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Abstract.  This investigation is focused on the study of effect of hall current in transversely isotropic magneto 

thermoelastic homogeneous medium with fractional order heat transfer and rotation. As an application the bounding 

surface is subjected to normal force. The research becomes more interesting due to interaction of Hall current with 

the effect of rotation as it has found various applications. Laplace and Fourier transform is used for solving field 

equations. The analytical expressions of temperature, displacement components, stress components and current 

density components are computed in the transformed domain. The effects of hall current and fractional order 

parameter at different values are represented graphically. 
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1. Introduction 
 

When a material body is subjected to an external force or loads, it transmits mechanical waves. 

For example, if a sudden heat is applied in a solid body, it will create a mechanical wave through 

thermal expansion. It was observed that the interaction s between the mechanical and thermal 

fields occurred through the Lorentz forces, Ohm’s law and the electric field created by the velocity 

of a material particle, moving in a magnetic field. Investigation of interaction between the strain 

and electromagnetic fields becomes new area of research, which is called magneto elasticity 

because of its effective aspects in various domains of science and technology, like damping of 

acoustic waves in a magnetic field, geophysics for understanding the effect of the Earth’s magnetic 

field on seismic waves, electrical power engineering, development of a highly sensitive super 

conducting magnetometer, emissions at electromagnetic radiation from nuclear devices, optics and 

plasma physics. 

Chen et al. (Chen and Gurtin 1968, Chen et al. 1968, 1969) formulated a two-temperature 

thermoelasticity of deformable bodies for the conduction of heat depending on two types of 

temperatures. Green and Naghdi (1991, 1992, and 1993) dealt with the linear and the nonlinear 

theories of thermoelastic body with and without energy dissipation. Three novel thermoelastic 
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theories were proposed by them, based on entropy equality. Their theories are known as 

thermoelasticity type I theory, the thermoelasticity type II theory (i.e., thermoelasticity without 

energy dissipation) and the thermoelasticity type III theory (i.e., thermoelasticity with energy 

dissipation), “On linearization, type I becomes the classical heat equation whereas on linearization 

type-II as well as type-III theories gives finite speed of thermal wave propagation. Marin (1997a) 

had proved the Cesaro means of strain and kinetic energies of dipolar bodies with finite energy. 

Ezzat et al. (2011) studied the linear theory of thermoelasticity using Fourier law of heat 

conduction with time-fractional order and three-phase lag and proved a uniqueness and reciprocity 

theorems. Bachher and Sarkar (2016) studied the theory of generalized thermoelasticity based on 

the heat conduction equation with the Caputo time-fractional derivative for magneto-thermoelastic 

response of a homogeneous isotropic two-dimensional rotating elastic half-space solid. Sheoran 

and Kundu (2016) gave a review and future prospects of fractional order generalized theory of 

thermoelasticity. Kumar et al. (2017a) investigated the Rayleigh waves in a homogeneous 

transversely isotropic magneto-thermoelastic in the presence of two temperature, hall current and 

rotation. Moreno-Navarro et al. (2018) proposed a fully coupled thermodynamic oriented transient 

finite element formulation for magnetic, electric, mechanic and thermal field’s interactions. 

Youssef and Abbas (2014) considered fractional order thermal conductivity as a linear function 

of temperature in the context of fractional order generalized thermoelasticity. Tripathi et al. (2017) 

studied the generalized thermoelasticity fractional order thermoelastic response due to a heat 

source that varies periodically with time with one relaxation time. Abbas (2018) studied the effect 

of fractional order 2-D GN-III model due to thermal shock for weak, normal and strong 

conductivity. Marin et al. (2017) studied the GN-thermoelastic theory for a dipolar body using 

mixed initial BVP and proved a result of Hölder’s-type stability. 

Kumar et al. (2017b) studied the thermomechanical interactions and effect of hall current and 

magnetic field in a homogeneous transversely isotropic thermoelastic rotating medium with two 

temperatures, due to thermomechanical sources by Green-Naghdi Theories of Type-II and Type-III. 

Ezzat et al. (2017) developed a unified mathematical fractional model of two-temperature phase-

lag Green–Naghdi thermoelasticity theories based on two-temperature. Ezzat et al. (2012, 2015, 

2016, 2017), presented a new mathematical models of two-temperature electro-thermo 

viscoelasticity theory in the perspective of heat conduction and provided applications of this model 

to different problems like concrete problems, a thermal shock problem and a problem for a half-

space exposed to ramp-type heating respectively. Despite of this several researchers worked on 

different theory of thermoelasticity as Marin (1996, 2009, 2010), Marin and Baleanu (2016), Ezzat 

et al. (2012, 2015, 2016, 2017), Marin (1997b, 2008), Marin and Baleanu (2016), Marin and Stan 

(2013), Marin and Nicaise (2016), Marin and Ö chsner (2017), Othman and Marin (2017), 

Chauthale and Khobragade (2017) , Marin (1998, 2009, 2010), Kumar et al. (2018), Marin et al. 

(2017), Lata and Kaur (2019a, b, c, d, e). 

From above study, it has been observed that numerous researches have been carried out in 

recent years on magneto-thermoelastic wave propagation in a non-rotating medium. It seems that 

slight attention has been given to the study of a rotating medium. Since most large bodies, like the 

earth, the moon, and other planets, have an angular velocity, it looks more realistic to study the 

propagation of magneto-thermoelastic waves in a rotating medium with Hall Effect. The fraction 

order derivatives are used to find viscoelasticity of such materials with a high precision. 

In this paper, we have attempted to study the effect of hall current and fractional order heat 

transfer due to normal force in transversely isotropic magneto thermo elastic medium. The 

expressions of displacement components, conductive temperature and stresses components due to 
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normal force are calculated in transformed domain by using the Laplace and Fourier transform. 

Numerical inversion technique is used to find the resulting quantities in the physical domain and 

effects of frequency at different values have been represented graphically. 
 

 

2. Basic equations 
 

Following Lata et al. (2016), the simplified Maxwell’s linear equation of electrodynamics for a 

slowly moving and perfectly conducting elastic solid are 
 

𝑐𝑢𝑟𝑙 𝑕  =  𝑗 + 𝜀0

𝜕𝐸  

𝜕𝑡
, (1) 

 

𝑐𝑢𝑟𝑙 𝐸  = − 𝜇0

𝜕𝑕  

𝜕𝑡
, (2) 

 

𝐸  = − 𝜇0  
𝜕𝑢  

𝜕𝑡
+  𝐻   0 , (3) 

 

𝑑𝑖𝑣 𝑕  = 0. (4) 
 

Maxwell stress components are given by 
 

𝑡𝑖𝑗 = 𝜇0(𝐻𝑖𝑕𝑗 + 𝐻𝑗𝑕𝑖 − 𝐻𝑘𝑕𝑘𝛿𝑖𝑗 ). (5) 

 

The constitutive relations for a transversely isotropic thermoelastic medium (Dhaliwal and 

Sherief 1980) are given by 
 

𝑡𝑖𝑗 =  𝐶𝑖𝑗𝑘𝑙 𝑒𝑘𝑙 − 𝛽𝑖𝑗 𝑇. (6) 

 

Equation of motion as described by Schoenberg and Censor (1973) for a transversely isotropic 

thermoelastic medium rotating uniformly with an angular velocity 𝛀 =  Ω𝒏, where n is a unit 

vector representing the direction of axis of rotation and taking into account Lorentz force 
 

𝑡𝑖𝑗 ,𝑗 +  𝐹𝑖 =  𝜌{𝑢 𝑖 +  Ω × (Ω × u 𝑖 + (2Ω × 𝑢) 𝑖 }, (7) 

 

where  𝐹𝑖 =  𝜇0 𝑗 × 𝐻   0  are the components of Lorentz force, 𝐻   0  is the external applied 

magnetic field intensity vector, 𝑗  is the current density vector, 𝑢   is the displacement vector, 𝜇0 

and  𝜀0  are the magnetic and electric permeabilities respectively and 𝑡𝑖𝑗  the component of 

Maxwell stress tensor. The terms Ω × (Ω × u)  and 2Ω × 𝑢  are the additional centripetal 

acceleration due to the time-varying motion and Coriolis acceleration respectively. 

The above equations are supplemented by generalized Ohm’s law for media with finite 

conductivity and including the hall current effect 
 

𝐽 =
𝜍0

1 + 𝑚2
 𝐸 + 𝜇0  𝑢 × 𝐻 −

1

𝑒𝑛𝑒
𝐽 × 𝐻0   (8) 
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The heat conduction equation following Ezzat et al. (2012) 

 

𝐾𝑖𝑗  1 +
 𝜏𝑡 

𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼
 𝑇 ,𝑗𝑖 + 𝐾𝑖𝑗

∗  1 +
 𝜏𝑣 

𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼
 𝑇,𝑗𝑖  

=  1 +
(𝜏𝑞)𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼
+  

(𝜏𝑞)2𝛼

2𝛼!

𝜕2𝛼

𝜕𝑡2𝛼
  𝜌𝐶𝐸𝑇 + 𝛽𝑖𝑗 𝑇0ё𝑖𝑗 + 𝑏𝑇0𝜙  , 

(9) 

 

where 𝛽𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙 𝛼𝑖𝑗 , 
 

𝑒𝑖𝑗 =  
1

2
 𝑢𝑖,𝑗 +  𝑢𝑗 ,𝑖 ,     𝑖, 𝑗 = 1,2,3. (10) 

 

𝛽𝑖𝑗 = 𝛽𝑖𝛿𝑖𝑗 ,   𝐾𝑖𝑗 = 𝐾𝑖𝛿𝑖𝑗 , i is not summed. 

Here 𝐶𝑖𝑗𝑘𝑙  are elastic parameters and having symmetry due to homogeneous transversely 

isotropic medium. The basis of these symmetries of 𝐶𝑖𝑗𝑘𝑙  is due to 
 

(1) The stress tensor is symmetric, which is only possible if (𝐶𝑖𝑗𝑘𝑙 =  𝐶𝑗𝑖𝑘𝑙 ) 

(2) If a strain energy density exists for the material, the elastic stiffness tensor must 

satisfy 𝐶𝑖𝑗 𝑘𝑙 =  𝐶𝑘𝑙𝑖𝑗  

(3) From stress tensor and elastic stiffness tensor symmetries infer (𝐶𝑖𝑗𝑘𝑙 =  𝐶𝑖𝑗𝑙𝑘 ) and 

𝐶𝑖𝑗𝑘𝑙 =  𝐶𝑘𝑙𝑖𝑗 =  𝐶𝑗𝑖𝑘𝑙 =  𝐶𝑖𝑗𝑙𝑘 , 
 

𝛽𝑖𝑗  is the thermal elastic coupling tensor, 𝑇 is the absolute temperature, 𝑇0 is the reference 

temperature, 𝜑 is the conductive temperature, 𝑡𝑖𝑗  are the components of stress tensor, 𝑒𝑖𝑗  are 

the components of strain tensor, 𝑢𝑖  are the displacement components, 𝜌 is the density, 𝐶𝐸  is the 

specific heat, 𝐾𝑖𝑗  is the materialistic constant, 𝑎𝑖𝑗  are the two temperature parameters, 𝛼𝑖𝑗  is 

the coefficient of linear thermal expansion, 𝜏0 is the relaxation time, which is the time required to 

maintain steady state heat conduction in an element of volume of an elastic body when sudden 

temperature gradient is imposed on that volume element, 𝛿𝑖𝑗  is the Kronecker delta, Ω is the 

angular velocity of the solid, 𝜏𝑡  is the phase lag of heat flux, 𝜏𝑣 is the phase lag of temperature 

gradient, 𝜏𝑞  is the phase lag of thermal displacement, 𝛼 is the fractional order derivative, 𝜙 is 

the volume fraction field and b is the measure of diffusion effect. 
 

 

3. Formulation and solution of the problem 
 

We consider a perfectly conducting homogeneous transversely isotropic magnetothermoelastic 

medium without two temperature and which is rotating uniformly with an angular velocity Ω, in 

the context of three-phase-lag fractional model of generalized thermoelasticity initially at a 

uniform temperature 𝑇0, permeated by an initial magnetic field 𝐻   0 = (0, 𝐻0 , 0) acting along 𝑦-

axis. The rectangular Cartesian co-ordinate system (𝑥, 𝑦, 𝑧) having origin on the surface (𝑧 = 0) 

with 𝑧-axis pointing vertically downwards into the medium is introduced. The surface of the half-

space is subjected to normal force acting at 𝑧 = 0. For two dimensional problem in xz-plane, we 

take 

𝒖 =  𝑢, 0, 𝑤  
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In addition, we consider that 
 

𝑬 = 0, 𝜴 =  0, Ω, 0 . 
 

From the generalized Ohm’s law 
 

𝐽2 = 0. (11) 

 

The current density components 𝐽1and 𝐽3 using (8) are given as 

 

𝐽1 =
𝜍0𝜇0𝐻0

1 + 𝑚2
 𝑚

𝜕𝑢

𝜕𝑡
−

𝜕𝑤

𝜕𝑡
 , (12) 

 

𝐽3 =  
𝜍0𝜇0𝐻0

1 + 𝑚2 
 
𝜕𝑢

𝜕𝑡
+ 𝑚

𝜕𝑤

𝜕𝑡
 . (13) 

 
Now using the proper transformation on Eqs. (7)-(9) following Slaughter (2002) are as under 

 

𝐶11

𝜕2𝑢

𝜕𝑥2
+ 𝐶13

𝜕2𝑤

𝜕𝑥𝜕𝑧
+ 𝐶44  

𝜕2𝑢

𝜕𝑧2
+  

𝜕2𝑤

𝜕𝑥𝜕𝑧
 − 𝛽1 

𝜕

𝜕𝑥
𝑇 − 𝜇0𝐽3𝐻0 

= 𝜌 
𝜕2𝑢

𝜕𝑡2
− 𝛺2𝑢 + 2𝛺

𝜕𝑤

𝜕𝑡
 , 

(14) 

 

 𝐶13 + 𝐶44  
𝜕2𝑢

𝜕𝑥𝜕𝑧
+ 𝐶44

𝜕2𝑤

𝜕𝑥2
+ 𝐶33 

𝜕2𝑤

𝜕𝑧2
− 𝛽3 

𝜕

𝜕𝑧
𝑇 − 𝜇0𝐽1𝐻0 

= 𝜌 
𝜕2𝑤

𝜕𝑡2
− 𝛺2𝑤 − 2𝛺

𝜕𝑢

𝜕𝑡
 , 

(15) 

 

𝐾1  1 +
 𝜏𝑡 

𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼
 

𝜕2𝑇 

𝜕𝑥2
+ 𝐾3  1 +

 𝜏𝑡 
𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼
 

𝜕2𝑇 

𝜕𝑧2
 

+𝐾1
∗  1 +

 𝜏𝑣 
𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼
 

𝜕2𝑇

𝜕𝑥2
+ 𝐾3

∗  1 +
 𝜏𝑣 

𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼
 

𝜕2𝑇

𝜕𝑧2
 

=  1 +
(𝜏𝑞)𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼
+  

(𝜏𝑞)2𝛼

2𝛼!

𝜕2𝛼

𝜕𝑡2𝛼
  𝜌𝐶𝐸𝑇 + 𝑇0  𝛽1

𝜕𝑢 

𝜕𝑥
+ 𝛽1

𝜕𝑤 

𝜕𝑧
  , 

(16) 

 

and 
 

𝑡𝑥𝑥 = 𝐶11𝑒𝑥𝑥  +  𝐶13𝑒𝑥𝑧 − 𝛽1 𝑇, (17) 

 

𝑡𝑧𝑧 = 𝐶13𝑒𝑥𝑥  +  𝐶33𝑒𝑧𝑧 − 𝛽3 𝑇, (18) 

 

𝑡𝑥𝑧 = 2𝐶44𝑒𝑥𝑧 , (19) 
 

where 
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𝛽1 =  𝐶11 + 𝐶12 𝛼1 + 𝐶13𝛼3, 

 

𝛽3 = 2𝐶13𝛼1 + 𝐶33𝛼3, 

 

To facilitate the solution, below mentioned dimensionless quantities are used 

 

𝑥′ =  
𝑥

𝐿
,                          𝑢′ =  

𝜌𝑐1
2

𝐿𝛽1𝑇0
𝑢,             𝑡′ =  

𝑐1

𝐿
𝑡,  

𝑤 ′ =  
𝜌𝑐1

2

𝐿𝛽1𝑇0
𝑤,             𝑇′ =  

𝑇

𝑇0
,                      𝑡𝑥𝑥

′ =  
𝑡𝑥𝑥
𝛽1𝑇0

,           𝑡𝑧𝑧
′ =  

𝑡𝑧𝑧
𝛽1𝑇0

, 

𝑡𝑥𝑧
′ =  

𝑡𝑥𝑧
𝛽1𝑇0

,                  𝑧′ =  
𝑧

𝐿
, 

Ω′ =
L

𝐶1
Ω ,                    𝜏𝑇

′ =
𝐶1

𝐿
𝜏𝑇 ,                   𝜏𝑣

′ =
𝐶1

𝐿
𝜏𝑣 ,               𝜏𝑞

′ =
𝐶1

𝐿
𝜏𝑞 . 

(20) 

 

Making use of (20) in Eqs. (14)-(16), after suppressing the primes, yield 

 

𝜕2𝑢

𝜕𝑥2
+ 𝛿1

𝜕2𝑤

𝜕𝑥𝜕𝑧
+ 𝛿2

𝜕2𝑢

𝜕𝑧2
−

𝜕𝑇

𝜕𝑥
=

𝑀

1 + 𝑚2
 
𝜕𝑢

𝜕𝑡
+ 𝑚

𝜕𝑤

𝜕𝑡
 +

𝜕2𝑢

𝜕𝑡2
− Ω2𝑢 + 2Ω

𝜕𝑤

𝜕𝑡
, (21) 

 

𝛿1

𝜕2𝑢

𝜕𝑥𝜕𝑧
+ 𝛿2

𝜕2𝑤

𝜕𝑥2
+ 𝛿3

𝜕2𝑤

𝜕𝑧2
−

𝛽3

𝛽1

𝜕𝑇

𝜕𝑧
= −

𝑀

1 + 𝑚2
 𝑚

𝜕𝑢

𝜕𝑡
−

𝜕𝑤

𝜕𝑡
 +

𝜕2𝑤

𝜕𝑡2
− Ω2𝑤 − 2Ω

𝜕𝑢

𝜕𝑡
, (22) 

 

 1 +
𝐶1 𝜏𝑡 

𝛼

𝛼! 𝐿

𝜕𝛼+1

𝜕𝑡𝛼+1
  𝐾1

𝜕2𝑇

𝜕𝑥2
+ 𝐾3

𝜕2𝑇

𝜕𝑧2
 

1

+  1 +
 𝜏𝑣 

𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼
  𝐾1

∗
𝜕2𝑇

𝜕𝑥2
+ 𝐾3

∗
𝜕2𝑇

𝜕𝑧2
  

=  1 +
(𝜏𝑞)𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼
+  

(𝜏𝑞)2𝛼

2𝛼!

𝜕2𝛼

𝜕𝑡2𝛼
  𝜌𝐶𝐸𝑇 +

𝛽1

𝜌
𝑇0  𝛽1

𝜕𝑢 

𝜕𝑥
+ 𝛽1

𝜕𝑤 

𝜕𝑧
  , 

(23) 

 

where 
 

𝛿1 =  
𝑐13 + 𝑐44

𝑐11
, 𝛿2 =  

𝑐44

𝑐11
, 𝛿3 =  

𝑐33

𝑐11
, 𝑀 =  

𝐿𝜍0𝜇0
2𝐻0

2

𝜌𝐶1
 .  

 

We assume that the medium is initially at rest. The undisturbed state is maintained at reference 

temperature. Then we have the initial and regularity conditions which are given by 
 

𝒖 𝑥, 𝑧, 0 = 0 = 𝒖  𝑥, 𝑧, 0  

𝒘 𝑥, 𝑧, 0 = 0 = 𝒘  𝑥, 𝑧, 0  

𝑻 𝑥, 𝑧, 0 = 0 = 𝑻  𝑥, 𝑧, 0  
 

For 𝑧 ≥ 0 & −∞ ≤ 𝑥 ≤ ∞ 𝒖 𝑥, 𝑧, 𝑡 = 𝒘 𝑥, 𝑧, 𝑡 = 𝑻 𝑥, 𝑧, 𝑡 = 0 for t > 0 when z→ ∞. 
Apply Laplace and Fourier transforms defined by 
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𝑓  𝑥, 𝑧, 𝑠 =   𝑓 𝑥, 𝑧, 𝑡 𝑒−𝑠𝑡𝑑𝑡

∞

0

, (24) 

 

𝑓  𝜉, 𝑧, 𝑠 =  𝑓  𝑥, 𝑧, 𝑠 𝑒𝑖𝜉𝑥

∞

−∞

𝑑𝑥. (25) 

 

On Eqs. (17)-(19), we obtain a system of equations 
 

 −𝜉2 − 𝑠2 + 𝛿2𝐷
2 −

𝑀𝑠

1 + 𝑚2
+ Ω2 𝑢  𝜉, 𝑧, 𝑠  

+  𝛿1𝐷𝑖𝜉 −
𝑚𝑀𝑠

1 + 𝑚2
− 2Ωs 𝑤  𝜉, 𝑧, 𝑠 +  −iξ 𝑇  𝜉, 𝑧, 𝑠 = 0, 

(26) 

 

 𝛿1𝐷𝑖𝜉 +
𝑚𝑀𝑠

1 + 𝑚2
+ 2Ω 𝑢  𝜉, 𝑧, 𝑠 +  −𝛿2𝜉

2 + 𝛿3𝐷
2 − 𝑠2 + Ω2 −

𝑀𝑠

1 + 𝑚2
 𝑤  𝜉, 𝑧, 𝑠  

−
𝛽3

𝛽1
𝐷𝑇  𝜉, 𝑧, 𝑠 = 0, 

(27) 

 

𝛽1
2𝑇0𝑠

2𝑖𝜉

𝜌
 1 +

𝜏𝑞
𝛼𝑠𝛼

𝛼!
+

𝜏𝑞
2𝛼𝑠2𝛼

2𝛼!
 𝑢  𝜉, 𝑧, 𝑠 +

𝛽1𝛽3𝑇0𝑠
2

𝜌
 1 +

𝜏𝑞
𝛼𝑠𝛼

𝛼!
+

𝜏𝑞
2𝛼𝑠2𝛼

2𝛼!
 𝐷𝑤  𝜉, 𝑧, 𝑠  

+  
𝜌𝐶𝐸𝐶1

2𝑠2  1 +
𝜏𝑞
𝛼 𝑠𝛼

𝛼!
+

𝜏𝑞
2𝛼𝑠2𝛼

2𝛼!
 + 𝐾1𝜉

2  1 +
𝐶1𝜏𝑇

𝛼𝑠𝛼+1

𝛼!𝐿
 

+𝐾1
∗𝜉2  1 +

𝜏𝑣
𝛼𝑠𝛼

𝛼!𝐿
 −  𝐾3  1 +

𝐶1𝜏𝑇
𝛼𝑠𝛼+1

𝛼!𝐿
 + 𝐾3

∗  1 +
𝜏𝑣
𝛼𝑠𝛼

𝛼!𝐿
 𝐷2 

 𝑇  𝜉, 𝑧, 𝑠 = 0 

(28) 

 

The non trivial solution of (26)-(28) yields 

 

𝐴𝐷6 + 𝐵𝐷4 + 𝐶𝐷2 + 𝐸 = 0, (29) 
 

where 
 

D =
𝑑

𝑑𝑧
,          A = −𝛿2𝛿3𝜁4 , 

𝐵 = −𝜁4𝜁9𝛿2 +  𝛿2𝛿3𝜁3 − 𝜁5𝜁4𝛿3 − 𝜁2𝜁10𝛿2 + 𝛿1
2𝜁7

2𝜁4 , 

𝐶 =  𝜁3𝜁9𝛿2 − 𝜁9𝜁4𝜁5 + 𝜁5𝜁3𝛿3 − 𝜁2𝜁10𝜁5 + 𝜁8𝜁4𝜁6 − 𝛿1
2𝜁7

2𝜁3+𝜁7𝜁1𝛿1𝜁10 − 𝛿1𝜁7
2𝜁2+𝜁1𝜁7𝛿3 

𝐸 =  𝜁5𝜁9𝜁3 − 𝜁6𝜁8𝜁3 + 𝜁1𝜁9𝜁7 , 

𝜁1 =  
𝛽1

2𝑇0𝑠
2𝑖𝜉

𝜌
 1 +

𝜏𝑞
𝛼𝑠𝛼

𝛼!
+

𝜏𝑞
2𝛼𝑠2𝛼

2𝛼!
 , 

209



 

 

 

 

 

 

Parveen Lata and Iqbal Kaur 

𝜁2 =
𝛽1𝛽3𝑇0𝑠

2

𝜌
 1 +

𝜏𝑞
𝛼𝑠𝛼

𝛼!
+

𝜏𝑞
2𝛼𝑠2𝛼

2𝛼!
 , 

𝜁3 = 𝜌𝐶𝐸𝐶1
2𝑠2  1 +

𝜏𝑞
𝛼𝑠𝛼

𝛼!
+

𝜏𝑞
2𝛼𝑠2𝛼

2𝛼!
 + 𝐾1𝜉

2  1 +
𝐶1𝜏𝑇

𝛼𝑠𝛼+1

𝛼!𝐿
 + 𝐾1

∗𝜉2  1 +
𝜏𝑣
𝛼𝑠𝛼

𝛼!𝐿
 , 

𝜁4 =  𝐾3  1 +
𝐶1𝜏𝑇

𝛼𝑠𝛼+1

𝛼!𝐿
 + 𝐾3

∗  1 +
𝜏𝑣
𝛼𝑠𝛼

𝛼!𝐿
 , 

𝜁5 = −𝜉2 − 𝑠2 −
𝑀𝑠

1 + 𝑚2
, 

𝜁6 = −
𝑚𝑀𝑠

1 + 𝑚2
− 2Ω𝑠, 

𝜁7 = 𝑖𝜉, 

𝜁8 =  
𝑚𝑀𝑠

1 + 𝑚2
+ 2Ω𝑠, 

𝜁9 = − 𝜉2𝛿2 − 𝑠2 + Ω2 −
𝑀𝑠

1 + 𝑚2
, 

𝜁10 = −
𝛽3

𝛽1
. 

 

The roots of the Eq. (29) are ±λi, (i = 1, 2, 3), the solution of the Eqs. (26)-(28) satisfying the 

radiation condition that 𝑢 , 𝑣 , 𝑤 → 0 as 𝑧 → ∞ can be written as 

 

𝑢  𝜉, 𝑧, 𝑠 =   𝐴𝑖𝑒
−𝜆𝑖𝑧

3

𝑖=1

, (30) 

 

𝑤  𝜉, 𝑧, 𝑠 =   𝑑𝑖𝐴𝑖𝑒
−𝜆𝑖𝑧 ,

3

𝑖=1

 (31) 

 

𝑇  𝜉, 𝑧, 𝑠 =   𝑙𝑖𝐴𝑖𝑒
−𝜆𝑖𝑧

3

𝑖=1

, (32) 

 

where 𝐴𝑖, 𝑖 = 1, 2, 3 being undetermined constants and 𝑑𝑖  and 𝑙𝑖  are given by 

 

𝑑𝑖 =
𝛿2𝜁4𝜆𝑖

4 +  −𝜁5𝜁4 + 𝛿2𝜁3 𝜆𝑖
2 + 𝜁1𝜁7 + 𝜁5𝜁3

−𝛿3ζ4𝜆𝑖
4 +  𝛿3𝜁3 − 𝜁2𝜁10 − 𝜁4𝜁9 𝜆𝑖

2+𝜁3𝜁6

, 

𝑙𝑖 =
𝛿2𝛿3𝜆𝑖

4 +  𝛿2𝜁9 + 𝜁5𝛿3 − 𝛿1
2𝜁7

2 𝜆𝑖
2+𝜁5𝜁9−𝜁6𝜁8

−𝛿3ζ4𝜆𝑖
4 +  𝛿3𝜁3 − 𝜁2𝜁10 − 𝜁4𝜁9 𝜆𝑖

2+𝜁3𝜁6

. 
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4. Boundary conditions 
 

On the half-space surface (z = 0) normal force is applied. 

The appropriate boundary conditions are 
 

𝑡𝑧𝑧  𝑥, 𝑧, 𝑡 =  𝐺 𝑡 𝛿 𝑥 , (33) 

 

𝑡𝑥𝑧  𝑥, 𝑧, 𝑡 = 0, (34) 

 

𝑇 𝑥, 𝑧, 𝑡 =  0, (35) 
 

where 𝛿 𝑥  is a dirac delta function of x and 𝐺(𝑡) is a function defined as 
 

𝐺 𝑡 =  

0; 𝑡 ≤ 0,

𝑇1

𝑡

𝑡0
; 0 ≤ 𝑡 ≤ 𝑡0

𝑇1; 𝑡 > 𝑡0 ,

 , 

 

where 𝑡0 indicates the length of time to rise the heat and 𝑇1 is a constant. 

Applying the Laplace and Fourier transform to both sides of (33) 
 

𝑡 𝑧𝑧  𝜉, 0, 𝑠 = 𝐺  𝑠 , 
 

where 
 

𝐺  𝑠 = 𝑇1

 1 − 𝑒−𝑠𝑡0 

𝑡0𝑠
2

. 

 

Applying the Laplace and Fourier transform defined by (24) and (25) on the boundary 

conditions (33)-(35), using (18)-(19) and with the help of Eqs. (30)-(32), we obtain the 

components of displacement, normal stress, tangential stress, conductive temperature and current 

density components 
 

𝑢  𝜉, 𝑧, 𝑠 = 𝑇1

 1 − 𝑒−𝑠𝑡0 

Λ𝑡0𝑠
2

 𝑁1𝑒
−𝜆1𝑧 + 𝑁2𝑒

−𝜆2𝑧 + 𝑁3𝑒
−𝜆3𝑧  , (36) 

 

𝑤  𝜉, 𝑧, 𝑠 = 𝑇1

 1 − 𝑒−𝑠𝑡0 

Λ𝑡0𝑠
2

 𝑑1𝑁1𝑒
−𝜆1𝑧 + 𝑑2𝑁2𝑒

−𝜆2𝑧 + 𝑑3𝑁3𝑒
−𝜆3𝑧  , (37) 

 

𝑇  𝜉, 𝑧, 𝑠 = 𝑇1

 1 − 𝑒−𝑠𝑡0 

Λ𝑡0𝑠
2

 𝑙1𝑁1𝑒
−𝜆1𝑧 + 𝑙2𝑁2𝑒

−𝜆2𝑧 + 𝑙3𝑁3𝑒
−𝜆3𝑧  , (38) 

 

𝑡 𝑥𝑧  𝜉, 𝑧, 𝑠 = 𝑇1

 1 − 𝑒−𝑠𝑡0 

Λ𝑡0𝑠
2

 Λ21𝑁1𝑒
−𝜆1𝑧 + Λ22𝑁2𝑒

−𝜆2𝑧 + Λ23𝑁3𝑒
−𝜆3𝑧  , (39) 

 

𝑡 𝑧𝑧  𝜉, 𝑧, 𝑠 = 𝑇1

 1 − 𝑒−𝑠𝑡0 

Λ𝑡0𝑠
2

 Λ11𝑁1𝑒
−𝜆1𝑧 + Λ12𝑁2𝑒

−𝜆2𝑧 + Λ13𝑁3𝑒
−𝜆3𝑧  , (40) 
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𝐽 1 𝜉, 𝑧, 𝑠 = 𝑇1

 1 − 𝑒−𝑠𝑡0 

Λ𝑡0𝑠
2

 𝑆1𝑁1𝑒
−𝜆1𝑧 + 𝑆2𝑁2𝑒

−𝜆2𝑧 + 𝑆3𝑁3𝑒
−𝜆3𝑧  , (41) 

 

𝐽 3 𝜉, 𝑧, 𝑠 = 𝑇1

 1 − 𝑒−𝑠𝑡0 

Λ𝑡0𝑠
2

 𝑅1𝑁1𝑒
−𝜆1𝑧 + 𝑅2𝑁2𝑒

−𝜆2𝑧 + 𝑅3𝑁3𝑒
−𝜆3𝑧  , (42) 

 

where 

 

Λ1𝑗 = 𝐶13𝑖𝜉 − 𝐶33𝑑𝑗𝜆𝑗 − 𝛽3𝑙𝑖 ,      Λ2𝑗 = −𝐶44𝜆𝑗 + 𝑖𝜉𝑑𝑗 , 

Λ3𝑗 = 𝐴𝑗 𝑙𝑗 ,                                          Λ = 𝑁1Λ11−𝑁2Λ12+𝑁3Λ13 , 

𝑁1 =  Λ22Λ33 − Λ23Λ32 ,                 𝑁2 =  Λ21Λ33 − Λ23Λ31 ,            𝑁3 =  Λ21Λ32 − Λ22Λ31 , 

𝑆𝑗 =
𝜍0𝐻0𝜇0

 1 + 𝑚2 
s 𝑚 − 𝑑𝑗  ,              𝑅𝑗 =

𝜍0𝐻0𝜇0

 1 + 𝑚2 
s 1 + 𝑚𝑑𝑗  . 

 

 

5. Inversion of the transformation 
 
For obtaining the result in physical domain, invert the transforms in Eqs. (36)-(42) by inverting 

the Fourier transform using 
 

𝑓  𝑥, 𝑧, 𝑠 =
1

2𝜋
 𝑒−𝑖𝜉𝑥

∞

−∞

𝑓  𝜉, 𝑧, 𝑠 𝑑𝜉 =
1

2𝜋
  𝑐𝑜𝑠 𝜉𝑥 𝑓𝑒 − 𝑖𝑠𝑖𝑛 𝜉𝑥 𝑓𝑜  

∞

−∞

𝑑𝜉 (43) 

 

Where fe and fo are respectively the odd and even parts of 𝑓  𝜉, 𝑧, 𝑠 . Following Honig and 

Hirdes (1984), the Laplace transform function 𝑓  𝑥, 𝑧, 𝑠  can be inverted to f(x, z, t) by 
 

𝑓 𝑥, 𝑧, 𝑡 =  
1

2𝜋𝑖
 𝑓  𝑥, 𝑧, 𝑠 𝑒−𝑠𝑡𝑑𝑠

𝜈+𝑖∞

𝜈−𝑖∞

. (44) 

 

The last step is to calculate the integral in Eq. (43), “The method for evaluating this integral by 

using Romberg’s integration with adaptive step size is described in Press et al. (1986). 

 

 

6. Numerical results and discussion 
 

In order to illustrate our theoretical results in the proceeding section and to show the effect of 

hall current parameter m and fractional order parameter 𝛼, we now present some numerical results. 

Following Dhaliwal and Sherief (1980), cobalt material has been taken for transversely isotropic 

thermoelastic material as 
 

𝑐11 = 3.07 × 1011𝑁𝑚−2 ,              𝑐33 = 3.581 × 1011𝑁𝑚−2 ,          𝑐13 = 1.027 × 1010𝑁𝑚−2 , 

𝑐44 = 1.510 × 1011𝑁𝑚−2 ,          𝛽1 = 7.04 × 106𝑁𝑚−2𝑑𝑒𝑔−1 , 

𝛽3 = 6.90 × 106𝑁𝑚−2𝑑𝑒𝑔−1 ,     𝜌 = 8.836 × 103𝐾𝑔𝑚−3 , 

212



 

 

 

 

 

 

Effect of hall current in Transversely Isotropic magneto thermoelastic rotating medium with... 

𝐶𝐸 = 4.27 × 102𝑗𝐾𝑔−1𝑑𝑒𝑔−1 , 

𝐾1 = 0.690 × 102𝑊𝑚−1𝐾𝑑𝑒𝑔−1 ,       𝐾3 = 0.690 × 102𝑊𝑚−1𝐾−1 , 

T0  =  298 K,          H0  =  1Jm−1nb−1 ,          ε0 =  8.838 ×  10−12Fm−1 ,          L = 1, 

τt = 0.4s,          τv = 0.5s,          τq = 0.6s,          K1
∗ = 0.02,          K3

∗ = 0.04. 
 

Using the above values, the graphical representations of normal displacement, induced 

magnetic effect, normal stress and conductive temperature for transversely isotropic thermoelastic 

medium have been investigated for normal force/ thermal source and uniformly distributed 

force/source. 

A comparison of the dimensionless form of the field variables displacement components, 

tangential stress 𝑡𝑧𝑥 , temperature T, current density components 𝐽1 and 𝐽3 for a transversely 

isotropic medium with hall current effect and fractional order parameter is demonstrated 

graphically as 
 

(i) The black line with square symbol relates to hall current for 𝑚 = 0.0 and 𝛼 = 0.5, 

(ii) The red line with circle symbol relates to hall current for 𝑚 = 0.3 and 𝛼 = 0.5, 

(iii) The green line with triangle symbol relates to hall current for 𝑚 = 0.6 and 𝛼 = 0.5, 

(iv) The blue line with r symbol relates to hall current for 𝑚 = 0.9 and 𝛼 = 0.5. 
 

Fig. 1 shows the variations of transverse displacement component u with distance x. It is 

noticed that the values are oscillatory corresponding to all the cases for the whole range and as x 

increases, amplitude of oscillation decreases. Also amplitude of oscillation decreases as the hall 

parameter m increases. Fig. 2 shows the variations of normal displacement component w with 

distance x. It is noticed that for m = 0.0 and m = 0.3 the normal displacement component w first 

increases for 0 ≤ 𝑥 ≤ 3 and then shows oscillations whose amplitude decreases as x increases 

while for m = 0.6 and m = 0.9 the value of normal displacement component w first decreases for 

the range 0 ≤ 𝑥 ≤ 3 and then remains same for rest of the value of x. Fig. 3 shows the variations 
 

 

 

Fig. 1 Variations of displacement component u with distance x 
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Fig. 2 Variations of displacement component w with distance x 
 

 

 

Fig. 3 Variations of temperature T with distance x 
 

 

 

Fig. 4 Variations of Tangenial stress tzx with distance x 
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Fig. 5 Variations of transverse current density J1 distance x 

 

 

 

Fig. 6 Variations of normal current density J3 distance x 

 

 

of temperature with distance x. in all the cases it shows an oscillatory behavior with decrease in 

amplitude as x increases. Also with increase in value of hall parameter m except for m = 0.0 the 

amplitude of oscillation decreases. Fig. 4 shows the variations of tangential stress 𝑡𝑧𝑥  with 

distance x. In all the cases it shows an oscillatory behavior with decrease in amplitude as x 

increases. Also the amplitude of oscillation is higher for m = 0.3 then decrease for m = 0.0,then 

more less form = 0.9 and further smaller for m = 0.6 Fig. 5 shows the variations of transverse 

current density 𝐽1 with distance x and Fig. 6 shows the variations of normal current density 𝐽3 

with distance x.. In all the cases it shows an oscillatory behavior with decrease in amplitude as x 

increases. Also with increase in value of hall parameter m, the amplitude of oscillation decreases. 

A comparison of the dimensionless form of the field variables displacement components, 

tangential stress 𝑡𝑧𝑥 , temperature T, current density components 𝐽1 and 𝐽3  for a transversely 

isotropic medium with hall current and fractional order parameter is demonstrated graphically as: 
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(i) The black line with square symbol relates to hall current for 𝑚 = 0.5 and 𝛼 = 0.3, 

(ii) The red line with circle symbol relates to hall current for 𝑚 = 0.5 and 𝛼 = 0.5, 

(iii) The blue line with triangle symbol relates to hall current for 𝑚 = 0.5 and 𝛼 = 0.7 
 

Fig. 1 shows the variations of transverse displacement component u with distance x. It is 

noticed that the values are oscillatory corresponding to all the cases for the whole range and as 

fractional order parameter 𝛼 increases, amplitude of oscillation decreases. Fig. 2 shows the 

variations of normal displacement component w with distance x. It is noticed that the value of 

normal displacement component w decreases as the value of fractional order parameter 𝛼 

increases. Fig. 3 shows the variations of temperature with distance x. For 𝛼 = 0.3 and 𝛼 = 0.5 

temperature increase with increase in distance whereas for 𝛼 = 0.7 temperature T decrease with 

increase in distance x. Fig. 4 shows the variations of tangential stress 𝑡𝑧𝑥  with distance x. For 

𝛼 = 0.3 and 𝛼 = 0.5 tangential stress 𝑡𝑧𝑥  decrease with increase in distance whereas for 
 

 

 

Fig. 7 Variations of displacement component u with distance x 
 

 

 

Fig. 8 Variations of displacement component w with distance x 
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Fig. 9 Variations of temperature T with distance x 
 

 

 

Fig. 10 Variations of Tangential stress tzx with distance x 
 

 

 

Fig. 11 Variations of transverse current density J1 distance x 
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Fig. 12 Variations of normal current density J3 distance x 
 

 

𝛼 = 0.7 tangential stress 𝑡𝑧𝑥  increases with increase in distance x and follows oscillatory pattern. 

Fig. 5 shows the variations of transeverse current density 𝐽1 with distance x and Fig. 6 shows the 

variations of normal current density 𝐽3 with distance x.. In all the cases it shows an oscillatory 

behavior with decrease in amplitude as x increases. Also with increase in value of fractional order 

parameter, the amplitude of oscillation increases. 
 
 

7. Conclusions 
 

The consideration of Hall effect makes the research more exciting for research perspective. 

From the analysis of the graphs, it is clear there is a significant influence of Hall Effect parameter 

m and fractional order parameter α on the deformation of various displacement components, 

temperature, tangential stress components, and current density components 𝐽1 and 𝐽3 of 

transversely isotropic magneto thermoelastic medium. The fraction order derivatives are used to 

find viscoelasticity of such materials with a high precision. As distance x, varied from the point of 

use of the normal force, the variations of displacement components, temperature and tangential 

stress components undergoes sudden changes, causing an inconsistent patterns of curves and 

shows an oscillatory pattern. The shape of curves shows the impact of Hall Effect parameter m on 

the body and fulfils the purpose of the study. The outcomes of this research are extremely helpful 

in the 2-D problem in various domains of science and technology, like damping of acoustic waves 

in a magnetic field, geophysics for understanding the effect of the Earth’s magnetic field on 

seismic waves, emissions at electromagnetic radiation from nuclear devices, optics and plasma 

physics. 
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