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Abstract.  The present research deals with the time harmonic deformation in transversely isotropic magneto 

thermoelastic solid with two temperature (2T), rotation and without energy dissipation due to inclined load. Lord-

Shulman theory has been formulated for this mathematical model. The entire thermo-elastic medium is rotating with 

a uniform angular velocity. The Fourier transform techniques have been used to find the solution to the problem. The 

displacement components, stress components and conductive temperature distribution with the horizontal distance 

are computed in the transformed domain and further calculated in the physical domain using numerical inversion 

techniques. The effect of time harmonic source and rotation is depicted graphically on the resulting quantities. 
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1. Introduction 

 
A lot of research and attention has been given to deformation and heat flow in a continuum 

using thermoelasticity theories during the past few years. When sudden heat/external force is 

applied in a solid body, it transmits time harmonic wave by thermal expansion. The change at 

some point of the medium is beneficial to detect the deformed field near mining shocks, seismic 

and volcanic sources, thermal power plants, high-energy particle accelerators, and many emerging 

technologies. The study of time harmonic source is one of the broad and dynamic areas of 

continuum dynamics. 

Chen et al. (Chen and Gurtin 1968, Chen et al. 1968, 1969) formulated a two temperature 

thermoelasticity of deformable bodies for the conduction of heat depending on two types of 

temperatures. Ailawalia and Narah (2009) had studied the deformation of a rotating generalized 

thermoelastic solid beneath the impact of gravity with a superimposing infinite thermoelastic fluid 

due to different forces acting along the interface. Ailawalia et al. (2010) had studieda rotating 

generalized thermoelastic medium with two temperatures beneath hydrostatic stress and gravity 

with different types of sources using integral transforms. Marin (1997a) had proved the Cesaro 

means of the kinetic and strain energies of dipolar bodies with finite energy. Sharma et al. (2010) 

presented the propagation of Rayleigh waves in a generalized thermoelastic half-space with voids. 
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The surface chosen is stress-free and thermally insulated. They detected the elliptical paths during 

the Rayleigh wave motion without rotation. Abd-Alla et al. (2012) investigated the Rayleigh 

waves propagation in a homogeneous orthotropic elastic medium with impact of rotation, initial 

stress and gravity field by Lame's potentials and governing equations. 

Mahmoud (2012) had considered the impact of rotation, relaxation times, magnetic field, 

gravity field and initial stress on Rayleigh waves and attenuation coefficient in an elastic half-

space of granular medium and obtained the analytical solution of Rayleigh waves velocity by 

using Lame’s potential techniques. Abd-alla et al. (2015) had discussed the influence of magnetic 

field and rotation on plane waves in transversely isotropic thermoelastic medium under the GL 

theory in presence of two relaxation times to show the presence of three quasi plane waves in the 

medium. Marin et al. (2013) has modelled a micro stretch thermoelastic body with two 

temperatures and eliminated divergences among the classical elasticity and research. 

Sharma et al. (2015) investigated the 2-D deception in a transversely isotropic homogeneous 

thermoelastic solids in presence of two temperatures in GN-II theory with an inclined load (linear 

combination of normal load and tangential load). Kumar et al. (2016a, b) investigated the impact 

of Hall current in a transversely isotropic magnetothermoelastic in presence and absence of energy 

dissipation due to normal force. Kumar et al. (2016c) studied the conflicts caused by 

thermomechanical sources in a transversely isotropic rotating homogeneous thermoelastic medium 

with magnetic effect as well as two temperature and applied to the thermoelasticity Green–Naghdi 

theories with and without energy dissipation using thermomechanical sources. Lata et al. (2016) 

studied two temperature and rotation aspect for GN-II and GN-III theory of thermoelasticity in a 

homogeneous transversely isotropic magnetothermoelastic medium for the case of the plane wave 

propagation and reflection. Ezzat et al. (2017a) proposed a mathematical model of electro-

thermoelasticity for heat conduction with memory-dependent derivative. Kumar et al. (2017) 

analyzed the Rayleigh waves in a transversely isotropic homogeneous magnetothermoelastic 

medium in presence of two temperature, with Hall current and rotation. Marin et.al. (2017) studied 

the GN-thermoelastic theory for a dipolar body using mixed initial BVP and proved a result of 

Hölder’s-type stability. Lata (2018) studied the impact of energy dissipation on plane waves in 

sandwiched layered thermoelastic medium of uniform thickness, with two temperature, rotation 

and Hall current in the context of GN Type-II and Type-III theory of thermoelasticity. Ezzat and 

El-Bary (2017a) had applied the magneto-thermoelasticity model to a one-dimensional thermal 

shock problem of functionally graded half-space of based on memory-dependent derivative. 

Abo-Dahab (2018) analyzed the wave propagation in a microstretch elastic medium with GN 

theory with impact of gravity. Othman et al. (2019) discussed the deformation in rotating infinite 

microstretch generalized thermoelastic medium. Despite of this several researchers worked on 

different theory of thermoelasticity as Marin (1996, 2009, 2010), Marin and Baleanu (2016), Ezzat 

et al. (2016), Marin (1997b, 2008, 2016) Ezzat et al. (2012, 2015, 2017b), Marin and Stan (2013), 

Ezzat and AI-Bary (2016), Marin and Nicaise (2016), Marin and Ö chsner (2017), Ezzat and El-

Bary (2017b), Othman and Marin (2017), Chauthale and Khobragade (2017), Marin (1998, 2009, 

2010), Kumar et al. (2018), Marin et al. (2017), Lata and Kaur (2019a, b, c) and Lata and Kaur 

(2019d, e). 

Irrespective of these, not much work has been carried out in magneto-thermoelastic 

transversely isotropic solid with rotation, time harmonic source for inclined load with two 

temperature in generalized thermoelasticity without energy dissipation. In this paper, we have 

attempted to study the deformation in transversely isotropic magneto thermoelastic solid with the 

combined effects of rotation for inclined load with two temperature by considering the 
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disturbances harmonically time-dependent. The expressions of displacement components, 

conductive temperature and stress components due to time harmonic sources are calculated in 

transformed domain by using the Fourier transformation. Numerical inversion technique is used to 

find the resulting quantities in the physical domain and effects of frequency at different values 

have been represented graphically. 
 

 

2. Basic equatios 
 

For a considered transversely isotropic thermoelastic medium, the constitutive equation (Green 

and Naghdi 1992) is given by 
 

𝑡𝑖𝑗 =  𝐶𝑖𝑗𝑘𝑙 𝑒𝑘𝑙 − 𝛽𝑖𝑗𝑇. (1) 

 

and equation of motion as described by Schoenberg and Censor (1973) for a uniformly rotating 

medium with an angular velocity and Lorentz force which governs the dynamic displacement u is 

 

𝑡𝑖𝑗 ,𝑗 +  𝐹𝑖 =  𝜌 𝑢 𝑖 +  Ω × (Ω × u 𝑖 + (2Ω × 𝑢) 𝑖  , (2) 
 

where 

Ω =  Ω𝑛 , n is a unit vector representing the direction of axis of rotation, The term Ω × (Ω × u) 

is the additional centripetal acceleration due to the time-varying motion only, and the term 

2Ω × 𝑢  is the Coriolis acceleration. 

𝐹𝑖 =  𝜇0 𝑗 × 𝐻   0 . 
 

The heat conduction equation without energy dissipation using Lord-Shulman model (1967) is 
 

𝐾𝑖𝑗𝜑,𝑖𝑗 + 𝜌 𝑄 + 𝜏0𝑄  =  𝛽𝑖𝑗𝑇0  𝑒 𝑖𝑗 + 𝜏0ё𝑖𝑗  + 𝜌𝐶𝐸 𝑇 +  𝜏0𝑇  , (3) 
 

where 
 

𝛽𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙 𝛼𝑖𝑗 , (4) 

 

𝑒𝑖𝑗 =  
1

2
 𝑢𝑖,𝑗 +  𝑢𝑗 ,𝑖 ,     𝑖, 𝑗 = 1,2,3. 

𝑇 = 𝜑 − 𝑎𝑖𝑗𝜑,𝑖𝑗  

𝛽𝑖𝑗 = 𝛽𝑖𝛿𝑖𝑗 ,  𝐾𝑖𝑗 = 𝐾𝑖𝛿𝑖𝑗 ,   i is not summed. 

(5) 

 

Here 𝐶𝑖𝑗𝑘𝑙 (𝐶𝑖𝑗𝑘𝑙 =  𝐶𝑘𝑙𝑖𝑗 =  𝐶𝑗𝑖𝑘𝑙 =  𝐶𝑖𝑗𝑙𝑘 ) are elastic parameters and having symmetry due to 

homogeneous transversely isotropic medium. The basis of these symmetries of 𝐶𝑖𝑗𝑘𝑙  is due to 
 

(i) The stress tensor is symmetric, which is only possible if (𝐶𝑖𝑗𝑘𝑙 =  𝐶𝑗𝑖𝑘𝑙 ) 

(ii) If a strain energy density exists for the material, the elastic stiffness tensor must 

satisfy 𝐶𝑖𝑗𝑘𝑙 =  𝐶𝑘𝑙𝑖𝑗  
(iii)  

From stress tensor and elastic stiffness tensor symmetries infer (𝐶𝑖𝑗𝑘𝑙 =  𝐶𝑖𝑗𝑙𝑘 ) and 𝐶𝑖𝑗𝑘𝑙 =
 𝐶𝑘𝑙𝑖𝑗 =  𝐶𝑗𝑖𝑘𝑙 =  𝐶𝑖𝑗𝑙𝑘  
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3. Formulation and solution of the problem 
 

We consider a homogeneous transversely isotropic magnetothermoelastic medium, permeated 

by an initial magnetic field 𝐻   0 = (0, 𝐻0 , 0) acting along 𝑦-axis. The rectangular Cartesian co-

ordinate system (𝑥, 𝑦, 𝑧) having origin on the surface (𝑧 = 0) with 𝑧-axis pointing vertically 

into the medium is introduced. The surface of the half-space is subjected to an inclined load acting 

at 𝑧 = 0. 

In addition, we consider that 
 

𝛀 =  0, Ω, 0 . 
 

From the generalized Ohm’s law 
 

𝐽2 = 0 . 
 

The density components 𝐽1and 𝐽3 are given as 
 

𝐽1 = −𝜀0𝜇0𝐻0

𝜕2𝑤

𝜕𝑡2
, (6) 

 

𝐽3  = 𝜀0𝜇0𝐻0

𝜕2𝑢

𝜕𝑡2
. (7) 

 

In addition, the equations of displacement vector (𝑢, 𝑣, 𝑤 ) and conductive temperature 𝜑 for 

transversely isotropic thermoelastic solid in presence of two temperature and without energy 

dissipation are 
 

𝑢 ≡ 𝑢 𝑥, 𝑧, 𝑡 , 𝑣 = 0, 𝑤 ≡ 𝑤 𝑥, 𝑧, 𝑡 𝑎𝑛𝑑 𝜑 ≡ 𝜑 𝑥, 𝑧, 𝑡 . (8) 
 

Now using the proper transformation on Eqs. (1)-(3) with the aid of (8), following Slaughter 

(2002) are as under 
 

𝐶11

𝜕2𝑢

𝜕𝑥2
+ 𝐶13

𝜕2𝑤

𝜕𝑥𝜕𝑧
+ 𝐶44  

𝜕2𝑢

𝜕𝑧2
+  

𝜕2𝑤

𝜕𝑥𝜕𝑧
 − 𝛽1 

𝜕

𝜕𝑥
 𝜑 −  𝑎1

𝜕2𝜑

𝜕𝑥2
+ 𝑎3

𝜕2𝜑

𝜕𝑧2
  − 𝜇0𝐽3𝐻0 

= 𝜌 
𝜕2𝑢

𝜕𝑡2
− 𝛺2𝑢 + 2𝛺

𝜕𝑤

𝜕𝑡
 , 

(9) 

 

 𝐶13 + 𝐶44  
𝜕2𝑢

𝜕𝑥𝜕𝑧
+ 𝐶44

𝜕2𝑤

𝜕𝑥2
+ 𝐶33 

𝜕2𝑤

𝜕𝑧2
− 𝛽3 

𝜕

𝜕𝑧
 𝜑 −  𝑎1

𝜕2𝜑

𝜕𝑥2
+ 𝑎3

𝜕2𝜑

𝜕𝑧2
  − 𝜇0𝐽1𝐻0 

= 𝜌 
𝜕2𝑤

𝜕𝑡2
− 𝛺2𝑤 − 2𝛺

𝜕𝑢

𝜕𝑡
 , 

(10) 

 

𝐾1

𝜕2𝜑

𝜕𝑥2
+ 𝐾3

𝜕2𝜑

𝜕𝑧2
+ 𝜌 𝑄 +  𝜏0𝑄   

=  𝜌𝐶𝐸 𝑇 + 𝜏0𝑇  + 𝑇0

𝜕

𝜕𝑡
 𝛽1  1 + 𝜏0

𝜕

𝜕𝑡
 
𝜕𝑢

𝜕𝑥
+  𝛽3  1 + 𝜏0

𝜕

𝜕𝑡
 
𝜕𝑤

𝜕𝑧
 , 

(11) 
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and 
 

𝑡11 = 𝐶11𝑒11  +  𝐶13𝑒13 − 𝛽1 𝑇, (12) 

 

𝑡33 = 𝐶13𝑒11  +  𝐶33𝑒33 − 𝛽3 𝑇, (13) 

 

𝑡13 = 2𝐶44𝑒13 , (14) 
 

where 

𝑇 =  𝜑 −  𝑎1
𝜕2𝜑

𝜕𝑥 2 +𝑎3
𝜕2𝜑

𝜕𝑧 2
 , 

𝛽1 =  𝐶11 + 𝐶12 𝛼1 + 𝐶13𝛼3, 

𝛽3 = 2𝐶13𝛼1 + 𝐶33𝛼3. 

 

We consider that medium is initially at rest. Therefore, the preliminary and symmetry 

conditions are given by 
 

𝑢 𝑥, 𝑧, 0 = 0 = 𝑢  𝑥, 𝑧, 0 , 

 𝑤 𝑥, 𝑧, 0 = 0 = 𝑤  𝑥, 𝑧, 0 , 

𝜑 𝑥, 𝑧, 0 = 0 = 𝜑  𝑥, 𝑧, 0  for 𝑧 ≥ 0, −∞ < 𝑥 < ∞, 

𝑢 𝑥, 𝑧, 𝑡 = 𝑤 𝑥, 𝑧, 𝑡 = 𝜑 𝑥, 𝑧, 𝑡 = 0 𝑓𝑜𝑟 𝑡 > 0 when 𝑧 → ∞. 
 

Assuming the time harmonic behaviour as 

 

 𝑢, 𝑤, 𝜑  𝑥, 𝑧, 𝑡 = (𝑢, 𝑤, 𝜑)(𝑥, 𝑧)𝑒𝑖𝜔𝑡 . (15) 

 

To facilitate the solution, following dimensionless quantities are introduced 

 

𝑥′ =  
𝑥

𝐿
,   𝑧′ =  

𝑧

𝐿
,    𝑡′ =  

𝑐1

𝐿
𝑡,   𝑢′ =  

𝜌𝑐1
2

𝐿𝛽1𝑇0
𝑢,    𝑤 ′ =  

𝜌𝑐1
2

𝐿𝛽1𝑇0
𝑤,   𝑇′ =  

𝑇

𝑇0
, 

 𝑡11
′ =  

𝑡11

𝛽1𝑇0
,    𝑡33

′ =  
𝑡33

𝛽1𝑇0
,    𝑡31

′ =  
𝑡31

𝛽1𝑇0
,   𝜑′ =  

𝜑

𝑇0
, 

𝑎1
′ =  

𝑎1

𝐿2
,    𝑎3

′ =  
𝑎3

𝐿2
,    𝑕′ =

𝑕

𝐻0
,    Ω′ =

L

𝐶1
Ω . 

(16) 

 

Making use of (15) in Eqs. (9)-(11), after suppressing the primes, yield 

 

𝜕2𝑢

𝜕𝑥2
+ 𝛿4

𝜕2𝑤

𝜕𝑥𝜕𝑧
+ 𝛿2  

𝜕2𝑢

𝜕𝑧2
+  

𝜕2𝑤

𝜕𝑥𝜕𝑧
 −

𝜕

𝜕𝑥
 𝜑 −  𝑎1

𝜕2𝜑

𝜕𝑥2
+ 𝑎3

𝜕2𝜑

𝜕𝑧2
   

(17) 

=  
𝜀0𝜇0

2𝐻0
2

𝜌
+ 1  −𝜔2𝑢 − Ω2𝑢 + 2Ω𝑖𝜔𝑤, 
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𝛿1

𝜕2𝑢

𝜕𝑥𝜕𝑧
+ 𝛿2

𝜕2𝑤

𝜕𝑥2
+ 𝛿3

𝜕2𝑤

𝜕𝑧2
−

𝛽3

𝛽1

𝜕

𝜕𝑧
 𝜑 −  𝑎1

𝜕2𝜑

𝜕𝑥2
+ 𝑎3

𝜕2𝜑

𝜕𝑧2
   

=  
𝜀0𝜇0

2𝐻0
2

𝜌
+ 1  −𝜔2𝑤 − Ω2𝑤 + 2Ω𝑖𝜔𝑢, 

(18) 

 

𝜕2𝜑

𝜕𝑥2
+

𝐾3

𝐾1

𝜕2𝜑

𝜕𝑧2
+  𝜌  1 + 𝜏0

𝑐1

𝐿
𝑖𝜔 𝑄 

= 𝛿5

𝜕

𝜕𝑡
 1 + 𝜏0

𝑐1

𝐿
𝑖𝜔  𝜑 − 𝑎1

𝜕2𝜑

𝜕𝑥2
− 𝑎3

𝜕2𝜑

𝜕𝑧2
 + 𝛿6𝑖𝜔  1 + 𝜏0

𝑐1

𝐿
𝑖𝜔  𝛽1

𝜕𝑢

𝜕𝑥
+  𝛽3

𝜕𝑤

𝜕𝑧
 , 

(19) 

 

where 

𝛿1 =  
𝑐13 + 𝑐44

𝑐11
, 𝛿2 =  

𝑐44

𝑐11
, 𝛿3 =  

𝑐33

𝑐11
, 𝛿4 =  

𝑐13

𝑐11
, 

𝛿5 =  
𝜌𝐶𝐸𝐶1𝐿

𝐾1
, 𝛿6 = − 

𝑇0𝛽1𝐿

𝜌𝐶1𝐾1
 

 

Apply Fourier transforms defined by 
 

𝑓  𝜉, 𝑧, 𝜔 =  𝑓 𝑥, 𝑧, 𝜔 𝑒𝑖𝜉𝑥

∞

−∞

𝑑𝑥 (20) 

 

On Eqs. (17)-(19), we obtain a system of equations 

 
 −𝜉2 + 𝛿2𝐷

2 + 𝛿7𝜔
2 + Ω2 𝑢  𝜉, 𝑧, 𝜔 +  𝛿4𝐷𝑖𝜉 + 𝛿2𝐷𝑖𝜉 − 2Ω𝑖𝜔 𝑤  𝜉, 𝑧, 𝜔  

+ −iξ  1 + 𝑎1𝜉
2 − 𝑎3𝐷

2 𝜑  𝜉, 𝑧, 𝜔 = 0, 
(21) 

 

 𝛿1𝐷𝑖𝜉 + 2Ω𝑖𝜔 𝑢  𝜉, 𝑧, 𝜔 +  −𝛿2𝜉
2 + 𝛿3𝐷

2 + 𝛿7𝜔
2 + Ω2 𝑤  𝜉, 𝑧, 𝜔  

−
𝛽3

𝛽1
𝐷 1 + 𝑎1𝜉

2 − 𝑎3𝐷
2 𝜑  𝜉, 𝑧, 𝜔 = 0, 

(22) 

 
 −𝛿6𝜔𝛿8𝛽1𝜉 𝑢  𝜉, 𝑧, 𝜔 +  𝛿6𝑖𝜔𝛿8𝛽3𝐷 𝑤  𝜉, 𝑧, 𝜔  

+  𝜉2 −
𝐾3

𝐾1
𝐷2 + 𝛿5𝛿8𝑖𝜔 1 + 𝑎1𝜉

2 − 𝑎3𝐷
2  𝜑  𝜉, 𝑧, 𝜔 = 𝜌𝛿8𝑄  𝜉, 𝑧, 𝜔 , 

(23) 

 

where 

𝛿7 =
𝜀0𝜇0

2𝐻0
2

𝜌
+ 1, 𝛿8 = 1 + 𝜏0

𝐶1

𝐿
𝑖𝜔. 

 

By taking 𝑄  𝜉, 𝑧, 𝑠 = 0, i.e., no external heat is supplied the non trivial solution of (21)-(23) 

yields 
 

(𝐴𝐷6 + 𝐵𝐷4 + 𝐶𝐷2 + 𝐸)(𝑢 , 𝑤 , 𝜑 ) = 0, (24) 
 

where 
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A = δ2δ3ζ7 − ζ5δ2
𝛽3

𝛽1
𝑎3, 

B = δ3ζ1ζ7 − 𝑎3ζ1ζ5

𝛽3

𝛽1
+ δ2δ3ζ6 + δ2ζ7ζ3 − ζ5ζ9𝛿2 

−ζ8𝛿1𝑖𝜉ζ7 + ζ8ζ4

𝛽3

𝛽1
𝑎3 − 𝑎3𝜉

2ζ5δ1 − 𝑎3δ3ζ4𝑖𝜉, 

C = δ3ζ1ζ6 + ζ1ζ3ζ7 − ζ1ζ5ζ9 + δ2ζ6ζ3 + ζ4ζ8ζ9 − ζ8𝛿1𝑖𝜉ζ6 

−4Ω2𝜔2ζ7 + ζ2𝛿1𝑖𝜉ζ5 − ζ2ζ4𝛿3 − 𝑎3ζ4𝑖𝜉ζ3, 

𝐸 = ζ3ζ1ζ6 − 4Ω2𝜔2ζ6 − ζ2ζ4𝜁3 , 

ζ1 =  𝜉2 + δ7𝜔
2 + Ω2, 

ζ2 = −𝑖𝜉(1 + 𝑎1𝜉
2), 

ζ3 = −𝛿2ξ
2 + δ7𝜔

2 + Ω2 , 

ζ4 = −𝛿6𝛿8𝜔𝛽1𝜉, 

ζ5 = 𝛿6𝛿8𝑖𝜔𝛽3 , 

ζ6 =  𝜉2 + 𝛿5𝛿8𝑖𝜔 1 + 𝑎1𝜉
2 , 

ζ7 = −
𝐾3

𝐾1
− 𝑎3𝛿5𝛿8𝑖𝜔, 

ζ8 = 𝛿1𝑖𝜉, 

ζ9 = −(1 + 𝑎1𝜉
2)

β3.

β1
 

 

The roots of the Eq. (24) are ±λj, (j = 1, 2, 3), the solution of the Eq. (24) is calculated by using 

the radiation condition of 𝑢 , 𝑣 , 𝑤  and can be written as 
 

𝑢  𝜉, 𝑧, 𝜔 =   𝐴𝑗 𝑒
−𝜆𝑗 𝑧

3

𝑗=1

, (25) 

 

𝑤  𝜉, 𝑧, 𝜔 =   𝑑𝑗𝐴𝑗 𝑒
−𝜆𝑗 𝑧

3

𝑗=1

, (26) 

 

𝜑  𝜉, 𝑧, 𝜔 =   𝑙𝑗𝐴𝑗 𝑒
−𝜆𝑗 𝑧

3

𝑗=1

, (27) 

 

where 𝐴𝑗  𝜉, 𝜔 , 𝑗 = 1, 2, 3 being undetermined constants and 𝑑𝑗  and 𝑙𝑗  are given by 
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𝑑𝑗 =
𝛿2𝜁7𝜆𝑗

4 +  𝜁7𝜁1 − 𝑎3ζ4𝑖𝜉 + 𝛿2𝜁6 𝜆𝑗
2 + 𝜁1𝜁6 − 𝜁4𝜁2

 𝛿3ζ7 −
β3
β1

𝑎3ζ5 𝜆𝑗
4 +  𝛿3𝜁6 + 𝜁3𝜁7 − 𝜁5𝜁9 𝜆𝑗

2+𝜁3𝜁6

 

𝑙𝑗 =
𝛿2𝛿3𝜆𝑗

4 +  𝛿2𝜁3 + 𝜁1𝛿3 − 𝛿1𝜁8𝑖𝜉 𝜆𝑗
2 − 4Ω2𝜔2+𝜁3𝜁1

 𝛿3ζ7 −
β3
β1

𝑎3ζ5 𝜆𝑗
4 +  𝛿3𝜁6 + 𝜁3𝜁7 − 𝜁5𝜁9 𝜆𝑗

2+𝜁3𝜁6

 

 

 

4. Boundary conditions 
 

We consider a normal line load F1 per unit length acting in the positive z-axis on the plane 

boundary z = 0 along the y-axis and a tangential load F2 per unit length, acting at the origin in the 

positive x-axis. The appropriate boundary conditions are 

 

i.          𝑡33 𝑥, 𝑧, 𝑡 =  −𝐹1𝜓1 𝑥 𝑒
𝑖𝜔𝑡 , (28) 

 

ii.         𝑡31 𝑥, 𝑧, 𝑡 =  −𝐹2𝜓2 𝑥 𝑒
𝑖𝜔𝑡 , (29) 

 

iii.       
𝜕𝜑

𝜕𝑧
 𝑥, 𝑧, 𝑡 = 0, (30) 

 

where F1 and F2 are the magnitude of the forces applied, 𝜓1 𝑥  and 𝜓2(𝑥) specify the vertical 

and horizontal load distribution function along x-axis. 

Applying Fourier transform defined by (20) on the boundary conditions (28)-(30), (13)-(14) 

and with the help of Eqs. (25)-(27), we obtain the components of displacement, normal stress, 

tangential stress, and conductive temperature as 

 

𝑢 =
𝐹1𝜓 1 𝜉 

Λ
  Γ1𝑗 𝑒

−𝜆𝑗 𝑧

3

𝑗=1

 𝑒𝑖𝜔𝑡 +
𝐹2𝜓 2 𝜉 

Γ
  Γ2𝑗 𝑒

−𝜆𝑗 𝑧

3

𝑗=1

 𝑒𝑖𝜔𝑡 , (31) 

 

𝑤 =
𝐹1𝜓 1 𝜉 

Γ
  𝑑𝑗Γ1𝑗 𝑒

−𝜆𝑗 𝑧

3

𝑗=1

 𝑒𝑖𝜔𝑡 +
𝐹2𝜓 2 𝜉 

Γ
  𝑑𝑗Γ2𝑗 𝑒

−𝜆𝑗 𝑧

3

𝑗=1

 𝑒𝑖𝜔𝑡 , (32) 

 

𝜑 =
𝐹1𝜓 1 𝜉 

Γ
  𝑙𝑗Γ1𝑗 𝑒

−𝜆𝑗 𝑧

3

𝑗=1

 𝑒𝑖𝜔𝑡 +
𝐹2𝜓 2 𝜉 

Γ
  𝑙𝑗Γ2𝑗 𝑒

−𝜆𝑗 𝑧

3

𝑗=1

 𝑒𝑖𝜔𝑡 , (33) 

 

𝑡11 =
𝐹1𝜓 1 𝜉 

Γ
  𝑆𝑗Γ1𝑗 𝑒

−𝜆𝑗 𝑧

3

𝑗=1

 𝑒𝑖𝜔𝑡 +
𝐹2𝜓 2 𝜉 

Γ
  𝑆𝑗Γ2𝑗 𝑒

−𝜆𝑗 𝑧

3

𝑗=1

 𝑒𝑖𝜔𝑡 , (34) 
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𝑡13 =
𝐹1𝜓 1 𝜉 

Γ
  𝑁𝑗Γ1𝑗 𝑒

−𝜆𝑗 𝑧

3

𝑗=1

 𝑒𝑖𝜔𝑡 +
𝐹2𝜓 2 𝜉 

Γ
  𝑁𝑗Γ2𝑗 𝑒

−𝜆𝑗 𝑧

3

𝑗=1

 𝑒𝑖𝜔𝑡 , (35) 

 

𝑡33 =
𝐹1𝜓 1 𝜉 

Γ
  𝑀𝑗Γ1𝑗 𝑒

−𝜆𝑗 𝑧

3

𝑗=1

 𝑒𝑖𝜔𝑡 +
𝐹2𝜓 2 𝜉 

Γ
  𝑀𝑗Γ2𝑗 𝑒

−𝜆𝑗 𝑧

3

𝑗=1

 𝑒𝑖𝜔𝑡 , (36) 

 

where 

Γ11 = −𝑁2𝑅3 + 𝑅2𝑁3 , 

Γ12 = 𝑁1𝑅3 − 𝑅1𝑁3, 

Γ13 = −𝑁1𝑅2 + 𝑅1𝑁2, 

Γ13 = −𝑁1𝑅2 + 𝑅1𝑁2 , 

Γ21 = 𝑀2𝑅3 − 𝑅2𝑀3 , 

Γ21 = 𝑀2𝑅3 − 𝑅2𝑀3 , 

Γ22 = −𝑀1𝑅3 + 𝑅1𝑀3, 

Γ23 = 𝑀1𝑅2 − 𝑅1𝑀2, 

Γ = −𝑀1Γ11−𝑀2Γ12−𝑀3Γ13 , 

𝑁𝑗 =  −𝛿2𝜆𝑗 + 𝑖𝜉𝑑𝑗 , 

𝑀𝑗 =  𝑖𝜉 − 𝛿3𝑑𝑗𝜆𝑗 −
𝛽3

𝛽1
𝑙𝑗   1 + 𝑎1𝜉

2 − 𝑎3𝜆𝑗
2 , 

𝑅𝑗 = −𝜆𝑗 𝑙𝑗 , 

𝑆𝑗 =  −𝑖𝜉 − 𝛿4𝑑𝑗𝜆𝑗 − 𝑙𝑗   1 + 𝑎1𝜉
2 − 𝑎3𝜆𝑗

2 . 
 

 

5. Special cases 
 

5.1 Concentrated force 
 

The solution due to concentrated normal force on the half space is obtained by setting 
 

𝜓1 𝑥 = 𝛿 𝑥 ,           𝜓2 𝑥 = 𝛿 𝑥 , (37) 
 

where 𝛿 𝑥  is dirac delta function. 

Applying Fourier transform defined by (20) on (37), we obtain 
 

𝜓 1 𝜉 = 1,           𝜓 2 𝜉 = 1. (38) 

 

Using (38) in (31)-(36), the components of displacement, stress and conductive temperature are 

obtained. 
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5.2 Uniformly distributed force 
 

The solution due to uniformly distributed force applied on the half space is obtained by setting 

 

𝜓1 𝑥 ,      𝜓2 𝑥 =  
1 if |𝑥|  ≤  m
0 if |𝑥|  >  𝑚

 . (39) 

 

The Fourier transforms of 𝜓1 𝑥  and 𝜓2 𝑥  with respect to the pair (x, ξ ) for the case of a 

uniform strip load of non-dimensional width 2 m applied at origin of co-ordinate system x = z = 0 

in the dimensionless form after suppressing the primes becomes 

 

𝜓 1 𝜉 = 𝜓 2 𝜉 =  
2 sin⁡(𝜉𝑚)

𝜉
 ,          𝜉 ≠ 0. (40) 

 

Using (40) in (31)-(36), the components of displacement, stress and conductive temperature are 

obtained. 
 

5.3 Linearly distributed force 
 

The solution due to linearly distributed force applied on the half space is obtained by setting 

 

 𝜓1 𝑥 ,     𝜓2 𝑥  =  
1 −

|𝑥|

𝑚
 if |𝑥|  ≤  𝑚

0 if |𝑥|  >  𝑚

 . (41) 

 

Here 2 m is the width of the strip load, using (15) and applying the transform defined by (20) 

on (41), we get 

𝜓 1 𝜉 = 𝜓 2 𝜉 =  
2{1 − cos 𝜉𝑚 )

𝜉2𝑚
 , 𝜉 ≠ 0. (42) 

 

Using (42) in (31)-(36), the components of displacement, stress and conductive temperature are 

obtained. 

 

 

 

Fig. 1 Inclined load over a transversely isotropic magneto-thermoelastic solid 
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6. Inclined load 
 

Suppose an inclined load, F0 per unit length is acting on the y-axis and its inclination with z-

axis is 𝜃, we have 𝐹1 =  𝐹0cos𝜃  and  𝐹2 =  𝐹0sin𝜃 (see Fig. 1), 

Using Eq. (43) in Eqs. (31)-(36) and with aid of Eqs. (37)-(42) we obtain the expressions for 

displacements, and stresses and conductive temperature for concentrated force, uniformly 

distributed force and linearly distributed force on the surface of transversely isotropic magneto-

thermoelastic body without energy dissipation. 

 

 

7. Inversion of the transformation 
 

For obtaining the result in physical domain, invert the transforms in Eqs. (31)-(36) using 
 

𝑓  𝑥, 𝑧, 𝜔 =
1

2𝜋
 𝑒−𝑖𝜉𝑥∞

−∞
𝑓  𝜉, 𝑧, 𝜔 𝑑𝜉 =

1

2𝜋
  𝑐𝑜𝑠 𝜉𝑥 𝑓𝑒 − 𝑖𝑠𝑖𝑛 𝜉𝑥 𝑓𝑜  
∞

−∞
𝑑𝜉, 

 

where fo is odd and fe is the even parts of 𝑓  𝜉, 𝑧, 𝑠  respectively. 
 

 

8. Numerical results and discussion 
 

In order to illustrate our theoretical results in the proceeding section and to show the effect of 

two temperature and rotation, we now present some numerical results. Following Dhaliwal and 

Sherief (1980), cobalt material has been taken for thermoelastic material as 

 

𝑐11 = 3.07 × 1011𝑁𝑚−2 ,       𝑐33 = 3.581 × 1011𝑁𝑚−2 ,            𝑐13 = 1.027 × 1010𝑁𝑚−2 , 

𝑐44 = 1.510 × 1011𝑁𝑚−2 ,     𝛽1 = 7.04 × 106𝑁𝑚−2𝑑𝑒𝑔−1 ,     𝛽3 = 6.90 × 106𝑁𝑚−2𝑑𝑒𝑔−1 , 

𝜌 = 8.836 × 103𝐾𝑔𝑚−3 ,       𝐶𝐸 = 4.27 × 102𝑗𝐾𝑔−1𝑑𝑒𝑔−1 ,     𝐾1 = 0.690 × 102𝑊𝑚−1𝐾𝑑𝑒𝑔−1 , 

𝐾3 = 0.690 × 102𝑊𝑚−1𝐾−1 ,           𝑇0  =  298 K, H0  =  1Jm−1nb−1 , 

𝜀0 =  8.838 × 10−12Fm−1 ,                L = 1.  

 

Using the above values, the graphical representations of displacement component u, normal 

displacement w, conductive temperature 𝜑, stress components 𝑡11 , 𝑡13  and 𝑡33  for transversely 

isotropic thermoelastic medium have been investigated and the effect of inclination with two 

temperature has been depicted. 

 

(i) The black solid line with square symbols corresponds to transversely isotropic magneto-

thermoelastic medium with Ω = 0.5 , 𝜔 = 0.25 

(ii) The red solid line with circle symbols corresponds to transversely isotropic magneto-

thermoelastic medium with Ω = 0.5,𝜔 = 0.50  
(iii) The green solid line with circle symbols corresponds to transversely isotropic magneto-

thermoelastic medium with Ω = 0.5, 𝜔 = 0.75 

(iv) The blue solid line with diamond symbols corresponds to transversely isotropic magneto-

thermoelastic medium with Ω = 0.5, 𝜔 = 1.0 
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Fig. 2 Variations of displacement component u with 

distance x 

Fig. 3 Variations of displacement component w with 

distance x 

 

 

  

Fig. 4 Variations of conductive temperature φ with 

distance x 

Fig. 5 Variations of stress component t11 with 

distance x 

 

 

  

Fig. 6 Variations of stress component 𝑡13  with 

distance x 

Fig. 7 Variations of stress component 𝑡33  with 

distance x 
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Effect of inclined load on transversely isotropic magneto thermoelastic rotating solid... 

Case 1: Concentrated force due to inclined load and with frequency, rotation and with 

two temperature 

Figs. 1 to 6 shows the variations of the displacement components (u and w), Conductive 

temperature 𝜑 and stress components (𝑡11 , 𝑡13  and 𝑡33) for transversely isotropic magneto-

thermoelastic medium with concentrated force and with combined effects of rotation, time 

harmonic source for inclined load with two temperature in generalized thermoelasticity without 

energy dissipation respectively. The displacement components (u and w), Conductive 

temperature𝜑and stress components (𝑡11 , 𝑡13  and 𝑡33) illustrate the same pattern but having 

different magnitudes for different value of frequency. These components varies (increases or 

decreases) during the initial range of distance near the loading surface of the time harmonic source 

and follow small oscillatory pattern for rest of the range of distance. Low value of time harmonic 

source frequency shows more stress near loading surface. 
 

 

 

  

Fig. 8 Variations of displacement component u 

with distance x 

Fig. 9 Variations of displacement component w 

with distance x 
 

 

 

  

Fig. 10 Variations of conductive temperature φ 

with distance x 

Fig. 11 Variations of stress component t11 with 

distance x 
 

95



 

 

 

 

 

 

Parveen Lata and Iqbal Kaur 

  

Fig. 12 Variations of stress component 𝑡13  with 

distance x 

Fig. 13 Variations of stress component 𝑡33  with 

distance x 

 

 

Case 2: Linearly distributed force due to inclined load and with frequency, rotation and 

with two temperature 

Figs. 8 to 13 shows the variations of the displacement components (u and w), Conductive 

temperature 𝜑 and stress components (𝑡11 , 𝑡13  and 𝑡33) for transversely isotropic magneto-

thermoelastic medium with linearly distributed force and with combined effects of rotation, time 

harmonic source for inclined load with two temperature in generalized thermoelasticity without 

energy dissipation respectively. As the value of frequency increase displacement component u 

increase, normal displacement w decrease, conductive temperature 𝜑 increasenear the loading 

surface rest remain same for transversely isotropic magneto-thermoelastic medium. However, as 

the value of frequency increase stress components 𝑡11  increase for 𝜔 = 0.25 𝑡13  and 𝑡33  

decrease for transversely isotropic magneto-thermoelastic medium also decrease near the loading 

surface rest remain same. Low value of time harmonic source frequency shows more stress near 

loading surface. 
 

 

  

Fig. 14 Variations of displacement component u 

with distance x 

Fig. 15 Variations of displacement component w 

with distance x 
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Effect of inclined load on transversely isotropic magneto thermoelastic rotating solid... 

Case 3: Uniformly distributed force due to inclined load and with frequency, rotation and 

with two temperature 

Figs. 14 to 19 expresses the variations of the displacement components (u and w), Conductive 

temperature𝜑and stress components (𝑡11 , 𝑡13  and 𝑡33)  for transversely isotropic magneto-

thermoelastic medium with uniformly distributed force and with combined effects of rotation, time 

harmonic source for inclined load with two temperature in generalized thermoelasticity without 

energy dissipation respectively. As the value of frequency increase displacement component u 

oscillates, normal displacement w decrease, conductive temperature 𝜑 increasenear the loading 

surface rest remain same for transversely isotropic magneto-thermoelastic medium. As the value of 

frequency increase, stress components 𝑡11  show a lot of variation increase for 𝜔 = 1.0 while 

𝑡13  and 𝑡33  decrease for transversely isotropic magneto-thermoelastic medium also decrease near 

the loading surface rest remain same. Low value of time harmonic source frequency shows more 

stress near loading surface. 
 

 

  

Fig.16 Variations of conductive temperature φ 

with distance x 

Fig. 17 Variations of stress component t11 with 

distance x 

 

 

  

Fig. 18 Variations of stress component 𝑡13  with 

distance x 

Fig. 19 Variations of stress component 𝑡33  with 

distance x 
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9. Conclusions 
 

From above investigation, it is observed that time harmonic source plays a key role for the 

oscillation of physical quantities both close to the point of use of source as well as just as far from 

the source. Moreover, the magnetic effect of two temperature, rotation as well as the angle of 

inclination of the applied load plays a key part in the deformation of all the physical quantities. 

The physical quantities amplitude differ (i.e., either rise or fall) with change in frequency of time 

harmonic source. In presence of two temperature and inclined load, the displacement components 

and stress components show an oscillatory nature with respect to x. The result gives an inspiration 

to study magneto-thermoelastic materials as an innovative domain of applicable thermoelastic 

solids. The shape of curves shows the impact of frequency ω on the body and fulfils the purpose of 

the study. The outcomes of this research are extremely helpful in the 2-D problem with dynamic 

response of time harmonic sources in transversely isotropic magneto-thermoelastic medium with 

rotation and two temperature which beneficial to dissect the deformation field such as geothermal 

engineering; advanced aircraft structure design, thermal power plants, composite engineering, 

geology, high-energy particle accelerators and in real life as in geophysics, auditory range, 

geomagnetism etc. The proposed model in this research is relevant to different problems in 

thermoelasticity and thermodynamics. 
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Nomenclature 
 

𝛿𝑖𝑗  Kronecker delta, 

𝐶𝑖𝑗𝑘𝑙  Elastic parameters, 

𝛽𝑖𝑗  Thermal elastic coupling tensor, 

𝑇 Absolute temperature, 

𝑇0 Reference temperature, 

𝜑 conductive temperature, 

𝑡𝑖𝑗  Stress tensors, 

𝑒𝑖𝑗  Strain tensors, 

𝑢𝑖  Components of displacement, 

𝜌 Medium density, 

𝐶𝐸  Specific heat, 

𝑎𝑖𝑗  Two temperature parameters, 

𝛼𝑖𝑗  Linear thermal expansion coefficient, 

𝐾𝑖𝑗  Materialistic constant, 

𝐾𝑖𝑗
∗  Thermal conductivity, 

𝜔 Frequency, 

𝜏0 Relaxation Time, 

Ω Angular Velocity of the Solid, 

 𝐹𝑖 Components of Lorentz force, 

𝐻   0 Magnetic field intensity vector, 

𝑗  Current Density Vector, 

𝑢   Displacement Vector, 

𝜇0 Magnetic permeability, 

𝜀0 Electric permeability, 

𝛿 𝑥  dirac delta function. 
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