams is studied. Various micromechanical models are used to 

evaluate the mechanical characteristics of the FG beams of which properties vary continuously 

across the thickness according to a simple power law. The equations of motion of FG plates resting 

on elastic foundation are obtained from the Hamilton’s principle and solved via Navier’s procedure. 

Analytical solutions for static and free vibration are obtained. The effects of various variables, 

such as span-to-depth ratio, gradient index, foundation parameter, the volume fraction of porosity 

and micromechanical models on bending and free vibration of FG beam are all discussed. 

 

 

2. Effective properties of FGMs 
 

Unlike traditional microstructures, in FGMs the material properties are spatially varying, which 

is not trivial for a micromechanics model (Jaesang and Addis 2014). 

A number of micromechanics models have been proposed for the determination of effective 
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properties of FGMs. In what follows, we present some micromechanical models to calculate the 

effective properties of the FG beam. 
 

2.1 Voigt model 
 

The Voigt model is relatively simple; this model is frequently used in most FGM analyses that 

estimate young’s modulus E of FGMs as (Mishnaevsky 2007) 
 

𝐸(𝑧) = 𝐸𝑐𝑉𝑐  + 𝐸𝑚(1 − 𝑉𝑐) (1) 

 

2.2 Reuss mode 
 

Reuss assumed the stress uniformity through the material and obtained the effective properties 

as (Mishnaevsky 2007, Zimmerman 1994) 
 

𝐸(𝑧) =
𝐸𝑐𝐸𝑚

𝐸𝑐(1 − 𝑉𝑐) + 𝐸𝑚𝑉𝑐
 (2) 

 

2.3 Tamura model 
 

The Tamura model uses actually a linear rule of mixtures, introducing one empirical fitting 

parameter known as “stress-to-strain transfer” (Gasik 1995) 
 

𝑞 =
𝜎1 − 𝜎2
𝜀1 − 𝜀2

 (3) 

 

Estimate for 𝑞 = 0 corresponds to Reuss rule and for 𝑞 = 100 to the Voigt rule, being 

invariant to the consideration of which phase is matrix and which is particle. The effective 

Young’s modulus is found as 
 

𝐸(𝑧) =
(1 − 𝑉𝑐)𝐸𝑚(𝑞 − 𝐸𝑐) + 𝑉𝑐𝐸𝑐(𝑞 − 𝐸𝑚)

(1 − 𝑉𝑐)(𝑞 − 𝐸𝑐) + 𝑉𝑐𝐸𝑐(𝑞 − 𝐸𝑚)
 (4) 

 

2.4 Description by a representative volume element (LRVE) 
 

The local representative volume element (LRVE) is based on a “mesoscopic” length scale 

which is much larger than the characteristic length scale of particles (inhomogeneities) but smaller 

than the characteristic length scale of a macroscopic specimen (Ju and Chen 1994). The LRVE is 

developed based on the assumption that the microstructure of the heterogeneous material is known. 

The input for the LRVE for the deterministic micromechanical framework is usually volume 

average or ensemble average of the descriptors of the microstructures. 

Young’s modulus is expressed as follows by the LRVE method (Akbarzadeh et al. 2015) 
 

𝐸(𝑧) = 𝐸𝑚 (1 +
𝑉𝑐

𝐹𝐸 − √𝑉𝑐
3

) ,         𝐹𝐸 =
1

1 −
𝐸𝑚
𝐸𝑐

 (5) 
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2.5 Mori-Tanaka model 
 

The locally effective material properties can be provided by micromechanical models such as 

the Mori–Tanaka estimates. This method considers the heterogeneous material as a two-phase 

composite one consisting of a matrix reinforced by spherical particles, randomly distributed in the 

plate. According to the Mori-Tanaka homogenization scheme, the Young’s modulus is given by 
 

𝐸(𝑧) = 𝐸𝑚 + (𝐸𝑐 − 𝐸𝑚) (
𝑉𝑐

1 + (1 − 𝑉𝑐)(𝐸𝑐/𝐸𝑚 − 1)(1 + 𝜈)/(3 − 3𝜈)
) (6) 

 

Where 𝑉𝑐 = (
1

2
+

𝑧

ℎ
)
𝑝

 is the volume fraction of the ceramic and where 𝑝 is the power law 

index. Since the effects of the variation of Poisson’s ratio (𝜈) on the response of FGM plates are 

very small (Kitipornchai 2006), this material parameter is assumed to be constant for convenience. 

 

 

3. Mathematical modeling 
 

3.1 Functionally graded beams 
 

In this work, a rectangular beam of uniform thickness ℎ, length 𝐿 and rectangular cross 

section 𝑏 × ℎ, made of FGM and supported by an elastic foundation is considered, as shown in 

Fig. 1. 
 

3.2 Constitutive relations 
 

The effective material characteristics of the beam, such as Young’s modulus 𝐸 and material 

density 𝜌 which are assumed to change smoothly across the thickness according to a power law 

distribution (see Fig. 2), can be evaluated using the following rule of mixture 
 

𝑃(𝑧) = 𝑃𝑏 + (𝑃𝑡 − 𝑃𝑏) (
𝑧

ℎ
+
1

2
)
𝑝

− 𝑃𝑝𝑜𝑟 (7) 

 

where 𝑃 signifies the effective material property, 𝑃𝑡 and 𝑃𝑏 represent the property of the top 

and bottom faces of the beam, respectively, and 𝑝 is the power-law index that specifies the 

material distribution profile within the thickness. The Poisson’s ratio 𝜈, is usually considered to be 

constant (Delale and Erdogan 1983, Sallai et al. 2009). 

 

 

 

Fig. 1 FGM Beam resting on a two parameters elastic foundation 
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Fig. 2 Functionally graded function 𝑉𝑐 = (
𝑧

ℎ
+

1

2
)
𝑝

 through the thickness of a FGM beam for different 

values of the index (𝑝) 
 

 

  

(a) (b) 

Fig. 3 Porosity models: (a) Evenly distributed porosities; (b) Unevenly distributed porosities 
 

 

 

Fig. 4 Variation of Young’s modulus 𝐸(𝑧) through the thickness of embedded perfect and imperfect 

FG beams (𝑝 = 2 and 𝛼 = 0.2) 
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In this study, four types of porosity are considered, some of them present an evenly distribution 

(called hereafter Imperfect I and III), whereas the other ones are characterized by an unevenly 

distribution (Imperfect II and IV hereafter), along the beam thickness direction (Fig. 3). 
 

- Imperfect-I: 
 

𝑃𝑝𝑜𝑟 =
𝛼

2
(𝑃𝑐 + 𝑃𝑚) (8) 

 

- Imperfect II: 
 

𝑃𝑝𝑜𝑟 =
𝛼

2
(1 −

2|𝑧|

ℎ
) (𝑃𝑐 + 𝑃𝑚) (9) 

 

- Imperfect III: 
 

𝑃(𝑧) = ((𝑃𝑐 − 𝑃𝑚) (
𝑧

ℎ
+
1

2
)
𝑝

+ 𝑃𝑚) (1 −
𝛼

2
)
3

 (10) 

 

- Imperfect IV: 
 

𝑃(𝑧) = ((𝑃𝑐 − 𝑃𝑚) (
𝑧

ℎ
+
1

2
)
𝑝

+ 𝑃𝑚)(1 −
𝛼

2
(1 − 2

|𝑧|

ℎ
))

3

 (11) 

 

Imperfect III and IV models are an adaptation of widely used expressions for porous 

geomaterials, such as cement-based materials (Kendall et al. 1983). 

Fig. 4 illustrates the variation of Young’s modulus 𝐸(𝑧) through the thickness of embedded 

perfect and imperfect FG beams for the various porosity distributions considered in this work and 

for a constant value of the power law index (𝑝 = 2). 
 

3.3 Kinematic and constitutive relations 
 

Based on the formulation proposed by Zaoui et al. (2019), the displacements field of the 

proposed theory is expressed by 

 

𝑢(𝑥, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑡) − 𝑧
𝜕𝑤0
𝜕𝑥

+ 𝑘1𝑓(𝑧)∫𝜃(𝑥, 𝑡) 𝑑𝑥 (12a) 

 

𝑤(𝑥, 𝑧, 𝑡) = 𝑤0(𝑥, 𝑡) + 𝑔(𝑧)𝜑𝑧(𝑥, 𝑡) (12b) 

 

Where 𝑢0 and 𝑤0 are mid-plane displacements, 𝜃 and 𝜑𝑧 are rotations of normals to the 

mid-plane of the beam. Note that the integrals do not have limits. 

In this study, two simple higher order shear and normal deformation theories 𝑓(𝑧) are 

developed as given in Eqs. (13a) and (13b) (Mechab et al. 2017). These two new models assure an 

accurate distribution of shear deformation according to the beam thickness and consider parabolic 

transverse shear stresses across the thickness as satisfying shear stress free surface conditions 

without including shear correction factors. 
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𝑓(𝑧) =
3

2
𝜋ℎ 𝑡𝑎𝑛ℎ (

𝑧

ℎ
) −

3

2
𝜋𝑧 𝑠𝑒𝑐 ℎ (

1

2
)
2

 (13a) 

 

𝒇(𝒛) =
𝑐𝑜𝑠ℎ (

𝜋
2
)

(𝑐𝑜𝑠ℎ (
𝜋
2
) − 1)

𝑧 −
ℎ

𝜋

𝑠𝑖𝑛ℎ (
𝜋
ℎ
𝑧)

(𝑐𝑜𝑠ℎ (
𝜋
2
) − 1)

 (13b) 

 

and 
 

𝑔(𝑧) =
𝑑𝑓(𝑧)

𝑑𝑧
 (13c) 

 

The strains associated with the displacements in Eq. (1) are 

 

𝜀𝑥 = 𝜀𝑥
0 + 𝑧 𝑘𝑥

𝑏 + 𝑓(𝑧) 𝑘𝑥
𝑠  (14a) 

 

𝛾𝑥𝑧 = 𝑔(𝑧) 𝛾𝑥𝑧
0  (14b) 

 

𝜀𝑧 = 𝑔
’(𝑧)𝜀𝑧

0 (14c) 
 

Where 
 

𝜀𝑥
0 =

𝜕𝑢0
𝜕𝑥

 (15a) 

 

𝑘𝑥
𝑏 = −

𝜕2𝑤0
𝜕𝑥2

 (15b) 

 

𝑘𝑥
𝑠 = 𝑘1𝜃 (15c) 

 

𝛾𝑥𝑧
0 = 𝑘1∫𝜃 𝑑𝑥 +

𝜕𝜑𝑧
𝜕𝑥

 (15d) 

 

𝜀𝑧
0 = 𝜑𝑧 (15e) 

 

The integrals appearing in the above expressions are solved by using Navier’s type solution and 

can be expressed as (Mantari et al. 2016) 
 

x
Adx



=


 ' 

 
(16) 

 

Where the coefficient 𝐴’ is expressed according to the type of solution used, in this case via 

Navier procedure. Therefore, 𝐴’ and 𝑘1 are expressed as follows 
 

,
1

'
2

−=A
 

2

1 =k
 

(17) 
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Where 𝛼 is defined in expression (22). 

The stress–strain relationships for the FG beams are as follows 
 

𝜎𝑥 = 𝑄11(𝑧) 𝜀𝑥 + 𝑄13(𝑧) 𝜀𝑧 (18a) 

 

𝜎𝑧 = 𝑄13(𝑧) 𝜀𝑥 + 𝑄33(𝑧) 𝜀𝑧 (18b) 

 

𝜏𝑥𝑧 = 𝑄55(𝑧) 𝛾𝑥𝑧 (18c) 

 

The 𝑄𝑖𝑗 expressions in terms of engineering constants are 

 

𝑄11(𝑧) = 𝑄33(𝑧) = 𝐸(𝑧),          𝑄13(𝑧) = 𝜈𝑄11(𝑧) (19a) 
 

and 
 

𝑄55(𝑧) =
𝐸(𝑧)

2(1 + 𝜈)
 (19b) 

 

3.4 Equations of motion 
 

Hamilton’s principle is used herein to derive the equations of motion. The principle can be 

stated in analytical form as (Thai and Choi 2012) 
 

∫ (𝛿𝑈 + 𝛿𝑈𝑒𝑓 + 𝛿𝑉 − 𝛿𝑇)𝑑𝑡
𝑡2

𝑡1

= 0 (20) 

 

Where 𝑡 is the time; 𝑡1 and 𝑡2 are the initial and end time, respectively; 𝛿𝑈 is the virtual 

variation of the strain energy; 𝛿𝑈𝑒𝑓  the potential energy of elastic foundation; 𝛿𝑉  is the 

variation of work done by external forces; and 𝛿𝑇 is the virtual variation of the kinetic energy. 

The variation of the strain energy of the beam can be stated as 
 

𝛿 𝑈 = ∫ ∫ (𝜎𝑥𝛿 𝜀𝑥 + 𝜎𝑧𝛿 𝜀𝑧 + 𝜏𝑥𝑧𝛿 𝛾𝑥𝑧)𝑑𝑧𝑑𝑥

ℎ
2

−
ℎ
2

𝐿

0

 

        = ∫ (𝑁𝑥𝛿𝜀𝑥
0 + 𝑁𝑧𝛿𝜀𝑧

0 −𝑀𝑥
𝑏𝛿𝑘𝑥

𝑏 −𝑀𝑥
𝑠𝛿𝑘𝑥

𝑏 + 𝑄𝑥𝑧𝛿𝛾𝑥𝑧
0 )𝑑𝑥

𝐿

0

 

(21) 

 

Where 𝑁𝑥, 𝑀𝑥
𝑏, 𝑀𝑥

𝑠, 𝑁𝑧 and 𝑄𝑥𝑧 are the stress resultants defined as 
 

(𝑁𝑥 , 𝑀𝑥
𝑏 , 𝑀𝑥

𝑠) = ∫ (1, 𝑧, 𝑓(𝑧)) 𝜎𝑥𝑑𝑧

ℎ
2

−
ℎ
2

 (22a) 

 

𝑁𝑧 = ∫ 𝜎𝑧𝑔
’(𝑧)𝑑𝑧

ℎ
2

−
ℎ
2

 (22b) 
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𝑄𝑥𝑧 = ∫ 𝜏𝑥𝑧𝑔(𝑧)𝑑𝑧

ℎ
2

−
ℎ
2

 (22c) 

 

The variation of the potential energy of elastic foundation given by 
 

𝛿𝑈𝑒𝑓 = ∫ 𝑓𝑒

𝐿

0

𝛿𝑤0𝑑𝑥 (23) 

 

where 𝑓𝑒 is the density of reaction force of the foundation. For the Pasternak foundation model 

(Mantari et al. 2014) 

𝑓𝑒 = 𝐾𝑤𝑤0 − 𝐾𝑝
𝜕2𝑤0
𝜕𝑥2

 (24) 

 

If the foundation is modelled as the linear Winkler foundation, the coefficient 𝐾𝑝 in Eq. (24) is 

zero. The variation of work done by externally transverse load 𝑞 can be expressed as 
 

𝛿 𝑉 = −∫ 𝑞𝛿𝑤0𝑑𝑥
𝐿

0

 (28) 

 

The variation of the kinetic energy can be expressed as 
 

𝛿 𝑇 = ∫ ∫ 𝜌(𝑧)[𝑢̇𝛿 𝑢̇ + 𝑤̇𝛿 𝑤̇] 𝑑𝑧𝑑𝑥

ℎ
2

−
ℎ
2

𝐿

0

 

        =∫ {𝐼0[𝑢̇0𝛿𝑢̇0 + 𝑤̇0𝛿𝑤̇0] + 𝐽0(𝑤̇0𝛿𝜑
.

𝑧 + 𝜑𝑧𝛿𝑤̇0) − 𝐼1 (𝑢̇0
𝜕𝛿𝑤̇0
𝜕𝑥

+
𝜕𝑤̇0
𝜕𝑥

𝛿 𝑢̇0)
𝐿

0

 

           + 𝐽1 ((𝑘1𝐴
’) (𝑢̇0

𝜕𝛿𝜃
.

𝜕𝑥
+
𝜕𝜃
.

𝜕𝑥
𝛿 𝑢̇0)) + 𝐼2 (

𝜕𝑤̇0
𝜕𝑥

𝜕𝛿 𝑤̇0
𝜕𝑥

) + 𝐾2(𝑘1𝐴’)
2 (
𝜕𝜃
.

𝜕𝑥

𝜕𝛿 𝜃
.

𝜕𝑥
) 

           −𝐽2 ((𝑘1𝐴’) (
𝜕𝑤̇0
𝜕𝑥

𝜕𝛿𝜃
.

 

𝜕𝑥
+
𝜕𝜃
.

𝜕𝑥

𝜕𝛿 𝑤̇0
𝜕𝑥

)) + 𝐾0𝜑
.

𝑧𝛿𝜑
.

𝑧}𝑑𝑥 

(26) 

 

Where an over dot designates the differentiation with respect to the time variable 𝑡; 𝜌(𝑧) is 

the mass density; and (𝐼𝑖, 𝐽𝑖, 𝐾𝑖) are mass inertias expressed by 

 

(𝐼0, 𝐼1, 𝐼2) = ∫ (1, 𝑧, 𝑧2)𝜌(𝑧)𝑑𝑧
ℎ/2

−ℎ/2

 (27a) 

 

(𝐽1, 𝐽2, 𝐾2) = ∫ (𝑓, 𝑧 𝑓, 𝑓2)𝜌(𝑧)𝑑𝑧
ℎ/2

−ℎ/2

 (27b) 
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(𝐽0, 𝐾0) = ∫ (𝑔, 𝑔2)𝜌(𝑧)𝑑𝑧
ℎ/2

−ℎ/2

 (27c) 

 

Substituting the expressions for 𝛿𝑈, 𝛿𝑈𝑒𝑓, 𝛿𝑉 and 𝛿𝑇 from Eqs. (21), (23), (25) and (26) 

into Eq. (20) and integrating the displacement gradients by parts and setting the coefficients of 

𝛿𝑢0, 𝛿𝑤0, 𝛿𝜃 and 𝛿𝜑𝑧 to zero separately, the following equations of motion are obtained 

 

𝛿 𝑢0:         
𝜕𝑁𝑥
𝜕𝑥

= 𝐼0𝑢̈0 − 𝐼1
𝜕𝑤̈0
𝜕𝑥

+ 𝑘1𝐴’𝐽1
𝜕𝜃̈

𝜕𝑥
             (28a) 

 

𝛿 𝑤0:          
𝑑2𝑀𝑥

𝑏

𝑑𝑥2
+ 𝑞 − 𝑓𝑒 = 𝐼0𝑤̈0 + 𝐽0𝜑

..

𝑧 + 𝐼1
𝜕𝑢̈0
𝜕𝑥

 

                    − 𝐼2
𝜕2𝑤̈0
𝜕𝑥2

+ 𝐽2𝑘1𝐴’
𝜕2𝜃̈

𝜕𝑥2
 

(28b) 

 

𝛿 𝜃:            − 𝑘1𝑀𝑥
𝑠 + 𝑘1𝐴’

𝜕𝑄𝑥𝑧
𝜕𝑥

= −𝐽1𝑘1𝐴’
𝜕𝑢̈0
𝜕𝑥

       

                    − 𝐾2(𝑘1𝐴’)
2
𝜕2𝜃̈

𝜕𝑥2
+ 𝐽2𝑘1𝐴’

𝜕2𝑤̈0
𝜕𝑥2

 

(28c) 

 

𝛿 𝜑𝑧:            
𝜕𝑄𝑥𝑧
𝜕𝑥

− 𝑁𝑧 = 𝐽0𝑤̈0 + 𝐾0𝜑𝑧
..
                        (28d) 

 

Introducing Eq. (22) into Eq. (28), the equations of motion can be expressed in terms of 

displacements (𝑢0, 𝑤0, 𝜃, 𝜑𝑧) and the appropriate equations take the form 

 

𝐴11
𝜕2𝑢0
𝜕𝑥2

− 𝐵11
𝜕3𝑤0
𝜕𝑥3

+ 𝐵11
𝑠 𝑘1

𝜕𝜃

𝜕𝑥
+ 𝑋13

𝜕𝜑𝑧
𝜕𝑥

 

= 𝐼0𝑢̈0 − 𝐼1
𝜕𝑤̈0
𝜕𝑥

+ 𝐽1𝐴’𝑘1
𝜕𝜃̈

𝜕𝑥
 

(29a) 

 

𝐵11
𝜕3𝑢0
𝜕𝑥3

− 𝐷11
𝜕4𝑤0
𝜕𝑥4

+ 𝐷11
𝑠 𝑘1

𝜕2𝜃

𝜕𝑥2
+ 𝑌13

𝜕2𝜑𝑧
𝜕𝑥2

+ 𝑞 − 𝐾𝑤𝑤0 − 𝐾𝑝
𝜕2𝑤0
𝜕𝑥2

 

= 𝐼0𝑤̈0 + 𝐽0𝜑𝑧
..
+ 𝐼1

𝜕𝑢̈0
𝜕𝑥

− 𝐼2
𝜕2𝑤̈0
𝜕𝑥2

+ 𝐽2𝑘1𝐴’
𝜕2𝜃̈

𝜕𝑥2
 

(29b) 

 

−𝐵11
𝑠 𝑘1

𝜕𝑢0
𝜕𝑥

+ 𝐷11
𝑠 𝑘1

𝜕2𝑤0
𝜕𝑥2

− 𝐻11
𝑠 𝑘1

2𝜃 + 𝐴55
𝑠 (𝑘1𝐴’)

2
𝜕2𝜃

𝜕𝑥2
− 𝑘1𝑌13

𝑠 𝜑𝑧 + 𝑘1𝐴
’𝐴55
𝑠
𝜕2𝜑𝑧
𝜕𝑥2

 

= −𝐽1𝑘1𝐴’
𝜕𝑢̈0
𝜕𝑥

+ 𝐽2𝑘1𝐴’
𝜕2𝑤̈0
𝜕𝑥2

− 𝐾2(𝑘1𝐴’)
2
𝜕2𝜃̈

𝜕𝑥2
 

(29c) 

 

−𝑋13
𝜕𝑢0
𝜕𝑥

+ 𝑌13
𝜕2𝑤0
𝜕𝑥2

+ (𝑘1(𝐴55
𝑠 − 𝑌13

𝑠 ))𝜃 + 𝐴55
𝑠
𝜕2𝜑𝑧
𝜕𝑥2

− 𝑍33𝜑𝑧 

= 𝐽0𝑤̈0 + 𝐾0𝜑
..

𝑧 

(29d) 
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Where 𝐴11, 𝐷11, etc., are the beam stiffness, defined by 

 

(𝐴𝑖𝑗 , 𝐴𝑖𝑗
𝑠 , 𝐵𝑖𝑗 , 𝐷𝑖𝑗 , 𝐵𝑖𝑗

𝑠 , 𝐷𝑖𝑗
𝑠 , 𝐻𝑖𝑗

𝑠 ) = ∫ 𝑄𝑖𝑗(1, 𝑔
2(𝑧), 𝑧, 𝑧2, 𝑓(𝑧), 𝑧 𝑓(𝑧), 𝑓2(𝑧))𝑑𝑧

ℎ
2

−
ℎ
2

 (30a) 

 

(𝑋𝑖𝑗 , 𝑌𝑖𝑗 , 𝐵𝑖𝑗
𝑠 , 𝑌𝑖𝑗

𝑠 , 𝑍𝑖𝑗) = ∫ 𝑄𝑖𝑗 (1, 𝑧, 𝑓(𝑧), 𝑔
’(𝑧)𝑔’(𝑧)) 𝑑𝑧

ℎ
2

−
ℎ
2

 (30b) 

 

3.5 Analytical solution 
 

Navier-type analytical solutions are obtained for the bending and free vibration analysis of 

functionally graded beams resting on two parameter elastic foundation. According to the Navier-

type solution technique, the unknown displacement variables are expanded in a Fourier series as 

given below 

{

𝑢0
𝑤0
𝜃
𝜑𝑧

} = ∑

{
 
 

 
 𝑈𝑚 𝑐𝑜𝑠( 𝛼 𝑥) 𝑒

𝑖𝜔 𝑡

𝑊𝑚 𝑠𝑖𝑛( 𝛼 𝑥) 𝑒
𝑖𝜔 𝑡

𝑋𝑚 𝑠𝑖𝑛( 𝛼 𝑥) 𝑒
𝑖𝜔 𝑡

𝛷𝑚 𝑠𝑖𝑛( 𝛼 𝑥) 𝑒
𝑖𝜔 𝑡

}
 
 

 
 ∞

𝑚=1

 (31) 

 

Where (𝑈𝑚, 𝑊𝑚, 𝑋𝑚, 𝛷𝑚) are unknown parameters to be determined and 𝜔 is the natural 

frequency. 𝛼 is expressed as 
 

𝛼 = 𝑚𝜋/𝐿 (32) 

 

The transverse load 𝑞 is also expanded in Fourier series as 
 

𝑞(𝑥) = ∑ 𝑄𝑚

∞

𝑚=1,3,5

𝑠𝑖𝑛 𝛼 𝑥 (33) 

 

Where 𝑄𝑚 is the load amplitude calculated from 
 

𝑄𝑚 =
2

𝐿
∫ 𝑞(𝑥) 𝑠𝑖𝑛( 𝛼 𝑥)𝑑𝑥
𝐿

0

 (34) 

 

The coefficients 𝑄𝑚 are given below for some typical loads. For the case of a sinusoidally 

distributed load, we have 
 

𝑚 = 1          𝑎𝑛𝑑          𝑄1 = 𝑞0 (35a) 

 

And for the case of uniform distributed load, we have 
 

𝑄𝑚 =
4𝑞0
𝑚𝜋

,          (𝑚 = 1,3,5. . . ) (3b) 
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Substituting Eqs. (31) and (33) into Eq. (29), the analytical solutions can be obtained by the 

eigenvalue equations below, for any fixed value of m. 

For free vibration problem 
 

([𝐾] − 𝜔2[𝑀]){𝛥} = {0} (36) 

 

For static problems, we obtain the following operator equation 
 

[𝐾]{𝛥} = {𝐹} (37) 
 

Where 
 

[𝐾] = [

𝑎11 𝑎12 𝑎13 𝑎14
𝑎12 𝑎22 𝑎23 𝑎24
𝑎13 𝑎23 𝑎33 𝑎34
𝑎14 𝑎24 𝑎34 𝑎44

], (38a) 

 

[𝑀] = [

𝑚11 𝑚12 𝑚13 𝑚14

𝑚12 𝑚22 𝑚23 𝑚24

𝑚13 𝑚23 𝑚33 𝑚34

𝑚14 𝑚24 𝑚34 𝑚44

], (38b) 

 

and 
 

{𝛥} = {

𝑈𝑚
𝑊𝑚
𝑋𝑚
𝛷𝑚

},           {𝛥} = {

0
𝑄𝑚
0
0

} (38c) 

 

With 
 

𝑎11 = 𝐴11𝛼
2,          𝑎12 = −𝐵11𝛼

3,          𝑎13 = −𝐵11
𝑠 𝛼𝑘1,          𝑎13 = −𝑋13𝛼, 

𝑎22 = 𝐷11𝛼
4 + 𝐾𝑤 + 𝐾𝑝𝛼

2,                     𝑎23 = 𝐷11
𝑠 𝛼2𝑘1,           𝑎24 = 𝑌13𝛼

2, 

𝑎33 = 𝐻11
𝑠 𝑘1

2 + 𝐴55
𝑠 (𝑘1𝐴’)

2𝛼2,                𝑎34 = 𝑌13
𝑠 𝑘1 + 𝐴55

𝑠 (𝑘1𝐴’)𝛼
2 

(39a) 

 

𝑚11 = 𝐼0,          𝑚12 = −𝐼1𝛼,          𝑚13 = 𝐽1𝛼𝑘1𝐴
′,              𝑚14 = 0, 

𝑚22 = 𝐼0 + 𝐼2𝛼
2,                              𝑚23 = −𝐽2𝛼

2𝑘1𝐴
′,         𝑚24 = 𝐽0, 

𝑚33 = 𝐾2𝛼
2(𝑘1𝐴’)

2,                       𝑚34 = 0,                           𝑚44 = 𝐾0 

(39b) 

 

 

4. Numerical results and discussions 
 

Numerical results for displacements, stresses and natural frequencies of functionally graded 

beams resting on two parameter elastic foundation are presented in this section to verify the 

accuracy of the present formulation. The beam is made of the following material properties: 
 

Ceramic: Alumina (Al2O3): 𝐸𝑐 = 380 GPa; 𝜈 = 0.3; 𝜌𝑐 = 3960 kg/m3. 

Metal: Aluminium (Al): 𝐸𝑚 = 70 GPa; 𝜈 = 0.3; 𝜌𝑚 = 2702 kg/m3. 
 

For simplicity, the following non-dimensional parameters are used: 
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Axial displacement: 𝑢 = 100
𝐸𝑚ℎ

3

𝑞0𝐿
4 𝑢 (0,−

ℎ

2
) ; 

Transverse displacement: 𝑤 = 100
𝐸𝑚ℎ

3

𝑞0𝐿
4 𝑤 (

𝐿

2
, 0) ; 

Axial stress: 𝜎𝑥 =
ℎ

𝑞0𝐿
𝜎𝑥 (

𝐿

2
,
ℎ

2
) ; 

Transverse shear stress: 𝝉𝒙𝒛 =
𝒉

𝒒𝟎𝑳
𝝉𝒙𝒛(𝟎, 𝟎); 

Fundamental frequency: 𝝎 =
𝝎 𝑳𝟐

𝒉
√
𝝆𝒎

𝑬𝒎
; 

Finally, the non-dimensional elastic foundation parameters are: 𝜉𝑤 =
𝐾𝑤𝑙

2

𝐸𝑚ℎ
, 𝜉𝑝 =

𝐾𝑝

𝐸𝑚ℎ
. 

 

Study 1: Bending and free vibration of functionally graded beams on elastic 
foundations 

In this example, the bending and free vibration responses of FG beam under sinusoidal load is 

investigated. Displacements and stresses obtained by using the present hyperbolic beam theory 

(HBT), the second quasi-3D hyperbolic beam theory of Mechab et al. (2017), the inverse 

hyperbolic theory (IHBT) of Sayyad and Ghugal (2018), the parabolic beam theory (PBT) of 

Reddy (1984) and first order beam theory (FBT) of Timoshenko (1921) are presented in Tables 1, 

2 and 3. These results are obtained for 𝐿/ℎ = 5 and 𝐿/ℎ = 20 and various values of power law 

index (𝑝) and with foundation parameters (𝜉𝑤, 𝜉𝑝). It is seen that the displacements and stresses 

obtained from the two present theory are in excellent agreement with those obtained from Sayyad 

and Ghugal (2018) and PBT. On the contrary, the FBT underestimates the displacements and 

stresses. Furthermore, it is observed from the Tables 1, 2 and 3 that the displacements increase 

with the increase in power-law index whereas stresses are identical when beam is made of fully 

ceramic (𝑝 = 0) or fully metal (𝑝 = ∞). This is due to the fact that an increase of the power-law 

index makes FG beams more flexible i.e., reduces their stiffness. It is also observed from Tables 1, 

2 and 3 that the displacement and stresses of FG beam are reduced when it is resting on two 

 

 
Table 1 Non-dimensional displacements and stresses of functionally graded beam subjected to sinusoidal 

load (𝜉𝑤 = 0 and 𝜉𝑝 = 0) 

𝑝 Theory 
𝐿 ℎ⁄ = 5 𝐿 ℎ⁄ = 20 

𝑢 𝑤̄ 𝜎̄𝑥 𝜏̄𝑥𝑧 𝑢 𝑤̄ 𝜎̄𝑥 𝜏̄𝑥𝑧 

0 

Present (𝜺𝒛 ≠ 𝟎) 0.7254 2.5007 3.1282 0.4877 0.1784 2.2839 12.180 0.4884 

Mechab et al. (2017) 0.7242 2.5011 3.1318 0.4641 0.1784 2.2839 12.181 0.4645 

Sayyad and Ghugal (2018) 0.7253 2.5019 3.0922 0.4800 0.1784 2.2839 12.171 0.4806 

Reddy (1984) 0.7251 2.5020 3.0916 0.4769 0.1784 2.2838 12.171 0.4774 

Timoshenko (1921) 0.7129 2.0523 3.0396 0.2653 0.1782 2.2839 12.158 0.2653 

1 

Present (𝜺𝒛 ≠ 𝟎) 1.7798 4.9437 4.8475 0.4877 0.4400 4.5774 18.828 0.4884 

Mechab et al. (2017) 1.7778 4.9442 4.8537 0.4641 0.4399 4.5774 18.829 0.4645 

Sayyad and Ghugal (2018) 1.7796 4.9441 4.7867 0.5248 0.4400 4.5774 18.814 0.5245 

Reddy (1984) 1.7793 4.9458 4.7857 0.5243 0.4400 4.5773 18.813 0.5249 

Timoshenko (1921) 1.7588 4.8807 4.6979 0.5376 0.4397 4.5734 18.792 0.5376 
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Table 1 Non-dimensional displacements and stresses of functionally graded beam subjected to sinusoidal 

load (𝜉𝑤 = 0 and 𝜉𝑝 = 0) 

𝑝 Theory 
𝐿 ℎ⁄ = 5 𝐿 ℎ⁄ = 20 

𝑢 𝑤̄ 𝜎̄𝑥 𝜏̄𝑥𝑧 𝑢 𝑤̄ 𝜎̄𝑥 𝜏̄𝑥𝑧 

5 

Present (𝜺𝒛 ≠ 𝟎) 2.8656 7.7748 6.6968 0.3980 0.7069 6.9543 25.816 0.3988 

Mechab et al. (2017) 2.8615 7.7625 6.6919 0.3713 0.7068 6.9535 25.815 0.3718 

Sayyad and Ghugal (2018) 2.8649 7.7739 6.6079 0.5274 0.7069 6.9541 25.795 0.5313 

Reddy (1984) 2.8644 7.7723 6.6057 0.5314 0.7069 6.9540 25.794 0.5323 

Timoshenko (1921) 2.8250 7.5056 6.4382 0.9942 0.7062 6.9373 25.752 0.9942 

10 

Present (𝜺𝒛 ≠ 𝟎) 3.0004 8.6522 8.0174 0.4344 0.7380 7.6422 30.948 0.4352 

Mechab et al. (2017) 2.9954 8.6453 8.0119 0.4082 0.7379 7.6417 30.948 0.4088 

Sayyad and Ghugal (2018) 2.9995 8.6539 7.9102 0.4237 0.7380 7.6422 30.923 0.4263 

Reddy (1984) 2.9989 8.6530 7.9080 0.4226 0.7379 7.6421 30.999 0.4233 

Timoshenko (1921) 2.9488 8.3259 7.7189 1.2320 0.7372 7.6215 30.875 1.2320 

∞ 

Present (𝜺𝒛 ≠ 𝟎) 3.9379 13.576 3.1282 0.4877 0.9686 12.398 12.180 0.4884 

Mechab et al. (2017) 3.9315 13.577 3.1318 0.4641 0.9685 12.398 12.181 0.4645 

Sayyad and Ghugal (2018) 3.9371 13.582 3.0922 0.4800 0.9677 12.329 12.171 0.4806 

Reddy (1984) 3.9363 13.582 3.0916 0.4769 0.9686 12.398 12.171 0.4774 

Timoshenko (1921) 3.8702 12.552 3.0396 0.3183 0.9676 12.398 12.158 0.3183 

 

 
Table 2 Non-dimensional displacements and stresses of functionally graded beam resting on two parameter 

elastic foundation and subjected to sinusoidal load (𝜉𝑤 = 0.1 and 𝜉𝑝 = 0) 

𝑝 Theory 
𝐿 ℎ⁄ = 5 𝐿 ℎ⁄ = 20 

𝑢 𝑤̄ 𝜎̄𝑥 𝜏̄𝑥𝑧 𝑢 𝑤̄ 𝜎̄𝑥 𝜏̄𝑥𝑧 

0 

Present (𝜺𝒛 ≠ 𝟎) 0.6826 2.3534 2.9438 0.4590 0.0932 1.1935 6.3652 0.2552 

Mechab et al. (2017) 0.6815 2.3536 2.9473 0.4367 0.0932 1.1935 6.3657 0.2428 

Sayyad and Ghugal (2018) 0.6826 2.3547 2.9102 0.4517 0.0932 1.1935 6.3608 0.2511 

Reddy (1984) 0.6824 2.3547 2.9096 0.4488 0.0932 1.1935 6.3606 0.2495 

Timoshenko (1921) 0.6716 2.3205 2.8607 0.2499 0.0932 1.1929 6.3539 0.1387 

1 

Present (𝜺𝒛 ≠ 𝟎) 1.5838 4.3992 4.3135 0.4341 0.1554 1.6169 6.6508 0.1725 

Mechab et al. (2017) 1.5820 4.3996 4.3191 0.4129 0.1554 1.6169 6.6513 0.1641 

Sayyad and Ghugal (2018) 1.5838 4.4015 4.2600 0.4657 0.1554 1.6169 6.6458 0.1851 

Reddy (1984) 1.5835 4.4015 4.2591 0.4666 0.1554 1.6169 6.6456 0.1854 

Timoshenko (1921) 1.5675 4.3499 4.1871 0.4791 0.1554 1.6164 6.6418 0.1900 

5 

Present (𝜺𝒛 ≠ 𝟎) 2.3987 6.5080 5.6056 0.3332 0.1869 1.8389 6.8265 0.1054 

Mechab et al. (2017) 2.3959 6.4996 5.6032 0.3109 0.1869 1.8389 6.8268 0.0983 

Sayyad and Ghugal (2018) 2.3987 6.5089 5.5327 0.4416 0.1869 1.8389 6.8212 0.1397 

Reddy (1984) 2.3984 6.5078 5.5310 0.4450 0.1869 1.8389 6.8211 0.1408 

Timoshenko (1921) 2.3786 6.3198 5.4210 0.8371 0.1871 1.8377 6.8221 0.2634 
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Table 2 Non-dimensional displacements and stresses of functionally graded beam resting on two parameter 

elastic foundation and subjected to sinusoidal load (𝜉𝑤 = 0.1 and 𝜉𝑝 = 0) 

𝑝 Theory 
𝐿 ℎ⁄ = 5 𝐿 ℎ⁄ = 20 

𝑢 𝑤̄ 𝜎̄𝑥 𝜏̄𝑥𝑧 𝑢 𝑤̄ 𝜎̄𝑥 𝜏̄𝑥𝑧 

10 

Present (𝜺𝒛 ≠ 𝟎) 2.4662 7.1115 6.5898 0.3570 0.1819 1.8838 7.6286 0.1072 

Mechab et al. (2017) 2.4625 7.1072 6.5866 0.3356 0.1819 1.8837 7.6287 0.1008 

Sayyad and Ghugal (2018) 2.4659 7.1147 6.5033 0.3484 0.1819 1.8838 7.6225 0.1051 

Reddy (1984) 2.4655 7.1141 6.5016 0.3474 0.1819 1.8838 7.5606 0.1043 

Timoshenko (1921) 2.4408 6.8914 6.3891 1.0197 0.1821 1.8825 7.6262 0.3043 

∞ 

Present (𝜺𝒛 ≠ 𝟎) 2.9387 10.131 2.3344 0.3640 0.1625 2.0805 2.0438 0.0819 

Mechab et al. (2017) 2.9339 10.132 2.3372 0.3463 0.1625 2.0805 2.0441 0.0779 

Sayyad and Ghugal (2018) 2.9391 10.139 2.3084 0.3583 0.1631 2.0785 2.0425 0.0806 

Reddy (1984) 2.9385 10.139 2.3079 0.3560 0.1625 2.0805 2.0424 0.0801 

Timoshenko (1921) 2.8891 10.140 2.2691 0.2376 0.1624 2.0805 2.0403 0.0534 

 

 
Table 3 Non-dimensional displacements and stresses of functionally graded beam resting on two parameter 

elastic foundation and subjected to sinusoidal load (𝜉𝑤 = 0.1 and 𝜉𝑝 = 0.1) 

𝑝 Theory 
𝐿 ℎ⁄ = 5 𝐿 ℎ⁄ = 20 

𝑢 𝑤̄ 𝜎̄𝑥 𝜏̄𝑥𝑧 𝑢 𝑤̄ 𝜎̄𝑥 𝜏̄𝑥𝑧 

0 

Present (𝜺𝒛 ≠ 𝟎) 0.4316 1.4878 1.8611 0.2902 0.0163 0.2089 1.1143 0.0446 

Mechab et al. (2017) 0.4309 1.4880 1.8634 0.2761 0.0163 0.2089 1.1144 0.0425 

Sayyad and Ghugal (2018) 0.4317 1.4894 1.8407 0.2857 0.0163 0.2090 1.1136 0.0440 

Reddy (1984) 0.4316 1.4894 1.8403 0.2839 0.0163 0.2090 1.1136 0.0437 

Timoshenko (1921) 0.4271 1.4756 1.8093 0.1589 0.0163 0.2089 1.1124 0.0243 

1 

Present (𝜺𝒛 ≠ 𝟎) 0.7588 2.1077 2.0667 0.2079 0.0211 0.2189 0.9007 0.0234 

Mechab et al. (2017) 0.7579 2.1079 2.0694 0.1979 0.0211 0.2189 0.9008 0.0222 

Sayyad and Ghugal (2018) 0.7592 2.1100 2.0422 0.2232 0.0211 0.2190 0.9001 0.0251 

Reddy (1984) 0.7591 2.1100 2.0417 0.2237 0.0211 0.2190 0.9001 0.0251 

Timoshenko (1921) 0.7560 2.0981 2.0195 0.2311 0.0211 0.2190 0.8998 0.0257 

5 

Present (𝜺𝒛 ≠ 𝟎) 0.9197 2.4953 2.1493 0.1277 0.0226 0.2226 0.8264 0.0128 

Mechab et al. (2017) 0.9195 2.4944 2.1504 0.1193 0.0226 0.2226 0.8265 0.0119 

Sayyad and Ghugal (2018) 0.9205 2.4976 2.1231 0.1694 0.0226 0.2226 0.8258 0.0170 

Reddy (1984) 0.9204 2.4975 2.1226 0.1708 0.0226 0.2226 0.8258 0.0170 

Timoshenko (1921) 0.9294 2.4693 2.1181 0.3271 0.0227 0.2226 0.8264 0.0319 

10 

Present (𝜺𝒛 ≠ 𝟎) 0.8944 2.5790 2.3898 0.1294 0.0216 0.2233 0.9042 0.0127 

Mechab et al. (2017) 0.8935 2.5789 2.3900 0.1218 0.0216 0.2233 0.9042 0.0119 

Sayyad and Ghugal (2018) 0.8950 2.5820 2.3601 0.1264 0.0216 0.2233 0.9035 0.0125 

Reddy (1984) 0.8948 2.5819 2.3596 0.1261 0.0215 0.2233 0.8934 0.0124 

Timoshenko (1921) 0.9039 2.5520 2.3660 0.3776 0.0216 0.2233 0.9045 0.0361 
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Table 3 Non-dimensional displacements and stresses of functionally graded beam resting on two parameter 

elastic foundation and subjected to sinusoidal load (𝜉𝑤 = 0.1 and 𝜉𝑝 = 0.1) 

𝑝 Theory 
𝐿 ℎ⁄ = 5 𝐿 ℎ⁄ = 20 

𝑢 𝑤̄ 𝜎̄𝑥 𝜏̄𝑥𝑧 𝑢 𝑤̄ 𝜎̄𝑥 𝜏̄𝑥𝑧 

∞ 

Present (𝜺𝒛 ≠ 𝟎) 0.8386 2.8910 0.6661 0.1038 0.0176 0.2258 0.2218 0.0088 

Mechab et al. (2017) 0.8373 2.8915 0.6669 0.0988 0.0176 0.2258 0.2218 0.0085 

Sayyad and Ghugal (2018) 0.8393 2.8955 0.6592 0.1023 0.0177 0.2258 0.2217 0.0088 

Reddy (1984) 0.8392 2.8955 0.6591 0.1017 0.0176 0.2258 0.2217 0.0087 

Timoshenko (1921) 0.8250 2.8955 0.6479 0.0679 0.0176 0.2258 0.2214 0.0058 

 

 

 

 

Fig. 5 Non-dimensional axial displacement through the thickness (L/h = 5, non dimensional elastic 

foundation parameters are: w = p = 0) 

 

 

 

 

Fig. 6 Non-dimensional axial displacement through the thickness (L/h = 5, non-dimensional elastic 

foundation parameters are : w = 0.1 and p = 0) 
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Fig. 7 Non-dimensional axial displacement through the thickness (L/h = 5, non-dimensional elastic 

foundation parameters are : w = 0.1 and p = 0.1) 
 

 

 

Fig. 8 Non-dimensional axial stress through the thickness (L/h = 5, non-dimensional elastic 

foundation parameters are : w = 0 and p = 0) 
 

 

 

Fig. 9 Non-dimensional axial stress through the thickness (L/h = 5, non-dimensional elastic foundation 

parameters are : w = 0.1 and p = 0) 
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Fig. 10 Non-dimensional axial stress through the thickness (L/h = 5, non-dimensional elastic foundation 

parameters are : w = 0.1 and p = 0.1) 
 

 

 

Fig. 11 Non-dimensional transverse shear stress through the thickness (L/h = 5, non-dimensional elastic 

foundation parameters are : w = 0 and p = 0) 
 

 

 

Fig. 12 Non-dimensional transverse shear stress through the thickness (L/h = 5, non-dimensional elastic 

foundation parameters are : w = 0.1 and p = 0) 
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Fig. 13 Non-dimensional transverse shear stress through the thickness (L/h = 5, non-dimensional elastic 

foundation parameters are : w = 0.1 and p = 0.1) 

 

 

parameter elastic foundation i.e., Winkler layer and shearing layer. 

Figs. 5-7 show effect of power-law index and foundation parameter on axial displacement of 

FG beam subjected to sinusoidal load using the present hyperbolic beam theory (HBT). Figs. 8-10 

show non-linear variation of bending stress for 𝑝 = 5 and 10 and linear variation for 𝑝 = 0 and 

∞. Through-the-thickness variations of transverse shear stresses are shown in Figs. 11-13 for 

various values of power law index and foundation parameters. 

The non-dimensional natural frequencies of a FG beam resting on two parameters elastic 

foundation obtained from the present the present hyperbolic beam (HBT) and the second 

hyperbolic beam theory of Mechab et al. (2017), are given in Tables 4 and 5 for different values of 

power-law index. The present results are compared with those presented by Sayyad and Ghugal 

(2018). The examination of Tables 4 and 5 reveals that the fundamental frequencies obtained using 

the two present theories are in excellent agreement with the previously published results. It is 

observed that an increase in the value of the 𝑝 index leads to a reduction of fundamental 
 

 

Table 4 Non-dimensional flexural natural frequencies of functionally graded beams resting on elastic 

foundation (𝐿 ℎ⁄ = 5) 

𝑝 

𝐿 ℎ⁄  Mode 𝜉𝑤 𝜉𝑝 Theory 0 1 2 5 10 ∞ 

5 1 

0 0 

Present (𝜺𝒛 ≠ 𝟎) 5.1528 3.9904 3.6262 3.4001 3.2811 2.6773 

Mechab et al. (2017) 5.1528 3.9904 3.6268 3.4028 3.2825 2.6773 

Sayyad and Ghugal (2018) 5.1453 3.9826 3.6184 3.3917 3.2727 2.6734 

0.1 0 

Present (𝜺𝒛 ≠ 𝟎) 5.3115 4.2300 3.9045 3.7159 3.6187 3.0987 

Mechab et al. (2017) 5.3116 4.2299 3.9051 3.7183 3.6199 3.0987 

Sayyad and Ghugal (2018) 5.3038 4.2216 3.8961 3.7066 3.6094 3.0942 

0.1 0.1 

Present (𝜺𝒛 ≠ 𝟎) 6.6780 6.1073 5.9913 5.9949 6.0020 5.7904 

Mechab et al. (2017) 6.6779 6.1073 5.9916 5.9964 6.0030 5.7904 

Sayyad and Ghugal (2018) 6.6689 6.0973 5.9810 5.9830 5.9909 5.7903 
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Table 4 Non-dimensional flexural natural frequencies of functionally graded beams resting on elastic 

foundation (𝐿 ℎ⁄ = 5) 

𝑝 

𝐿 ℎ⁄  Mode 𝜉𝑤 𝜉𝑝 Theory 0 1 2 5 10 ∞ 

5 

2 

0 0 

Present (𝜺𝒛 ≠ 𝟎) 17.880 14.009 12.638 11.533 11.020 9.2905 

Mechab et al. (2017) 17.878 14.008 12.642 11.555 11.029 9.2895 

Sayyad and Ghugal (2018) 17.589 13.754 12.388 11.260 10.748 9.1392 

0.1 0 

Present (𝜺𝒛 ≠ 𝟎) 17.925 14.076 12.717 11.626 11.121 9.4159 

Mechab et al. (2017) 17.923 14.075 12.721 11.648 11.131 9.4149 

Sayyad and Ghugal (2018) 17.633 13.820 12.465 11.351 10.848 9.2623 

0.1 0.1 

Present (𝜺𝒛 ≠ 𝟎) 19.605 16.490 15.489 14.820 14.552 13.411 

Mechab et al. (2017) 19.603 16.489 15.491 14.836 14.559 13.409 

Sayyad and Ghugal (2018) 19.287 16.200 15.200 14.493 14.224 13.240 

3 

0 0 

Present (𝜺𝒛 ≠ 𝟎) 34.198 27.091 24.307 21.689 20.546 17.769 

Mechab et al. (2017) 34.184 27.081 24.310 21.740 20.562 17.762 

Sayyad and Ghugal (2018) 32.324 25.538 22.812 20.117 19.003 16.794 

0.1 0 

Present (𝜺𝒛 ≠ 𝟎) 34.222 27.125 24.347 21.738 20.601 17.834 

Mechab et al. (2017) 34.207 27.115 24.349 21.788 20.617 17.827 

Sayyad and Ghugal (2018) 32.346 25.570 22.849 20.163 19.053 16.855 

0.1 0.1 

Present (𝜺𝒛 ≠ 𝟎) 36.209 29.948 27.621 25.663 24.889 22.747 

Mechab et al. (2017) 36.193 29.936 27.619 25.699 24.901 22.736 

Sayyad and Ghugal (2018) 34.223 28.261 25.980 23.881 23.1.7 21.626 

 

 

 

frequencies. This is due to the fact that an increase in the p-value results in a decrease in the value 

of the elastic modulus. Also, it is observed that the natural frequencies are increased when beam is 

resting on two parameters elastic foundation. 

 

 

 
Table 5 Non-dimensional flexural natural frequencies of functionally graded beams resting on elastic 

foundation (𝐿 ℎ⁄ = 20) 

𝑝 

𝐿 ℎ⁄  Mode 𝜉𝑤 𝜉𝑝 Theory 0 1 2 5 10 ∞ 

20 

1 

0 0 

Present (𝜺𝒛 ≠ 𝟎) 5.4603 4.2050 3.8361 3.6484 3.5389 2.8371 

 Mechab et al. (2017) 5.4603 4.2050 3.8361 3.6486 3.5391 2.8371 

 Sayyad and Ghugal (2018) 5.4603 4.2050 3.8361 3.6484 3.5389 2.8371 

 

0.1 0 

Present (𝜺𝒛 ≠ 𝟎) 7.5533 7.0752 7.0185 7.0948 7.1280 6.9259 

 Mechab et al. (2017) 7.5533 7.0752 7.0185 7.0950 7.1281 6.9259 

 Sayyad and Ghugal (2018) 7.5533 7.0751 7.0184 7.0948 7.1279 6.9259 
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Table 5 Non-dimensional flexural natural frequencies of functionally graded beams resting on elastic 

foundation (𝐿 ℎ⁄ = 20) 

𝑝 

𝐿 ℎ⁄  Mode 𝜉𝑤 𝜉𝑝 Theory 0 1 2 5 10 ∞ 

 

 0.1 0.1 

Present (𝜺𝒛 ≠ 𝟎) 18.052 19.224 19.752 20.389 20.703 21.020 

 Mechab et al. (2017) 18.052 19.224 19.752 20.389 20.703 21.020 

 Sayyad and Ghugal (2018) 18.052 19.224 19.752 20.390 20.703 21.022 

 

2 

0 0 

Present (𝜺𝒛 ≠ 𝟎) 21.573 16.634 15.161 14.373 13.925 11.209 

 Mechab et al. (2017) 21.573 16.634 15.162 14.376 13.927 11.209 

 Sayyad and Ghugal (2018) 21.571 16.631 15.158 14.370 13.922 11.208 

 

0.1 0 

Present (𝜺𝒛 ≠ 𝟎) 22.192 17.575 16.254 15.599 15.230 12.858 

 Mechab et al. (2017) 22.192 17.575 16.254 15.603 15.232 12.858 

 Sayyad and Ghugal (2018) 22.189 17.571 16.250 15.596 15.226 12.857 

 

0.1 0.1 

Present (𝜺𝒛 ≠ 𝟎) 39.515 39.733 40.226 41.161 41.625 41.604 

 Mechab et al. (2017) 39.515 39.733 40.227 41.162 41.626 41.604 

 Sayyad and Ghugal (2018) 39.513 39.730 40.223 41.157 41.624 41.615 

 

3 

0 0 

Present (𝜺𝒛 ≠ 𝟎) 47.593 36.768 33.467 31.571 30.534 24.729 

 Mechab et al. (2017) 47.593 36.768 33.471 31.587 30.542 24.729 

 Sayyad and Ghugal (2018) 47.569 36.740 33.440 31.543 30.505 24.716 

 

0.1 0 

Present (𝜺𝒛 ≠ 𝟎) 47.874 37.199 33.971 32.142 31.144 25.512 

 Mechab et al. (2017) 47.874 37.199 33.974 32.158 31.153 25.512 

 Sayyad and Ghugal (2018) 47.851 37.171 33.943 32.114 31.116 25.499 

 

0.1 0.1 

Present (𝜺𝒛 ≠ 𝟎) 68.383 64.908 64.560 65.287 65.669 64.339 

 Mechab et al. (2017) 68.383 64.908 64.562 65.294 65.674 64.339 

 Sayyad and Ghugal (2018) 68.353 64.871 64.523 65.245 65.633 64.358 

 

 

Study 2: Effect of micromechanical models on bending and free vibration analysis of 
FG beams 

The effect of micromechanical models on bending and free vibration analysis of FG beams 

using the present hyperbolic beam theory (HBT) is presented for investigation. The results are 

presented in Tables 6 and 7 for FG beam with power law index 𝑝 = 2 and two values of 𝐿/ℎ. 

Effective Young’s modulus is calculated using the aforementioned five micromechanical models. 

The results are given in terms of displacements and the various stresses. The results of the present 

hyperbolic beam theory (HBT) is compared with those presented by Zouatnia and Hadji (2019) 

with (𝜀𝑧 = 0). It can be observed that there is a good agreement between displacements and 

stresses using the different micromechanical models under sinusoidal load. The slight difference 

may be explained by the way that the Young’s modulus is calculated. In addition, the use of the 

Reuss model leads to the highest displacement values, compared to other models, while that of 

Voigt’s one implies the lowest values. The Reuss and Tamura models lead to almost the same 

results. 

In Fig. 14, we present the variation of the axial stress 𝜎𝑥 through the thickness for different 
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Table 6 Non-dimensional displacements and stresses of functionally graded (P-FGM) beams 

(p = 2 and L = 5 h) 

Theory 
Sinusoidal load 

𝑤̄ 𝑢 𝜎̄𝑥 𝜏̄𝑥𝑧 

Present (𝜺𝒛 ≠ 𝟎)
 Voigt 6.3738 2.4053 5.6729 0.4482 

Zouatnia and Hadji (2019) Voigt 6.3759 2.4058 5.6056 0.4482 

Present (𝜺𝒛 ≠ 𝟎)
 Reuss 8.0170 2.8658 7.3747 0.4347 

Zouatnia and Hadji (2019) Reuss 8.0200 2.8664 7.2829 0.4347 

Present (𝜺𝒛 ≠ 𝟎)
 LRVE 7.3755 2.7336 6.4843 0.4223 

Zouatnia and Hadji (2019) LRVE 7.3780 2.7341 6.4049 0.4223 

Present (𝜺𝒛 ≠ 𝟎)
 Tamura (q = 0) 8.0171 2.8658 7.3747 0.4347 

Zouatnia and Hadji (2019) Tamura (q = 0) 8.0200 2.8664 7.2829 0.4347 

Present (𝜺𝒛 ≠ 𝟎)
 Tamura (q = 100) 7.3501 2.7094 6.5452 0.4303 

Zouatnia and Hadji (2019) Tamura (q = 100) 7.3527 2.7100 6.4650 0.4302 

Present (𝜺𝒛 ≠ 𝟎)
 Mori-Tanaka 7.7979 2.8176 7.0819 0.4324 

Zouatnia and Hadji (2019) Mori-Tanaka 7.8007 2.8183 6.9941 0.4323 

 

 
Table 7 Non-dimensional displacements and stresses of functionally graded (P-FGM) beams 

(p = 2 and L = 20 h) 

Theory 
Sinusoidal load 

𝑤̄ 𝑢 𝜎̄𝑥 𝜏̄𝑥𝑧 

Present (𝜺𝒛 ≠ 𝟎)
 Voigt 5.8685 0.5952 21.9883 0.4489 

Zouatnia and Hadji (2019) Voigt 5.8684 0.5952 21.9725 0.4489 

Present (𝜺𝒛 ≠ 𝟎)
 Reuss 7.2036 0.7067 28.5036 0.4355 

Zouatnia and Hadji (2019) Reuss 7.2036 0.7067 28.4820 0.4355 

Present (𝜺𝒛 ≠ 𝟎)
 LRVE 6.6746 0.6751 25.0558 0.4231 

Zouatnia and Hadji (2019) LRVE 6.6746 0.6751 25.0372 0.4231 

Present (𝜺𝒛 ≠ 𝟎)
 Tamura (q = 0) 7.2036 0.7067 28.5036 0.4355 

Zouatnia and Hadji (2019) Tamura (q = 0) 7.2036 0.7067 28.4820 0.4355 

Present (𝜺𝒛 ≠ 𝟎)
 Tamura (q = 100) 6.6589 0.6691 25.3037 0.4310 

Zouatnia and Hadji (2019) Tamura (q = 100) 6.6589 0.6691 25.2848 0.4310 

Present (𝜺𝒛 ≠ 𝟎)
 Mori-Tanaka 7.0222 0.6952 27.3700 0.4331 

Zouatnia and Hadji (2019) Mori-Tanaka 7.0222 0.6952 27.3493 0.4331 

 

 

micromechanical models. From this figure, it can be seen that all models give almost the same 

results in terms of axial stress except that of Voigt, which gives minimum tensile stresses at the top, 

and minimum compressive stresses at the bottom surface. 

The effect of the micromechanical models on the variation of the transverse shear stress 𝜏𝑥𝑧 

across the thickness is shown in Fig. 15. The Voigt model is the one, which gives the highest 

stresses compared with the others where the difference between the max stresses is minimal. 
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Fig. 14 Variation of the axial stress 𝜎𝑥 through-the-thickness of a FG beam for different micromechanical 

models (𝐿/ℎ = 2, 𝑝 = 1) 

 

 

 

Fig. 15 Variation of the transverse shear stress 𝜏𝑥𝑧 through-the-thickness of a FG beam for different 

micromechanical models (𝐿/ℎ = 2, 𝑝 = 1) 

 

 
Table 8 Variation of fundamental frequency 𝜔 with the power-law index 𝑝 for FG beam 

𝐿/ℎ Theory 
𝑝 

0 0.5 1 2 5 10 

5 

 
Ould Larbi et al. (2013) 5.1529 4.4108 3.9905 3.6263 3.4001 3.2812 

TBT (Simsek 2010) 5.1527 4.4111 3.9904 3.6264 3.4012 3.2816 

Present 

(𝜺𝒛 ≠ 𝟎) 

Voigt 5.1528 4.4107 3.9905 3.6263 3.4001 3.2811 

Reuss 5.1528 3.6231 3.3819 3.2381 3.1071 2.9951 

LRVE 5.1528 3.9096 3.5729 3.3731 3.2309 3.1071 

Tamura 
(q = 0) 5.1528 3.6231 3.3819 3.2381 3.1071 2.9951 

(q = 100) 5.1528 3.9126 3.5887 3.3793 3.2277 3.1068 

Mori-Tanaka 5.1528 3.7112 3.4440 3.2825 3.1459 3.0300 
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Table 8 Variation of fundamental frequency 𝜔 with the power-law index 𝑝 for FG beam 

𝐿/ℎ Theory 
𝑝 

0 0.5 1 2 5 10 

20 

 
Ould Larbi et al. (2013) 5.4603 4.6511 4.2051 3.8361 3.6484 3.5389 

TBT (Simsek 2010) 5.4603 4.6511 4.2051 3.8361 3.6485 3.5390 

Present 

(𝜺𝒛 ≠ 𝟎) 

Voigt 5.4603 4.6511 4.2051 3.8361 3.6484 3.5389 

Reuss 5.4603 3.8364 3.5956 3.4626 3.3350 3.2063 

LRVE 5.4603 4.1261 3.7815 3.5970 3.4765 3.3374 

Tamura 
(q = 0) 5.4603 3.8364 3.5956 3.4626 3.3350 3.2063 

(q = 100) 5.4603 4.1320 3.7998 3.6013 3.4696 3.3364 

Mori-Tanaka 5.4603 3.9258 3.6568 3.5070 3.3789 3.2468 

 

 

Table 8 shows the variations of the fundamental frequency 𝜔 with power law index (𝑝 = 0, 

0.5, 1, 2, 5, 10) and two span-to-depth ratios 𝐿/ℎ. Effective Young’s modulus is calculated 

using the aforementioned five micromechanical models. The obtained results are compared with 

those given by Simsek (2010) and the theory of Ould Larbi et al. (2013). From this table two 

observations can be made. First, the results obtained from the present hyperbolic beam theory 

(HBT) for the Voigt model are very close to those of Ould Larbi et al. (2013) and Simsek (2010). 

Secondly, the results from the present theory and calculated with the four other models, namely 

LRVE, Tamura, Mori-Tanaka and Reuss, are slightly different. This can be explained by the way 

of which the Young’s modulus is calculated. 

In Fig. 16, the variations of the non-dimensional fundamental natural frequency 𝜔 versus the 

power law index 𝑝 for a value of span-to-depth ratio 𝐿/ℎ = 5 are given for different 

micromechanical models. It is seen from the figure that the increase of the power law index 𝑝 

produces a decrease in the values of the frequencies and this whatever the model used. The full 

ceramic beam (𝑝 = 0) presents the highest frequency for all models. However, the lowest 
 

 

 

Fig. 16 Variation of the transverse shear stress 𝜏𝑥𝑧 through-the-thickness of a FG beam for different 

micromechanical models (𝐿/ℎ = 2, 𝑝 = 1) 
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frequency values are obtained for full metal beams (𝑝 → ∞). In addition, the Voigt model has the 

highest frequencies values compared to other models, while that of Reuss has the lowest values. 

The Tamura and Reuss models have almost the same results. 
 
Study 3: Free vibration analysis of embedded perfect and imperfect FG beams on 

elastic foundations 
Figs. 17, 18, 19 and 20 present the variation of the non-dimensional fundamental frequency 𝜔 

of FG imperfect beams in function of the Winkler parameter and for three values of the porosity 

coefficient 𝛼 = 0, 0.1 and 0.2. It can be concluded that the influence of the Winkler parameter 
 

 

 

Fig. 17 Variation of the nondimensional fundamental frequency 𝝎 =
𝝎 𝑳𝟐

𝒉
√
𝝆𝒎

𝑬𝒎
 of FG beam with 

Winkler parameter 𝝃𝒘 and porosity coefficient 𝜶 

 

 

 

Fig. 18 Variation of the nondimensional fundamental frequency 𝝎 =
𝝎 𝑳𝟐

𝒉
√
𝝆𝒎

𝑬𝒎
 of FG beam with 

Winkler parameter 𝝃𝒘 and porosity coefficient 𝜶 
 

88



 

 

 

 

 

 

Bending and free vibration analysis of functionally graded beams on elastic foundations… 

 

Fig. 19 Variation of the nondimensional fundamental frequency 𝝎 =
𝝎 𝑳𝟐

𝒉
√
𝝆𝒎

𝑬𝒎
 of FG beam with 

Winkler parameter 𝝃𝒘 and porosity coefficient 𝜶 

 

 

 

Fig. 20 Variation of the nondimensional fundamental frequency 𝝎 =
𝝎 𝑳𝟐

𝒉
√
𝝆𝒎

𝑬𝒎
 of FG beam with 

Winkler parameter 𝝃𝒘 and porosity coefficient 𝜶 

 

 

and the porosity on the frequency of imperfect beams with even porosities distribution (Imperfect I 

and III), and uneven porosities distributions (Imperfect II and IV) is very clear. It can be deduced 

from this curves that the highest the Winkler foundation parameter is, the highest the vibration 

frequency is, regardless the value of the porosity coefficient. Besides, an increase of the porosity 

coefficient leads to a higher vibration frequency. 

Figs. 21, 22, 23 and 24 present the vibrational analysis of a short FG imperfect beam (even and 

uneven porosities distribution) and (𝐿/ℎ = 5) with consideration of the Pasternak effect. Three 

values of the porosity coefficient 𝛼 are considered (0, 0.1 and 0.2). It can be deduced from this 

curve that the highest the Pasternak foundation parameter is, the highest the vibration frequency is, 
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regardless the value of the porosity coefficient. Besides, an increase of the porosity coefficient 

leads to a higher vibration frequency. 

Fig. 25 present the variation of non-dimensional frequency 𝜔 of embedded perfect and 

imperfect FG beams versus volume fraction indices 𝑝 with 𝛼 = 0.2. It is pointed out that the 

natural frequencies decrease with the increase of the power law index 𝑝. This is due to the fact 

that an increase of the power law index 𝑝 makes FG beams more flexible. It can be concluded 

that the influence of the porosity on the frequency of imperfect beams with even porosities 

distribution (Imperfect I and III), and uneven porosities distributions (Imperfect II and IV) is very 

clear. The even porosities distributions (Imperfect III), and the perfect beam have almost the same 

 

 

 

Fig. 21 Variation of the nondimensional fundamental frequency 𝝎 =
𝝎 𝑳𝟐

𝒉
√
𝝆𝒎

𝑬𝒎
 of FG beam with shear 

foundation parameter 𝝃𝒑 and porosity coefficient 𝜶 

 

 

 

Fig. 22 Variation of the nondimensional fundamental frequency 𝝎 =
𝝎 𝑳𝟐

𝒉
√
𝝆𝒎

𝑬𝒎
 of FG beam with shear 

foundation parameter 𝝃𝒑 and porosity. coefficient 𝜶 
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Fig. 23 Variation of the nondimensional fundamental frequency 𝝎 =
𝝎 𝑳𝟐

𝒉
√
𝝆𝒎

𝑬𝒎
 of FG beam with shear 

foundation parameter 𝝃𝒑 and porosity coefficient 𝜶 

 

 

 

Fig. 24 Variation of the nondimensional fundamental frequency 𝝎 =
𝝎 𝑳𝟐

𝒉
√
𝝆𝒎

𝑬𝒎
 of FG beam with shear 

foundation parameter 𝝃𝒑 and porosity coefficient 𝜶 

 

 

frequencies. The difference between the results calculated with the four models of porosities, are 

slightly different. This can also be explained by the way who the Young’s modulus is calculated. 

 

 

5. Conclusions 
 
The present work focuses on bending and free vibration analysis of perfect and imperfect FG 

beams under sinusoidal loads resting on two parameters elastic foundation by employing a simple 

higher order shear and normal deformation theory. The theory is developed by making further 
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Fig. 25 Variation of non-dimensional frequency 𝝎 of embedded perfect and imperfect FG beams 

versus volume fraction indices 𝒑 (𝜶 = 𝟎. 𝟐 and 𝑳/𝒉 = 𝟓) 

 

 

 

simplifying assumptions to the existing HSDTs, with the use of an undetermined integral term. 

Different patterns of porosity distributions (including even and uneven distribution patterns, and 

the logarithmic-uneven pattern) are considered. In addition, the effect of different 

micromechanical models on the bending and free vibration response of these beams is studied. 

Various micromechanical models are used to evaluate the mechanical characteristics of the FG 

beams for which properties vary continuously across the thickness according to a simple power 

law. The equations of motion are obtained through the Hamilton’s principle. These equations are 

solved by employing Navier’s procedure. Subsequently the displacement, stress and fundamental 

frequencies are found by solving eigenvalue problem. For the new shear strain shape function 

usedin this paper, the obtained results are compared with those reported by various beam theories. 

The accuracy of the present theory is ascertained by comparing it with existing solutions and 

excellent agreement was observed in all cases. It is relevant to notice the strong effect of 

considering the nonzero transverse normal strain 𝜀𝑧. Indeed, the inclusion of thickness stretching 

effect makes a beam stiffer, and hence, leads to a reduction of deflection and an increase of 

frequency. For the effect of foundation parameters, It is observed from results that the 

displacement and stresses of FG beam are reduced when it is resting on two parameter elastic 

foundation i.e., Winkler layer and shearing layer. Regarding the effect of effect of 

micromechanical models on bending and free vibration analysis of FG beams, we found that there 

is a good agreement between displacements and stresses using the different micromechanical 

models under sinusoidal load. The slight difference may be explained by the way that the Young’s 

modulus is calculated. 

In conclusion, it can be said that the present theory is not only accurate but also efficient in 

predicting displacements, stresses and natural frequency of both homogenous and FG beams. The 

extension of this study is also envisaged for general boundary conditions and different types of FG 

beams subjected to different loading (mechanical, thermal, buckling, etc.). 
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