Advances in Materials Research, Vol. 8, No. 3 (2019) 179-196
DOI: https://doi.org/10.12989/amr.2019.8.3.179 179

Analysis of static and dynamic characteristics of strain gradient
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Abstract. This paper researches static and dynamic bending behaviors of a crystalline nano-size shell having pores
and grains in the framework of strain gradient elasticity. Thus, the nanoshell is made of a multi-phase porous material
for which all material properties on dependent on the size of grains. Also, in order to take into account small size
effects much accurately, the surface energies related to grains and pores have been considered. In order to take into
account all aforementioned factors, a micro-mechanical procedure has been applied for describing material properties
of the nanoshell. A numerical trend is implemented to solve the governing equations and derive static and dynamic
deflections. It will be proved that the static and dynamic deflections of the crystalline nanoshell rely on pore size,
grain size, pore percentage, load location and strain gradient coefficient.
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1. Introduction

Silicon is a basic material used in sensing systems and structures which may have macro,
micron or nano dimensions. This material has not a perfect and ideal structure and it may possess
small size pores. Pores or voids in material texture of silicon leads to the variation in material
attributes. Also, grains are possible to be created within silicon and hence this type of material
would be a crystalline material. Actually, the crystalline materials have grains or crystals of
silicone together with voids and an interface zone between the grains and voids (Wang et al. 2003).
The distribution of grains and voids within material structure would be random and it is not
possible to place them in prescribed locations. In fact, the grains growth in possible positions
during the fabrication of crystalline materials. Moreover, if the dimensions of grains are reduced to
nano scales, the material would be a nanocrystalline material (Meyers et al. 2006). There are
diverse approaches for describing material properties of nanocrystalline materials (Zhou et al.
2013) having grains and voids.

Shell structures have great application in mechanical devices and system form macro to
micro/nano dimensions. Macro size shells are extensively researched via classic elasticity theory in
the view of structural dynamic analysis. However, classic elasticity theory is not appropriate for
nano dimension shells for which small scale impacts exist. Thus, another theories to carry out size-
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dependent dynamical analysis of nano dimension structural components are strain gradient and
nonlocal elasticity theories (Aydogdu 2009, Thai 2012, Ke et al. 2012, Eltaher et al. 2013, Barati
2017, Al-Maliki et al. 2019, Ahmed et al. 2019). Nonlocal elastic theory were used by various
authors in order to incorporate small scale impacts in analysis of nanostructures based on a single
scale factor (Lim 2010, Li 2014a, b, Li et al. 2013, Zenkour and Abouelregal 2014, Ebrahimi and
Barati 2016, 2017a, Barati and Shahverdi 2016, 2017a, Bounouara et al. 2016, Besseghier et al.
2017, Mokhtar et al. 2018). The scale factor defined by nonlocal elastic theory leads to structural
rigidity reduction which highlights that nano size structures have different mechanical
performance from macro scale counterparts. One another scale factor is defined by strain gradient
theory leading to structural rigidity increment. The strain gradient theory express that the strains
are not uniform within the material structures. Therefore, this theory would be useful for modeling
of nanocrystalline materials and structures. For various types of materials and structures, the strain
gradient theory has shown its efficacy (Lim et al. 2015, Li et al. 2016, Mehralian et al. 2017,
Barati and Shahverdi 2017b).

Mechanical analysis of nanocrystalline structures has been carried out by few researches.
Especially nanocrysalline nanoshells having nano-size grains and pores are not studied before.
However, some papers are published on nanocrystalline nanoplates and nanobeams based on strain
gradient theory taking into account the size of pores and grains (Ebrahimi and Barati 2017b, 2018,
Barati and Shahverdi 2017c, d). For other types of materials rather than nanocrystalline materials,
some researchers studied the mechanical properties of elastic nanoshells based on nonlocal and
strain gradient theories and proved the efficacy of the theories (Zaera et al. 2013, Ke et al. 2014,
Mehralian et al. 2016, Farajpour et al. 2017, Sun et al. 2016).

The present article studies static and dynamic bending behaviors of a crystalline nano-size shell
having pores and grains in the framework of strain gradient elasticity. Thus, the nanoshell is made
of a multi-phase porous material for which all material properties on dependent on the size of
grains. Also, in order to take into account small size effects much accurately, the surface energies
related to grains and pores have been considered. In order to take into account all aforementioned
factors, a micro-mechanical procedure has been applied for describing material properties of the
nanoshell. A numerical trend is implemented to solve the governing equations and derive static and
dynamic deflections. It will be proved that the static and dynamic deflections of the crystalline
nanoshell rely on pore size, grain size, pore percentage, load location and strain gradient
coefficient.

2. Model of nanocrystalline nanoshells

Figs. 1 and 2 illustrate a nanocrystalline nanoshell made of silicone under radial dynamic load
with specific frequency. The figures clearly show that pores are available in the material structure
and are able to change material properties. Elastic properties (Young’s moduli and Poisson’s ratio)
for a nanocrystalline nanoshell can be described as functions of bulk and shear moduli (Kyu.

Uncm) @S
9Knembnem

T 1)
3Knem + Unem

Enem =

v _ 3Knem — 2Unem @)
NeM ™ 2(3Kyem + tnem)




Analysis of static and dynamic characteristics of strain gradient shell structures...

Grain boundary

Nanograins (surface phase)

Fig. 1 A crystalline nanoshell with pores and grains
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Fig. 2 The cylindrical nanoshell under radial loading
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In above relations g denotes the nano-grains material properties. Also, v denote the porosities
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material properties. So, fy and f, are grain and pores volume fractions defined as

R3
fo=r=f)r =" (6)
g v (Rg + Tin)3
Here, Ry, Ryand T, respectively denote the main radiuses of nano-grain, nano-porosity and

interface thickness. Above equations are employed in order to characterize all material properties
including nano-porosity effect. Without including nano-porosity effect, the material properties
(Bulk and shear moduli) become (Ebrahimi and Barati 2017b)

3k (fghtin + 3Kin) + 2t (4fgtinks + 3kin(2 = 2f5 + 3))
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so that kg = kj/Rguin and ug = pug/Ryun are surfaces bulks and shear moduli, respectively
for which kg = 2(ug + 13).

For the atoms within the material, the elastic modulus of E(ro) has been defined. This modulus
is identical to that of nano-grains (Eg). ro is the reference position of the atoms in which they are
vibrating. Then, it is possible to define elastic modulus of interface atoms as Ei, = E(r) at a new
position r. Next, for the afore-mentioned elastic moduli there a relationship as follows

Em _E@) _ 1 <(n+1)(:_—0)
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—(m+1) (:—°)m+3) (10)
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so that
1/3

T?O B <5((7;))) o

Above relations are applicable to silicone when m = 8 and n = 12. Then, nanoshell mass density
may be defined as follows taking into account the portions of nano-grains and nano-porosity

pnem = (1 — fg = fo)Pin + fgpg (12)

Selecting first order shear deformable shell theory, the displacement field for crystalline
nanoshells may be expressed by

u(x,0,z,t) =ulx,0,t) + zo,(x,0,t) (13a)
uy(x,0,z,t) =v(x,0,t) + zpg(x,0,t) (13b)
usz(x,0,z,t) =w(x,0,t) (13c)

so that u,v and w define axial, circumferential and lateral components, respectively; ¢,and
@gdefine the rotation about axial and circumferential axes.
In the framework of above shell displacements, the strain component would be
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Now, Hamilton’s principle can be written as
t
J S(U-T-=V)dt=0 (15)
0

here, Uis strain energy, Tis Kinetic energy and Vis work done by external forces and

oU =f(0'l]6€l])RdXd9dZ (16)
v
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Als0,q;04q 1S radial mechanical load.
Using Hamilton’s principle in Eq. (15) and Egs. (16)-(18), the governing equations can be
obtained as (Mehralian et al. 2017)

ON,, 10N, 0%u 0% ¢,
- =] I
ox TR 90 052z T h e

(19a)
ONyg  10Ngg  Qzp _ 52U+ 0%pg
dax R a0 R ~ %atz ! a2
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ax TR a8 "R~ Thge T Qwa (19¢)
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—h/2
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h/2
{Nyxx» Nog, Nxg} = f , {Oxx 006, 0x0} dz (21a)
—-h/2
h/2
{Myx, Mgg, Myg} = f ; {0xx» 006, 0x0} zdz (21b)
~h/2
h/2
{Qxz, Qz6} = Ks f {0x2, 020} dz (21c)
~h/2
in which kis shear correction factor.
In the framework of strain gradient theory, the stress-strain relations would be
Oxx 1 v 0 0 0 (exx]
oFY:] E(Z) (U 1 0 0 0 w oreY:]
Oxg ¢ = T >(1— 1?2v|0 0 (1-wv)/2 0 0 Yxy (22)
LaxZJ v \0 0 0 (1-v)/2 0 Vs
026 00 0 0 (1=)/2/ \y,g

so that | is strain gradient or length scale parameter. Integrating Eq. (22) over the nanoshell
thickness, the resultants presented in Eq. (21) can be obtained as

Ju a A v B, 0
Mo = (1= 2% |Ary 5o+ B 4 22 (G5 4w ) + 250 @)
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The governing equations in terms of the displacements for a crystalline nanoshell can be
derived by substituting Egs. (23)-(30), into Eq. (19) as follows
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3. Method of solution
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A numerical trend has been employed in the present research based on Galerkin’s approach and
also the below assumptions for displacement components (Saidi et al. 2016, Merazi et al. 2015)
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The maximum values of displacements are denoted by Ui Vi - Winn: @mn:Omn aNd X, is @
function based on simply-supported the boundary condition. Here are the boundary conditions at x
=0, L of nanoshell (Li 2014a, b, Shen et al. 2019)

22w o*w
w Ep% ot 0 (38)

By putting Egs. (33)-(37) in Egs. (32) and taking into account the Galerkin’s concept, we obtain
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For solving static ending problem of the nanoshell, the excitation frequency is set to zero. In the
following, the normalized parameters and also suitable forms of function X have been introduced

— 100w,k [22,2 =" W, —Wl()Ech3 66
w = Wn Eg’ - L’ uniform — L4q0 ( )
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mr

X (x) = sin (Tx) (67)

The dynamical loading acted in the nanoshell may be defined as

[oe}

mm
Qioad = Z Qs in[T x] cos[nB] sin w,y t (68)

n=1

1 x0+0.5L0 > mi
Qn —f fﬂ sin[Tx] cos[nf] q(x)dxdo

-2l X0—0.5L¢ (69)
8qy . mm . mmLg
~ mnn? Sm[TxO] sin| 2L ]

So that q(x) = go defines the magnitude of uniform loading and X is load position.

4. Discussions on results

The present section is concerned with the study of static/dynamic bending of crystalline porous
nano-dimension shells taking into account strain gradient impacts. Also, in order to take into
account small size effects much accurately, the surface energies related to grains and pores have
been considered. In order to describe the material structure of crystalline shell, a micro-mechanical
procedure is applied. A numerical trend was implemented in previous section to solve the
governing equations and derive static and dynamic deflections. Based on strain gradient theory
(SGT), Table 1 presents the verification of vibrational frequency of a nanoshell based on the data
provided by Zeighampour and Beni (2014). The scale factor is selected to be I/h = 1 for this
verification study. Further investigations are done for crystalline nanoshells based on the material
properties provided in Table 2.

Table 1 Comparison of natural frequencies of strain gradient shells (I = h)

W11 oY)
SGT (Zeighampour SGT (Zeighampour

h/R and Beni 2014)  P'®®MU “and Beni 2014)  Present

0.02 0.1980 0.1980 0.2795 0.2795

0.05 0.2110 0.2111 0.3953 0.3954

Table 2 Material properties of crystalline nanoshells

Phase-1 (Interface) Ein = 45.56 GPa, viy = 0.064, pin = 2004.3 kg/m?

Phase-2 (Si-nanograins) Eq = 169 GPa, vy = 0.064, pg = 2300 kg/m?3

Phase-3 (hanovoids) E,=0
Surface coefficients of grains and voids A, =-4.488 N/m, ug =-2.774 N/m
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Fig. 3 Impact of grain sizes on dimensionless deflection variation of the nanoshell with respect to
strain gradient coefficient (R/h = 20, f, = 0.1)
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0.0 0.2 0.4 06 0.8 1.0
Strian gradient parameter

Fig. 4 Impact of pore percentage on dimensionless deflection variation of the nanoshell with
respect to strain gradient coefficient (R/h = 20, Rg = 20 nm)

Fig. 3 illustrates the influences of the radius value of grains and pores on static bending
deflection of the crystalline nanoshell with varying strain gradient coefficient (A). The pore
percentage value has been selected to be f, = 10%. It is obvious from the figure that the shell
deflection is reducing with increase of strain gradient coefficient which means that bending
rigidity of the nanoshell is increasing. Hence, strain gradient coefficient plays an important role in
static bending behavior of crystalline shells. Another finding form the figure is that increase of
grain radius may increase the static deflection of the crystalline shell. Actually, the smallest value
of bending deflection is obtained for R; = 100 nm for which the crystalline shell is more rigid. So,
the size of grains inside material will change bending behavior of the crystalline shell.

Pores percentage effects on static deflection of crystalline nanoshells is presented in Fig. 4 with
varying strain gradient coefficient at Ry = 20 nm. Again, one can see that regardless of the amount
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of pores, the shell deflection is reducing with increase of strain gradient coefficient which
highlights the bending rigidity increment of the nanoshell. However, increase of pores percentage
will increase the static deflection of crystalline shell. This means that bending rigidity of the
crystalline shell has been reduced with increasing of pores percentage.

Fig. 5 explores the effects of radius-to-thickness ratios (R/h) of crystalline nanoshells on static
deflections at Rg = 20 nm and f, = 0.1. It is obvious form the figure that bending deflection is
prominently increased by increasing of radius-to-thickness ratio. Such observation is owning to
lower bending rigidity of the crystalline nanoshell as the radius-to-thickness ratios growth. As a
conclusion, geometry of the nanoshell has great impact on its static bending behavior.

Influence of loading area (Lo/L) and location (xo/L) on static deflections of crystalline
nanoshells is plotted in Figs. 6 and 7, respectively. The pore percentage value has been selected to
be f, = 10%. It is obvious form the figure that as the transverse static load becomes far away from

0.068

o
1=}
&

o
1<}
=

Dimensionless deflection
° °
o o
8 2

o
2

0.00
0.0 0.2 04 06 0.8 1.0

Strian gradient parameter

Fig. 5 Impact of shell radius on dimensionless deflection variation of the nanoshell with respect
to strain gradient coefficient (fv = 0.1, Rg = 20 nm)
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0.015

0.010
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0.005

0.000
0.0 02 04 06 08 1.0

Strian gradient parameter

Fig. 6 Impact of dynamic load area on dimensionless deflection variation of the nanoshell with
respect to strain gradient coefficient (xo = 0.5L, fv = 0.1, Ry = 20 nm)
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the shell edges, the static deflections are lower. Actually, when the mechanical load is near the
shell center, the static deflections growth. Also, as the area of transverse mechanical load is greater,
the static deflections become larger.

Fig. 8 examine dynamic bending behavior of the crystalline shell having grain size of Ry = 100
nm for various values of strain gradient coefficient. Actually, this figure illustrates the dynamic
deflection versus excitation frequency of dynamical load. According to this figure, it can be seen
that the dynamic deflection of the crystalline shell is first increasing with increase of excitation
frequency until a particular value of excitation frequency in which dynamic deflection is infinite.
Such behavior is due to occurrence of resonance in the nanoshell related to its forced vibrations.
The frequency in which the resonance occurs is dependent on the value of strain gradient
coefficient. Actually, the resonance frequency is higher at larger values of strain gradient
coefficient.

0.030

0.025

o
o
N}
=)

0,015,

0.010

Dimensionless deflection

0.005

0.000
0.0 02 04 06 08 1.0

Strian gradient parameter

Fig. 7 Impact of dynamic load location on dimensionless deflection variation of the nanoshell
with respect to strain gradient coefficient (Lo = 0.3L, fv = 0.1, R = 20 nm)

08

06

04

Dimensionless dynamic amplitude

02

0

Excitation frequency ()

Fig. 8 Impact of strain gradient parameter on dimensionless deflection variation of the nanoshell
with respect to excitation frequency (R/h = 20, Rq = 100 nm)
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5. Conclusions

The presented article was concerned with the study of static/dynamic bending of crystalline
porous nano-dimension shells taking into account strain gradient impacts. In order to take into
account small size effects much accurately, the surface energies related to grains and pores were
considered. In order to describe the material structure of crystalline shell, a micro-mechanical
procedure was applied. A numerical trend was implemented to solve the governing equations and
derive static and dynamic deflections. It was found that the shell deflection was reducing with
increase of strain gradient coefficient which means that bending rigidity of the nanoshell was
increasing. Another finding was that increase of grain radius may increase the static deflection of
the crystalline shell. However, increase of pores percentage increased the static deflection of
crystalline nanoshell.
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