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Abstract.  In this paper, a new displacement based high-order shear deformation theory is introduced for the static
response of functionally graded sandwich plate with new definition of porosity distribution taking into account
composition and the scheme of the sandwich plate. Unlike any other theory, the number of unknown functions
involved is only four, as against five in case of other shear deformation theories. The theory presented is variationally
consistent, has strong similarity with classical plate theory in many aspects, does not require shear correction factor,
and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the
thickness satisfying shear stress free surface conditions. Material properties of FGM layers are assumed to vary
continuously across the plate thickness according to either power-law or sigmoid function in terms of the volume
fractions of the constituents. The face layers are considered to be FG across each face thickness while the core is
made of a ceramic homogeneous layer. Governing equations are derived from the principle of virtual displacements.
The closed-form solution of a simply supported rectangular plate subjected to sinusoidal loading has been obtained
by using the Navier method. Numerical results are presented to show the effect of the material distribution, the
sandwich plate geometry and the porosity on the deflections and stresses of FG sandwich plates. The validity of the
present theory is investigated by comparing some of the present results with other published results.

Keywords: functionally graded materials; sandwich plates; refined plate theory; bending; Navier solution;
porosity

1. Introduction

Functionally Graded Materials (FGMs) are a class of composites that have received great
attention in many modern engineering applications such as military, aerospace, nuclear energy,
biomedical, automotive, civil engineering and marine. Due to its high resistance to temperature
shocks and no interface problems through the layer interfaces, the researchers have extensively
examined the static, vibration and buckling responses of these structures during the last decade
(Kadoli et al. 2008, Simsek 2010, Menaa et al. 2012).

In recent years, and with the developments in manufacturing methods, the FGMs are
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considered in the industry of the sandwich structures because of the gradual variation of material
properties at the interfaces between the face layers and the core. Because of the importance and
extensive technical applications of the FGM sandwich structures, understanding of their responses
becomes an important task. Several researches have been performed to analyze the bending
behavior of FG sandwich beams and plates. Zenkour and Alghamdi (2010) examined
thermoelastic bending of FG sandwich plates based on the higher-order shear deformation theories
(HSDT). Tounsi et al. (2013) developed a refined trigonometric shear deformation theory for
thermoelastic bending of functionally graded sandwich plates. Xuan et al. (2013) analyze the
isogeometric finite element of composite sandwich plates using a higher order shear deformation
theory. Vo et al. (2015) developed the static behaviour of functionally graded sandwich beams
using a quasi-3D theory. Simsek and Al-shujairi (2017) studied the static, free and forced vibration
of functionally graded (FG) sandwich beams excited by two successive moving harmonic loads.
Benhenni et al. (2018) analyze the dynamic for anti-symmetric cross-ply and angle-ply laminates
for simply supported thick hybrid rectangular plates. Karamanli (2017) investigated the bending
behaviour of two directional functionally graded sandwich beams by using a quasi-3d shear
deformation theory. Shashank and Pradyumna (2018) used a higher-order layerwise theory for
functionally graded sandwich plates. Zarga et al. (2019) used a simple quasi-3D shear deformation
theory for the thermomechanical bending study for functionally graded sandwich plates. Meksi et
al. (2019) developed an analytical solution for bending, buckling and vibration responses of FGM
sandwich plates. Hellal et al. (2019), used a simple higher shear deformation theory for the
dynamic and stability analysis of functionally graded material sandwich plates in hygro-thermal
environment. Akbas (2015a) developed the wave propagation of a functionally graded beam in
thermal environments. Akbas (2015b) studied the post-buckling analysis of axially functionally
graded three-dimensional beams. Akbas (2017a) analyze the free vibration of edge cracked
functionally graded microscale beams based on the modified couple stress theory. Akbas (2018a)
investigated the nonlinear thermal displacements of laminated composite beams. Akbas (2018b)
studied the forced vibration analysis of cracked nanobeams. Akbag (2018c) analyze the forced
vibration of cracked functionally graded microbeams. Safa et al. (2019) analyze the thermal
vibration of FGM beams using an efficient shear deformation beam theory. Sahouane et al. (2019)
developed a numerical analysis for free vibration of functionally graded beams using an original
HSDBT. Zouatnia and Hadji (2019) studied the effect of the micromechanical models on the
bending of FGM beam using a new hyperbolic shear deformation theory.

In addition, in FGM fabrication, micro voids or porosities can occur within the materials during
the process of sintering. This is because of the large difference in solidification temperatures
between material constituents (Zhu et al. 2001). Wattanasakulpong et al. (2012) also gave the
discussion on porosities happening inside FGM samples made by a multistep sequential infiltration
technique. Therefore, it is important to take into account the porosity effect when designing FGM
structures subjected to dynamic loadings. Recently, Wattanasakulpong and Ungbhakorn (2014)
studied linear and nonlinear vibration problems of elastically end restrained FG beams having
porosities. In the same way Ait Yahia et al. (2015) investigated the wave propagation of an infinite
FG plate having porosities by using various simple higher-order shear deformation theories. Akbas
(2017b) analyze the thermal effects on the vibration of functionally graded deep beams with
porosity. Bourada et al. (2019) investigated the dynamic of porous functionally graded beam using
a sinusoidal shear deformation theory. Recently Daikh and Zenkour (2019) studied the effect of
porosity on the bending analysis of various functionally graded sandwich plates.

As far as we know, there has been no investigation on bending of the FGM sandwich plates
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with porosities using the four-variable refined plate theory (RPT). In the present study, a new
porosities distribution is proposed for bending analysis of new model of functionally graded
material (FGM) sandwich plates. Material properties of FGM layers are assumed to vary
continuously across the plate thickness according to either power-law or sigmoid function in terms
of the volume fractions of the constituents. The four-variable refined plate theory is proposed to
derive the field equations of the FG sandwich plates with simply-supported edge conditions. The
most interesting feature of this theory is that it does not require the shear correction factor and
satisfies equilibrium conditions at the top and bottom faces of the sandwich plate. The Navier
solution is used to obtain the closed form solutions for simply supported FGM sandwich plates.
Numerical examples are presented to verify the accuracy of the present theory. Numerical results
are presented to show the effect of the material distribution, the sandwich plate geometry and the
porosity on the deflections and stresses of FG sandwich plates.

2. FGM sandwich plates

Consider the case of a uniform thickness, rectangular FGM sandwich plate composed of three
microscopically heterogeneous layers (metal-ceramic, ceramic, ceramic-metal), with reference to
rectangular coordinates (X, y, z) as depicted in Fig. 1. The top and bottom faces of the plate are at z
= zh/2, and the edges of the plate are parallel to axes x and y. The sandwich plate is composed of
three elastic layers, namely ‘‘Layer 17, “‘Layer 2,”” and ‘‘Layer 3°’ from the uppermost surface to
the lowest surface of the plate. The vertical ordinates of the bottom, the two interfaces, and the top
are denoted by hy = —h/2, h,, hs, and h, = +h/2, respectively. Two types of sandwich plates
are used: power-law FG sandwich plates P-FGM and sigmoid FG sandwich plates S-FGM.

2.1 Power-law FG sandwich plate

The sandwich plate is made of three layers, an isotropic core and two power-law FG layers.
The face layers are graded from metal to ceramic while the core layer is made of ceramic. The
volume fraction V(™ of layer n (n = 1,2,3), varies according to the following power-law
function across the plate thickness

— h. \P
z 1), hy<z<h, (1a)

v () = (
(2) P

2]

h

Fig. 1 Geometry of the rectangular FGM sandwich plate with uniform thickness in rectangular
Cartesian coordinates
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V@ (2) =1, h, <z <h; (1b)

Z—h4)p

V@) (z) = (h hs <z<h, (1c)

3~ hy

Where p denotes volume fraction index. When p = 0 we return to the fully homogeneous
ceramic plate.

2.2 Sigmoid FG sandwich plate

Here, the volume fraction varies according to a sigmoid function through-the-thickness as
follows

1/ z—hy\P
() :5<hm—f111) , hy<z<hy, (2a)
1/ z—h, \P
() =1 _E(hm — flz) ., hpm<z<h (2b)
V@ (z) =1, h, <z < hyg (2c)
1/z—hs\P
@) =1 _E(hn — ;3) , hy <z<h, (2d)
1/z—hy\P
v (2) = E(hn— ;4) : h, <z<h, (2€)

where h,, = (hy + h,)/2 and h,, = (h; + h,)/2 denotes the middle surface positions of the
bottom and the top layer, respectively.

3. Porosity-dependent FG sandwich plates

Effective material properties of FGMs are influenced by various factors such as high
temperature, humidity and porosity. In this paper, the porosity effect is investigated. Numerous
models of porosities distribution have been proposed by the researchers to compute the effective
material properties of porous FGM plate (Wattanasakulpong and Ungbhakorn 2014). In this paper,
for the first time, the porosities are distributed independently in each FGM layer of sandwich. Four
models of porosity are used.

3.1 Imperfect FGM with even porosities (Imperfect I)

Let us assume that the FG sandwich plate is fabricated of a mixture of metal and ceramic. The
influence of porosities, which may exist inside the materials of FGM layers during the production,
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is included. The porosities uniformly distributed over the FGM sandwich layers, whereas the core
layer is perfect (nonporous) and made of ceramic. By using the rule of mixture, the effective
material properties P of layer n (n = 1,2,3) with evenly distributed porosities (imperfect 1),
are stated as

PO@) = (B = BV (@) + By = 5 (e + By)
PA(z2) = (P, = P))VP(2) + Py 3)
PO@) = (B = BV (@) + By = 5 (B + By)

where «a denotes the porosity coefficient (e« << 1). P. and B, are the corresponding
properties of the ceramic and metal, respectively.

3.2 Imperfect FGM with uneven porosities (Imperfect I1)

Here, the porosities may spread functionally during the thickness direction of the FGM
sandwich as follow
D (,) = e)) 12z = hy = hy|
PY(z)=CFr.-B)VP(2)+ B, ——(P +B,)|1 h
— M
P@(2) = (P, — B, )VP(2) + By, (4)
2z—hy,—h
PO = (B = BV @) + P = 2B, + B |1 - e ]
2 hy — hs

3.3 Imperfect FGM with logarithmic-uneven porosities (Imperfect Ill)

Another uneven model based on a logarithmic function can be expressed as

PO (2) = (P, — POVD(2) + B, — log (1 + )(P + B,) [ W}
2 — 1
P@(2) = (B = B VP () + By ©)

z—hy—h
PO (2) = (P, = BV (2) + Py — log (1+ )(P +Py) |1 122 = hy = hs|
hy — hs
3.4 Imperfect FGM with linear-uneven porosities (Imperfect 1V)

The density of porosity is low at the outer surfaces of the sandwich and high at the two
interfaces positions, and change across the FGM layers with linear function as

PW(z) = (P, - POV (2) + P, ——(P +P) [1 - hz]
h,

P@(z) = (P, - POVP(2) + P, (6)

—h
PO(2) = (B = BV @) + By — 5 (B + B) [
2 hs — h,
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4. Mathematical formulation
4.1 Basic assumptions

The assumptions of the present theory are as follows:

- The displacements are small in comparison with the plate thickness. Therefore, the strains
involved are infinitesimal.

- The transverse displacement wincludes two components of bending w,, and shear ws.
These components are functions of coordinates x, y andtime t only.

w(x,y,2,t) = wp(x,¥,t) + ws(x, y, 1) ()

The transverse normal stress g, is negligible in comparison with in-plane stresses o, and o,
- The axial displacement u in x-direction and v in the y-direction, consists of extension,
bending, and shear components.

u=uy+u, + ug, v=vy+ v, + v (8)

- The bending component u;, and v, are assumed to be similar to the displacements given by
the classical plate theory. Therefore, the expression for u, and v, can be given as

U, = —z——, vy = —Z—— 9

- The shear components ug and v, gives rise, in conjunction with wg, to the hyperbolic
variation of shear strains y,,, vy, and hence to shear stresses 7,,, 7,, through the thickness

of the plate in such a way that shear stresses t,,, T,, are zero at the top and bottom faces of the
plate. Consequently, the expression for ug and v, can be given as

B dwg _ 0w, 10
u=—f@55  m=fO5 (10)
where
5 3
f@=-7+ (11)
3%

4.2 Kinematics and constitutive equations

Based on the assumptions made in the preceding section, the displacement field can be
obtained using Egs. (7)-(11) as

_ . dwy, adwg

u(x,y,2) = uo(x,y,0) = 2= = f(2) -

adwg

dy

(12)

_ adwy,
v(x,¥,2) = vo(x,y,t) — arve f(2)
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w(x,y,z) = wp(x,y) + ws(x,y) (12)
The strains associated with the displacements in Eq. (12) are

e =2+ zk2+ f(2) kS
&y =€y +zkh+f(2) k}

Yyz = 9(2) vy, (13)
VYxz = g(Z) Va?z
e =0
where
80 — % kb azwb S — _aZWS
o ox’ * d0x?’ * dx2’
SO=% kbz_azwb s :_aZWS
y ox 4 y ayz 4 y ayz ’ (14)
s 0w, s Owg
Vyzz_ax: yxzzg:
, , df (z)
9@ =1-f12), f@y ==

For elastic and isotropic FGMs, the constitutive relations can be written as

ox\™ Q@ Q O 0 0 1™ e\ @
Oy Qiz Q2 O 0 0 } €y
Tyz ={o 0 Q4. 0 o0 Yyz (15)
Txz 0 0 0 Qs O J Yaz
kayJ 0 0 0 0 Qg Vxy
where
__t®@ - 16
Q11(2) = m» Q12(2) =vQ11(2) (16)
and
E
Q44(2) = Qs5(2) = Qe6(2) = % (17)

4.3 Governing equations

The governing equations of equilibrium can be derived by using the principle of virtual
displacements. The principle of virtual work in the present case yields

fﬁ/z f [ox&sx + 0y,6€) + TyyGVxy i0d
z
0

42 +Tx26yxz + Tyzayyz (18)

—fq(x,y) dwd =0
0
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where 2 is the top surface and q(x,y) is the applied transverse load.
Substituting Egs. (13) and (15) into Eq. (18) and integrating through the thickness of the plate,
Eg. (18) can be rewritten as

Ny8e2 + Nyb8e) + NyyySyy + M2Sk?
+MDSKY + M2, S5k2, + MiSks + MySks | dQ — f qéwdQ = 0, (19)

P +M3y 8Ky, + 55,875, + SE.8V3 ?
where
Ny, Ny, Nyy 3, 1
M, b, b= n“(ax.ay,rxy)(”){ z }dz (208)
M5, Mg, Mg,) n=1'n f(2)
and

s s 2 /}n+1 n)
(55,,85,) = Z L (txz Ty2) " 9(2)dz (20b)
n=1 n

where h,,; and hjare the top and bottom z-coordinates of the nth layer.

The governing equations of equilibrium can be derived from Eq. (18) by integrating the
displacement gradients by parts and setting the coefficients zero 6u0, 6v0, owb, and dws separately.
Thus one can obtain the equilibrium equations associated with the present refined shear
deformation plate theory

ON, 0N,
Suy: —+———=
Yo 0x + dy
dN. dN.
Svy —=24+—2=0
d0x dy 21
5, OME oMb, My (21)
R 0x29y% = dy? 1
%M 0°Ms, 9°M5  9S:, 0SS
8 wy: Y T R L
Wst Tqxz + 0x20y?2 = dy? + ox + dy tq

Substituting Eq. (15) into Eq. (20) and integrating through the thickness of the plate, the stress
resultants are given as

N A B BS|(¢€
Mb =|B D DS {kb}, S =A%y (22)
MS BS DS HSIVk®
where
N = (N, Ny, Ny}, MP = (M2, M, M2)Y, M= (M5 M5 M5} (23a)

e={e2e0), Ko ={kL Kb kL), k= (kS kS ks, ) (23b)
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Ay A O [B11 Bz 0 Dy Di; O
A=[A;; A 0], A=|By; By;; 0|, D=|Dyz Dy 0], (23c)
0 0 A | 0 0 Bge 0 0 Dge
Biy Bi; O DYy Di, O Hi, Hy; 0
0 0 B | O 0 D 0 0 Hig
t t A3 0
S= {ng’ Sss?z} , V= {sz' Vyz} ) A = 84 gs]' (23¢)
The stiffness coefficients A;;, B;; and D;j, etc., are defined as
A;y Byy Dy Biy Diy Hi
Ay, By; D Bf, Di, Hf,
Ass Bss Des Bis Dis Hge
1 (24a)
fnta (n) 2 v
-> V(222 f@,2 f@. )], L o (42
n=1 /}n
2
(A22,B22, D2y, B33, D35, Hy,) = (Aq1, B11, D11, Bi1, D1y, Hip) (24b)
AS B AS _ i J‘ﬁn+1 E(Z) [ ]Zd (240)
44 — 55 - 4 /} 2(1+V) g(Z) Z
n= n

By substituting Eq. (22) into Eq. (21), the equations of motion can be expressed in terms of
displacements (ug, vy, wp, Wg)as

3

23w, wp,
Aqq 522 + Age ENE + (4;, +A66)a ayBll 92 (Blz+2366)a 3y7
93 93w (252)
S
_(Blz +2B66)a a 2 fl ax3 0
azvo a 0 Zuo
Az dy? + Age 922 + (A12 + Age) ox3y
93 93 33 (25hb)
WS
By 3= (Bl + 2Bi0) 5 oo~ By 5 =0
3 3 93v, 93v,
Bll 9x3 + (312 + 2366) + (812 + 2366) 9x2 22 6y3 (25C)



164 Ahmed Keddouri, Lazreg Hadji and Abdelouahed Tounsi

*wy, *wy, a*w, o 0%wg
—D11—— It —2(D13 + 2D66) 5573 %207 — Dy, 7" — D1y B
64W a4W (25C)
—2(Di, + 2D8e) =57 0x20y? Dzsza—y4+ q=0
d3u, d3uq 317 . 0%y,
Bii—=— EPE S+ (B, + 2B66)a 3y + (Bi, + 2366) +Bzza_yg
*wy, d*wy, d*wy, o*w,
~Di G — 208+ 2D8) 5 aa 5~ D25y Ty (25d)
*wg 64WS o 02w 02wy
—2(H{; + 2HEs) == 9x29y? —H3—— dy* 55 5y 2 + Al 9y2 +q=0

4.4 Navier solution for simply supported rectangular sandwich plates

Rectangular plates are generally classified according to the type of support used. Here, we are
concerned with the exact solutions of Egs. (25) for a simply supported FG sandwich plate. Based
on the Navier approach, the solutions are assumed as

Ug o o Umn cos(Ax)sin(uy)
Vo ( _ Z Z Vian Sin(A x) cos( 1 y) (26)
Wp Wymn Sin(A x) sin(uy)
Ws) S \ Wi sin( A %) sin( i y)

where Upmny Vinns Wpmn and Wi, are arbitrary parameters to be determined, and 1 = mm/a
and u = nmt/b. The transverse load g is also expanded in the double-Fourier sine series as

q(x,y) = Z > Gn sin(A2) sin(uy) (27)
=1n=

n=1

For the case of a sinusoidally distributed load, we have
m=n=1 and ¢;; = qo (28)

where q, represents the intensity of the load at the plate centre.
Substituting Egs. (26) and (27) into Eq. (25), the analytical solutions can be obtained from

11 Q12 Q13 Q14 ( U 0

A1z Az A3 A ) Vg _ 0 29)
a3 A3 Aazz  Az4| ) Wymn Amn

Q14 Q4 Q34 Aua | \Wemn Gmn

in which
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ayy = A A + Ageit®
a1z = Ap (Arz + Ase)
a3 = —A[B11A4% + (Byz + 2Bgg) ]
ayq = —A[B1A% + (Bf, + 2B&)p?]
Az = AgeA® + Agppt?
(30)
g3 = —i [(Biz + 2Bes)A* + B’
Ayq = —p [(Bf; + 2BEe)A* + B3,u?]
sz = D11 A* + 2(Dy1p + 2Dge) A1 + Dot
azq = D1 A* + 2(Df, + 2Dge)A* u? + D3, p*

Qg = Hi A + 2(Hfy + 2HE) 2P + Hippu* — AZsA® — Afap?

5. Results and discussion

In this study, various examples are presented to illustrate the effect of porosity on the static of
two models of FG sandwich plates using the present refined plate theory. The FG plate is taken to
be made of aluminum (Al) and zirconia (ZrO) with the following material properties:

Ceramic (Zirconia, ZrOy): E. = 151GPa, v = 0.3.

Metal (Aluminum, Al): E,, = 70GPa, v = 0.3.

Numerical results are presented in terms of non-dimensional stresses and deflection. The
various nondimensional parameters used are

e Central deflection W: W = 2Eeyy (5,2),
qoa 2’2

. — . — _ 10.h? abh
e Axial stress o,: 0, = Tz 0% (2,2,2),
- = h b
o Shear stress T,,: Ty, = 2oa Xz (0,5,0)-
where E, = 1 GPa. Several kinds of symmetric and non-symmetric FGM sandwich plate are used.

The (1-0-1) FGM sandwich plate: The plate is made of two layers of equal thickness without
acore:
h1 = hz =0.

The (1-1-1) FGM sandwich plate: The plate is made of three equal-thickness layers:
h, = —h, = h/6.

The (1-2-1) FGM sandwich plate: The core thickness equals the sum of faces thickness:
h, = —h, = h/4.
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The (2-1-2) FGM sandwich plate: The upper layer thickness is twice the core layer while it is
the same as the lower one:
h1 = _h2 = h/10.

The (2-2-1) FGM sandwich plate: The core thickness is twice the upper face while it is the
same as the lower one

In order to prove the validity of the present refined plate theory, results were obtained for fully
FGM plates and compared with the existing ones in the literature (Zenkour 2005) and other theory
existing in the literature such as Daikh and Zenkour (2019). Numerical results for the power-law
and sigmoid FG sandwich plates are tabulated in Tables 1-3 using the present theory. In addition,
our results are compared with those obtained by (Zenkour 2005) using the third-order shear
deformation plate theory of Reddy PSDT, the sinusoidal shear deformation plate theory SSDPT
and the shape function proposed by Daikh and Zenkour (2019). Table 1 presents the effect volume

Table 1 Effects of volume fraction index on the dimensionless deflection of FGM sandwich plate (a/h = 10)

P Theories 1-0-1 1-1-1 1-2-1 2-1-2 2-2-1
Present (4 Variables) 0.19606  0.19606  0.19606  0.19606  0.19606
. Daikh ?gdvirelg'gl‘;‘g (2019) 019606  0.19606  0.19606  0.19606  0.19606
TSDPT * (5 variables) 019606  0.19606  0.19606  0.19606  0.19606
SSDPT * (5 variables) 019605 0.19605 0.19605  0.19605  0.19605
Present (4 Variables) 032358 029199 027094  0.3063L  0.28085
. Daikh ?gdviﬁggfe‘g (2019) (3353 029196 027094 030627  0.28084
TSDPT * (5 variables) 032358  0.29199 027094 0.30631  0.28085
SSDPT * (5 variables) 032349 029194 027093  0.30624  0.28082
Present (4 Variables) 037335 033289 0.30263 0.35231  0.31617
= Daikhand Zenkour (2019) (37306 033283 030262 035224  0.3161
2 (5 variables)
d TSDPT * (5 variables) 037335 033289 0.30263 0.35231  0.31617
SSDPT * (5 variables) 037319 033280 0.30260 0.35218  0.31611
Present (4 Variables) 0.40927 0.37145 0.33480 0.39183 0.34960
i Daikh ?gdviﬁggfe‘g (2019) 40915 037136 033477 039170  0.34954
TSDPT * (5 variables) 0.40927 037145 0.33480 0.39183  0.34960
SSDPT * (5 variables) 0.40905 037128 0.33474 039160  0.34950
Present (4 Variables) 041772 038551  0.34824 040407  0.36212
0 Daikh ?gdviﬁg'gf;g (2019) 041761 038540  0.34819 040392  0.36205
TSDPT * (5 variables) 041772 038551  0.34824  0.40407  0.36215

SSDPT " (5 variables) 0.41750  0.38490  0.34119  0.40376  0.34916
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P Theories 1-0-1 1-1-1 1-2-1 2-1-2 2-2-1
Present (4 Variables) 0.267924 026209 025377 026551  0.25593
. Daikh ?gdvfﬁgt'ffeg (2019) 026791 026203 025374 026546  0.25589
TSDPT * (5 variables) 0.267924 026209 0.25377 0.26551  0.25593
SSDPT * (5 variables) 026790 026198 025370 0.26540  0.25586
Present (4 Variables) 032358 029199 027094 030631  0.28085
. Daikh "’Egdvfﬁg'gf;g (2019) 37353 020196 027094 030627  0.28084
TSDPT * (5 variables) 0.32358  0.29199 027094 0.30631  0.28085
SSDPT * (5 variables) 0.32349  0.29194 027093 030624  0.28082
s Present (4 Variables) 0.34171 030063  0.27561  0.31871  0.28795
g , Daikh ?gdvirelg'gl‘;‘g (2019) 034165 0.30061 0.27562  0.31867  0.28794
Q TSDPT * (5 variables) 034171 030063 027561 0.31871  0.28795
% SSDPT * (5 variables) 034160 030060 0.27562  0.31864  0.28793
Present (4 Variables) 035603 030713  0.27906 0.32822  0.29327
- Daikh Ezgdviﬁggfe‘g (2019) 35507 030712 027907 032819  0.29327
TSDPT * (5 variables) 0.35603 030713 0.27906 0.32822  0.29327
SSDPT * (5 variables) 035591 030711 027907 0.32817  0.29326
Present (4 Variables) 036015 030895 028001 0.33092  0.29476
0 Daikh ?gdviﬁg'gf;g (2019) 036009 030895 028002 0.33089  0.29475
TSDPT * (5 variables) 036015 030895 0.28001 0.33092  0.29476
SSDPT * (5 variables) 036003  0.30894  0.28003 0.33087  0.29475

*Results form Ref. (Zenkour 2005)

Table 2 Effects of volume fraction index on the dimensionless axial stress of FGM sandwich plate (a/h = 5)

P Theories 1-0-1 1-1-1 1-2-1 2-1-2 2-2-1
Present (4 Variables) 2.04985  2.04985  2.04985 2.04985  2.04985
) Daikh ?gdviﬁggfe‘g (2019) 505048 205248 205248  2.05248  2.05248
TSDPT * (5 variables) 204985 2.04985 2.04985 2.04985  2.04985
= SSDPT * (5 variables) 205452 205452  2.05452  2.05452  2.05452
- Present (4 Variables) 157923 142617 132309 149587  1.32062
. Daikh ?gdviﬁg'gf’eg (2019) 158081 142771 132467 149740  1.32219
TSDPT * (5 variables) 157923 142617 132309 149587  1.32062
SSDPT * (5 variables) 158204 142892 132500 149859 132342
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Table 2 Continued

P Theories 1-0-1 1-1-1 1-2-1 2-1-2 2-2-1
Present (4 Variables) 1.82167 1.62748  1.47988 1.72144 1.47095
) Daikh ?gdvirelg'gloeg (2019) 1.82327  1.62904 148153 172295  1.47259
TSDPT * (5 variables) 1.82167  1.62748 147988 172144  1.47988
SSDPT * (5 variables) 1.82450  1.63025 148283 172412  1.48283
Present (4 Variables) 199272 181580 1.63814 191302  1.61181
= Daikhand zenkour (2019) 4 99439 181725 163078 191441 161348
2 5 (5 variables)
d TSDPT * (5 variables) 199272 181580 1.63814  1.91302  1.61181
SSDPT * (5 variables) 199567  1.81838 164106 191547  1.61477
Present (4 Variables) 203036 1.88377 170383 197126  1.66479
L0 Daikh ‘zgdviﬁg'g&‘g (2019) 203226 188515 170543 197261  1.66646
TSDPT * (5 variables) 203036 1.88376 170417 197126  1.66660
SSDPT * (5 variables) 203360 1.88147 1.64851 197313  1.61979
Present (4 Variables) 2.04984 2.01169 1.94995 2.03566 1.91770
. Daikh ?gdvirelg'gloeg (2019) 205248  2.01367  1.95202  2.03776  1.32219
TSDPT * (5 variables) 204984 201169  1.94995 203566  1.91770
SSDPT * (5 variables) 205451 201518 1.95361 203935  1.92165
Present (4 Variables) 157923 142617 132309 1.49587  1.32062
. Daikh "’Egdviﬁg'gg (2019) 158081 142771  1.32467 149740  1.32219
TSDPT * (5 variables) 157923 142617 132309 1.49587  1.32062
SSDPT * (5 variables) 158204 142892 132590  1.49859  1.32342
Present (4 Variables) 1.66985  1.46986  1.34697 1.55819 1.35069
= Daikhand Zenkour (2019) 4 67145 147150 134863  1.55080  1.35231
2 2 (5 variables)
b TSDPT * (5 variables) 166985  1.46986  1.34697 155819  1.35069
SSDPT * (5 variables) 167263 147278 134992 156105  1.35357
Present (4 Variables) 1.74114 1.50267 1.36453 1.60590 1.37315
. Daikh a?Sd éf?akb‘igg)(zmg) 174269 150439 136625 160756  1.37481
TSDPT " (5 variables) 1.74114 1.50267 1.36453 1.60590 1.37315
SSDPT * (5 variables) 174388 150573  1.36760 1.60886  1.37610
Present (4 Variables) 1.76160 1.51186 1.36939 1.61939 1.37942
. Daikh "’Egdviﬁg'gg (2019) ;76314 151360 137113 162107  1.38109

TSDPT " (5 variables) 1.76160 1.51186 1.36939 1.61939 1.37942
SSDPT " (5 variables) 1.76432 151496  1.37249 1.62238 1.38239
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Table 3 Effects of volume fraction index on the dimensionless shear stress of FGM sandwich plate (a/h = 10)

P Theories 1-0-1 1-1-1 1-2-1 2-1-2 2-2-1
Present (4 Variables) 0.23857  0.23857  0.23857  0.23857  0.23857
. Daikh ?gdvirelg'gloeg (2019) 024278 024278  0.24278 024278  0.24278
TSDPT * (5 variables) 023857 023857 023857 023857  0.23857
SSDPT * (5 variables) 024618 024618 024618 024618  0.24618
Present (4 Variables) 0.29202 0.26116 0.25257 0.27104 0.25950
. Daikh Ezgdviﬁggfe‘g (2019) 09502 026498  0.25669 027475  0.26353
TSDPT * (5 variables) 029202 026116 025257  0.27104  0.25950
SSDPT * (5 variables) 0.29907  0.26809  0.26004  0.27774  0.26680
Present (4 Variables) 032622 027188 025834  0.28838  0.26939
= Daikhand Zenkour (2019) 35991 027509 026224 020161 027318
S 2 (5 variables)
d TSDPT * (5 variables) 032622 027188 025834  0.28838  0.26939
SSDPT * (5 variables) 033285 027807 026543 029422  0.27627
Present (4 Variables) 038634 028643 026512 0.31454  0.28265
- Daikh ?gdviﬁggfeg (2019) 39046 028923 026864 031720 028613
TSDPT * (5 variables) 038634 028643 026512 031454  0.28265
SSDPT * (5 variables) 039370 029150 027153 031930  0.28895
Present (4 Variables) 043206  0.29566  0.26894 033242  0.29083
" Daikh ?gdviﬁggfe‘g (2019) 3738 029817 027222 033496  0.29420
TSDPT * (5 variables) 043206 029520  0.26895 0.33242  0.29080
SSDPT * (5 variables) 044147 029566 027676 033644  0.29671
Present (4 Variables) 0.32601  0.26966  0.25469  0.28775  0.26691
. Daikh ?gdviﬁg'gf;; (2019) 033176 027318 025831 029172  0.27083
TSDPT * (5 variables) 032601 026966 025469  0.28775  0.26691
SSDPT * (5 variables) 033640 027599  0.26124  0.29487  0.27399
Present (4 Variables) 029202 026116  0.25257  0.27104  0.25950
= Daikh and Zenkour (2019) 59597 026498  0.25669  0.27475  0.26353
@ 1 (5 variables)
o TSDPT * (5 variables) 029202 026116 025257 0.27104  0.25950
SSDPT * (5 variables) 0.29907  0.26809  0.26004  0.27774  0.26680
Present (4 Variables) 028377 025908  0.25207  0.26696  0.25762
, Daikh "’Egdviﬁg'gf’eg (2019) 08725 026300 025631 027063  0.26168
TSDPT * (5 variables) 028377 025908 0.25207  0.26696  0.25762

SSDPT * (5 variables) 0.29005 0.26620  0.25978  0.27361  0.26498
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Table 3 Continued

P Theories 1-0-1 1-1-1 1-2-1 2-1-2 2-2-1
Present (4 Variables) 0.27751 0.25753 0.25168 0.26389 0.25617
. Daikh ?gdvfﬁgt'ffeg (2019) 28065 026152 0.25603 026753  0.26026
TSDPT * (5 variables) 027751 025753 025168  0.26389  0.25617
= SSDPT * (5 variables) 028321 026480 025959  0.27051  0.26360
a Present (4 Variables) 0.27568  0.25707  0.25156  0.26299  0.25575
" Daikh "’Egdviﬁg'gf;; (2019) 97871 026109 025595 026663  0.25985
TSDPT * (5 variables) 027568 025707 0.25156  0.26299  0.25575
SSDPT * (5 variables) 028119 026439 025953  0.26961  0.26319

fraction index p on the central deflections of P and S-FGM sandwich plates. The deflections
increase as the volume fraction index increase. Axial and shear stresses for different values of
index p are depicted in Tables 2 and 3, respectively. Also, it is found that the present results are in
good agreement with various shear deformation theories provided by Zenkour (2005) and the
theory proposed by Daikh and Zenkour (2019). The influence of porosities distribution on the
deflections of P-FGM and S-FGM sandwich plates for side-to-thickness a/h = 10 and volume
fraction index p = 2 is depicted in Table 4. The porosity coefficient is chosen as a« = 0.1,0.2. It
is clear that the deflection obtained for perfect plates (@ = 0) is smaller than that for « = 0.1and
the latter is smaller than that for a = 0.2.

Table 4 Effects of porosity on the dimensionless deflection of the FGM square sandwich plate
(ah=10,p=2)

Perfect Imperfect | Imperfect 11 Imperfect 111 Imperfect IV
=0 g=01a=02a=01a=02a=01a=02 a=01 a=0.2
Present 0.37334 0.44162 0.53570 0.40082 0.43172 0.40011 0.42866 0.38915 0.40606

Daikh and Zenkour

1-0-1 (2019)
TSDPT * 0.37334 0.44162 0.53570 0.40082 0.43172 0.40011 0.42866 0.38915 0.40606
SSDPT * 0.37319 0.44143 0.53547 0.40062 0.43147 0.39991 0.42841 0.38898 0.40587

Sheme Theories

0.37326 0.44152 0.53558 0.40071 0.43159 0.40001 0.42853 0.38970 0.40596

Present 0.33288 0.38414 0.45086 0.35590 0.38155 0.35531 0.37901 0.34951 0.36741
= Daikh and Zenkour , 25965 38408 045079 035584 0.38148 0.35526 0.37895 0.34946 0.36734
@ 111 (2019)

d TSDPT * 0.33288 0.38414 0.45086 0.35590 0.38155 0.35531 0.37901 0.34951 0.36741

SSDPT * 0.33280 0.38403 0.45074 0.35579 0.38142 0.35521 0.37889 0.34940 0.36728
Present 0.30262 0.34013 0.38608 0.32007 0.33906 0.31963 0.33720 0.31672 0.33176

Daikh and Zenkour

1-2-1 (2019)
TSDPT * 0.30262 0.34013 0.38608 0.32007 0.33906 0.31963 0.33720 0.31672 0.33176
SSDPT * 0.30260 0.34010 0.38605 0.32004 0.33903 0.31960 0.33717 0.31669 0.33171

0.30262 0.34012 0.38606 0.32005 0.33904 0.31961 0.33719 0.31671 0.33174
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Table 4 Continued

Perfect Imperfect | Imperfect 11

Imperfect 111 Imperfect IV

Sheme Theories _
a=0 g=01 a=02 a=0.1 a=0.2

a=01 a=02 a=01 a=0.2

Present 0.35231 0.41216 0.49258 0.37825 0.40743

Daikh and Zenkour , 25954 () 41208 0.49248 037817 0.40732

0.37759 0.40453 0.36931 0.38760

0.37750 0.40443 0.36927 0.38750

2-1-2 (2019)
TSDPT*  0.35231 0.41216 0.49258 0.37825 0.40743 0.37759 0.40453 0.36931 0.38760
= SSDPT*  0.35218 0.41200 0.49239 0.37809 0.40723 0.37743 0.40434 0.36916 0.38741
- Present 0.31616 0.35966 0.41504 0.33579 0.35745 0.33529 0.35532 0.33071 0.34627
-~ Daikh é”odlgf”kour 0.31614 0.35963 0.41501 0.33575 0.35741 0.33525 0.35528 0.33069 0.34623
TSDPT*  0.31616 0.35966 0.41504 0.33579 0.35745 0.33529 0.35532 0.33071 0.34627
SSDPT*  0.31611 0.35960 0.41498 0.33572 0.35737 0.33522 0.35524 0.33064 0.34619
Present 0.34171 0.39880 0.47490 0.36502 0.39092 0.36443 0.38837 0.35512 0.36935
o G é”odlgz)e“kour 0.34165 0.39874 0.47483 0.36495 0.39084 0.36436 0.38828 0.35506 0.36929
TSDPT*  0.34171 0.39880 0.47490 0.36502 0.39092 0.36443 0.38837 0.35512 0.36935
SSDPT*  0.34160 0.39868 0.47477 0.36489 0.39076 0.36429 0.38821 0.35501 0.36923
Present 0.30063 0.34233 0.39488 0.31961 0.34048 0.31913 0.33843 0.31440 0.32908
- Daikh é”odlgz)‘*”kour 0.30061 0.34231 0.39486 0.31959 0.34045 0.31911 0.33841 0.31438 0.32905
TSDPT*  0.30063 0.34233 0.39488 0.31961 0.34048 0.31913 0.33843 0.31440 0.32908
SSDPT*  0.30060 0.34229 0.39483 0.31957 0.34042 0.31909 0.33838 0.31435 0.32902
Present 0.27561 0.30677 0.34405 0.29027 0.30605 0.28990 0.30452 0.28749 0.30004
= Daikh and Zenkour , o2665 () 30677 034406 029027 0.30605 0.28990 0.30452 0.28749 0.30004
@ 121 (2019)
%)

TSDPT * 0.27561 0.30677 0.34405 0.29027 0.30605
SSDPT * 0.27562 0.30677 0.34406 0.29027 0.30605

0.28990 0.30452 0.28749 0.30004
0.28990 0.30452 0.28748 0.30003

Present 0.31871 0.36752 0.43085 0.34018 0.36400

Daikh and Zenkour , 51067 () 36749 0.43080 0.34014 0.36394
2-1-2 (2019)

TSDPT* 0.31871 0.36752 0.43085 0.34018 0.36400
SSDPT * 0.31864 0.36745 0.43076 0.340104 0.36389

0.33964 0.36165 0.33285 0.34791

0.33959 0.36160 0.33281 0.34786

0.33964 0.36165 0.33285 0.34791
0.33955 0.36155 0.33277 0.34782

Present 0.28795 0.32379 0.36808 0.30432 0.32217

Daikh and Zenkour , ya79,4 (32378 0.36807 0.30431 0.32216
2-2-1 (2019)

TSDPT * 0.28795 0.32379 0.36808 0.30432 0.32217
SSDPT * 0.28793 0.32377 0.36806 0.30430 0.32214

0.30391 0.32043 0.30015 0.31307

0.30390 0.32041 0.30013 0.31306

0.30391 0.32043 0.30015 0.31307
0.30388 0.32040 0.30012 0.31304

The major problem in sandwich structures is the abrupt change in material properties across the
interfaces between the face layers and the core, the continuously and smoothly varying material
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Fig. 2 Dimensionless axial stress through-the-thickness of FGM sandwich plate

properties of FGM help to eliminate this problem due to proficient and continuous change of
material properties at the interfaces.

A comparison study of non-dimensional stresses in P-FGM and S-FGM sandwich plates is
reported in Figs. 2 and 3 with various FGM sandwich schemes. The volume fraction index is
chosen as p = 0.5, 2. It is clear that axial and shear stresses in P-FGM sandwich with index p =
0.5, and S-FGM sandwich with index p = 2 are continuous and smooth through the plate
sandwich thickness, but non-smooth at the interfaces for P-FGM with index p = 2 and S-FGM
sandwich with index p = 0.5. The axial stresses a7,, are tensile at the top surface and
compressive at the bottom surface (Fig. 2). From Fig. 3, the maximum values of the shear stress
occur at a point on the mid-plane of the plate wherever the FGM sandwich scheme is.

Fig. 4 shows the variation of the center deflection w with the side-to-thickness ratio for
different schemes of FGM sandwich plates. It can be observed that the deflection of the sandwich
plate (1-0-1) is found to be the largest magnitude, and as the side-to-thickness increases the
deflection will increase. Also, the deflections of the sandwich S-FGM are smaller than that of P-
FGM sandwich plates.
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Fig. 3 Dimensionless shear stress through-the-thickness of FGM sandwich plate
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Fig. 3 Continued
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Fig. 4 Dimensionless center deflection of FGM sandwich plate versus side-to-thickness a/h (p = 2)

Fig. 5 indicates the effect the side-to-thickness ratio and the porosity models on the center
deflections of (2-1-2) sandwich plates with volume fraction p = 2 and porosity coefficient a =
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Fig. 5 Dimensionless center deflection of FGM sandwich plate versus side-to-thickness a/h (p = 2)
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Fig. 6 Effect of porosity coefficient on center deflection FGM sandwich plate (2-1-2) (p = 2)
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Fig. 8 Effect of porosity coefficient on dimensionless shear stress FGM sandwich plate (2-1-2) (p = 2)

0.2. The deflections for plate with uniform porosity distribution model (Imperfect 1) are higher
than that for the other models of imperfect FGM sandwich plates. It is clear that the difference
between perfect and imperfect sandwich plates increase with increasing of side-to-thickness ratio.

Variation of porosity coefficient a« on the central deflection is illustrated in Fig. 6. The
porosity coefficient has an important effect on the defluxions mainly for even distribution model
(Imperfect 1) where the increasing of porosity coefficient increases the central deflections.

Figs. 7 and 8 show the effect of porosity coefficient a on the axial stress and shear stress,
respectively. The axial stress and shear stress are continuous and smooth through the plate
sandwich thickness for Perfect, Imperfect Il and Imperfect 11l FGM sandwich plates and non-
smooth for Imperfect | and Imperfect IV.

6. Conclusions

A four variable refined theory is extended to the bending response of rectangular FGM
sandwich plates with new definition of porosity distribution taking into account composition and
the scheme of the sandwich plate. The number of primary variables in this theory is even less than
that of first- and higher-order shear deformation plate theories. Hence, unlike any other theory, the
theory presented gives rise to only four governing equations resulting in considerably lower
computational effort when compared with the other higher-order theories reported in the literature
having more number of governing equations. The theory accounts for parabolic distribution of the
transverse shear strains through the plate thickness, and satisfies the zero traction boundary
conditions on the surfaces of the plate without using shear correction factors. The accuracy and
efficiency of the present theory has been demonstrated for bending behaviors of simply supported
FGM sandwich plates. In general, the power-law is used to define the volume fraction of the FGM
sandwich. In this paper, for the first time, bending of FG sandwich plates based on power-law and
sigmoid function with porous FGM layers is presented. Four models of porosity distribution are
proposed. As a result, the deflections are minimums for non-porous FGM sandwich plates and
increase when the porosity coefficient increase regardless the porosity type. The increasing of side-
to-thickness ratio increase the central deflections.
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