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Abstract.    This article studies the free and forced vibrations of the carbon nanotubes CNTs embedded in an elastic 
medium including thermal and dynamic load effects based on nonlocal Euler-Bernoulli beam. A Winkler type elastic 
foundation is employed to model the interaction of carbon nanotube and the surrounding elastic medium. Influence 
of all parameters such as nonlocal small-scale effects, high temperature change, Winkler modulus parameter, 
vibration mode and aspect ratio of short carbon nanotubes on the vibration frequency are analyzed and discussed. 
The non-local Euler-Bernoulli beam model predicts lower resonance frequencies. The research work reveals the 
significance of the small-scale coefficient, the vibrational mode number, the elastic medium and the temperature 
change on the non-dimensional natural frequency. 
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1. Introduction 

 
Carbon nanotube CNTs are cylindrical macromolecules composed of carbon atoms in a 

periodic hexagonal arrangement discovered by Iijima (1991), which have received tremendous 
attention from various branches of science. Varieties of experimental, theoretical, and computer 
simulation approaches indicate that carbon nanotubes (CNTs) possess superior electronic, thermal 
and mechanical properties (Heireche et al. 2009). Other studies have showed that they have good 
properties so they can be used for nanocomposites. In addition, CNTs are well known for their 
excellent rigidity, higher than that of steel and any other metal. Zidour (Zidour et al. 2014) 
analysed the Buckling of chiral single-walled carbon nanotubes by using the nonlocal Timoshenko 
beam theory. 

Due to difficulties encountered in experimental methods to predict the responses of 
nanostructures under different loading conditions, the molecular dynamics (MD) simulations and 
the continuum mechanics methods are used. But the computational problem when using the (MD) 
is that the time steps involved in the (MD) simulations are limited by the vibration modes of the 
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atoms to be of the order of femto-seconds (10-15 s). The continuum mechanics methods have been 
effectively used to study mechanical behaviors of not only single-walled carbon nanotubes 
(SWCNTs) but also MWCNTs (Benferhat et al. 2016, Zidour et al. 2014, Ben Henni et al. 2018, 
Bouakaz et al. 2014, Rabahi et al. 2016, Daouadji and Adim 2016, Bensattalah et al. 2018a, 
Aissani et al. 2015, Abdelhak et al. 2016 and Bensattalah et al. 2016). Recently, the continuum 
mechanics approach has been widely and successfully used to study the responses of 
nanostructures, such as the static, the buckling, free vibration (Zidour et al. 2012, Daouadji et al. 
2016b, Adim et al. 2016a, b, Daouadji 2017, Rabahi et al. 2016, Chaht et al. 2015, Khelifa et al. 
2018, Tlidji et al. 2014 and Bensatallah et al. 2018b), wave propagation (Naceri et al. 2011) and 
thermo-mechanical analysis of (CNTs) (Daouadji and Hadji 2015, Benferhat et al. 2016, Hadji et 
al. 2015, Benferhat et al. 2016 and Abderezak et al. 2018). 

At nanoscale, the classical continuum theories are deemed to fail, because the length 
dimensions at this scale are often sufficiently small such that call the applicability of classical 
continuum theories into the question. At macroscopic scale, the mechanical characteristics of 
structures are often significantly different from their behavior at nanoscale. Consequently, many 
non-local theories that consider the scale effect have been proposed such as deformation gradient 
theory, micro-polar theory and the nonlocal theory of elasticity (Eringen 1972b), this theories take 
into account the influence of the screen introducing the intrinsic scale length in the constituent 
relations. Among the theories mentioned previously, the non-local elasticity theory (Eringen 1983) 
is considered as a function of strain state of all points in the body. 

In the past fifty years, linear and nonlinear problems which appeared in physical, chemistry, 
mechanics, engineering applications and various of scientific areas are modelled and they are 
investigated by using so many approximating methods. Some of these numerical methods are 
Differential Transformation Method (DTM), Homotopy Perturbation Method (HPM), Adomian 
Decomposition Method (ADM), Variational Iteration Method (VIM) and Homotopy Analysis 
Method (HAM). Many authors studied linear and nonlinear models to compute approximate 
solutions and their convergences with Differential Transformation Method (DTM) (Hassan 2002, 
Sallai et al. 2015, Hadji et al. 2016a, b, Heireche et al. 2008, Ju 2004). 

Recently, three-dimensional behaviour of CNT is investigated by some researchers (Yuzhou 
and Liew 2008, Gupta and Batra 2008). CNT can be used for micro-electro-mechanical and nano-
electro-mechanical devices. During these applications, external forces act on CNTs continuously. 
Because of this fact, understanding their dynamic behavior is a very important task. Forced 
vibration of CNT-reinforced epoxy is studied by Rajoria (Rajoria and Jalili 2005). According to the 
authors’ best knowledge, forced vibration of CNTs by using continuum beam models was not 
studied in the previous research. For this reason, we presented in this article studies the free and 
forced vibrations of the carbon nanotubes (CNTs) embedded in an elastic medium including 
thermal and dynamic load effects have been extracted via the theory of nonlocal continuum 
elasticity. The mathematical derivations and numerical investigations are presented and performed 
while the emphasis is placed on investigating the impact of all different parameters such as 
nonlocal small-scale effects, high temperature change, Winkler modulus parameter, vibration mode 
and dynamic load. Comparisons of present approach with the results from the existing literature 
are provided and the good agreement between the results of the proposed method and those 
available in literature validated the presented approach. 
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2. Nonlocal Euler-Bernoulli elastic beam models 
 
The theory of nonlocal continuum elasticity proposed by Eringen (1983) assumed that the 

stress at a reference point is considered to be a functional of the strain field at every point in the 
body. In the limit when the effects of strains at points other than x are neglected, one obtains local 
or classical theory of elasticity. For homogeneous and isotropic elastic solids, the constitutive 
equation of non-local elasticity can be given by Eringen (1972a). Non-local stress tensor (t) at 
point (x’) is defined by 
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where Cijkl is the classical, macroscopic stress tensor at point x’, σij and εij are stress and strain 
tensors respectively. K (|x ‒ x′|, τ) is the kernel function and (τ = e0a/l) is a material constant that 
depends on internal and external characteristic length (such as the lattice spacing and wavelength), 
where e0 is a constant appropriate to each material, a is an internal characteristic length, e.g., 
length of (C–C) bond, lattice parameter, granular distance, and (l) is an external characteristic 
length. 

Non-local constitutive relations for present nano-beams can be approximated to a one-
dimensional form as 
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where E is the Young’s modulus and the scale coefficient (e0a) in the modelling will lead to small-
scale effect on the response of structures at nano-size. Assume that the displacement of the beam 
along the z axis is w(x, t) in terms of spatial coordinate x and time variable t (Fig. 1). 

For transverse vibration of nanotube, the equilibrium conditions of the Euler-Bernoulli beam 
can be written as 
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where V and M are resultant shear force and bending moment of the beam,  is the mass density, A 
is the area of the cross-section of the beam, w is the transverse displacement of the micro-tubules, 
f(x, t) is the distributed transverse force along the x-axis, P(x) is the inter action pressure per unit 
axial length between the nanotube and the surrounding elastic medium, and t is the time variable. 
N is the axial force arising from the thermal effect and it is defined as 

 

EAN   (4)
 
In addition the pressure per unit axial length, acting on the outermost tube due to the 
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Fig. 1 The illustration of carbon nanotube 
 
 

surrounding elastic medium, can be described by a Winkler type model. 
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Where the negative sign indicates that the pressure P(x) is opposite to the deflection of the 

outermost tube and Kwin is spring constant of the surrounding elastic medium. 
The elasto-dynamics differential equation that governs the thermo-mechanical vibration of the 

nanotube SWCNT based on the nonlocal Euler-Bernoulli beam theory is 
 












































f
x

aefwk
x

w
N

t

w
A

x
ae

x

w
EI win 2

2
2

02

2

2

2

2

2
2

04

4

1   (6)

 
Since fiending an analytical solution is possible for simply supported boundary conditions for 

the present problem, the (SWNT) beam is assumed simply supported. For the forced flexural 
vibrations, the applied dynamic load f = f(x,t) is assumed as a result, the boundary conditions have 
the following form 
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Here  is the operational frequency of the load. Writing in Eq. (6), setting e0a = 0, N = 0 and 
Kwin = 0 give equation of motion for forced vibration of CNTs in the local form 
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The simply supported boundary conditions can be written as 
 

LxMw  ,0at                0   (8b)
 
Following displacement field satisfies equation of motion (equation 6) and boundary conditions 

(Eq. (8)). Inserting Eq. (7) into Eq. (6) and solving Wm gives the amplitude of CNT in the 
following form 
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where β = mπ, without omitting all parameters e0a, N and k in Eq. (6) and doing similar operations 
mentioned above, the following amplitude can be found for the nonlocal case 
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The non-dimensional parameters for the Euler-beam on the Winkler foundation are defined as 
 

,
2

2
0

2

L

ae
    ,

42
4

EI

LA    ,
4

EI

Lk
   ,

. 2

EI

LN
N    

L

ae0
  (11)

 
The Young’s modulus, thermal expansion coefficients of CNTs and the spring constant of 

polymer matrix, under temperature changes environments, which may be a function of temperature 
change as follows 
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where E0 and α0 express elastic modulus and thermal expansion coefficients of CNTs under a room 
temperature environment, respectively. k0 is spring constant of polymer matrix under a room 
temperature environment. 

 
 

3. Results and discussion 
 
In the present study the impact of all parameters such as nonlocal small-scale effects, high 

temperature change, Winkler modulus parameter, vibration mode for four types of boundary 
conditions e.g. simply supported, clamped- simply, clamped ends and Cantilever beam on first, 

 
 

Table 1 First three non-dimensional frequency  of nonlocal Euler-Bernoulli for simply supported beam, 
with (k = 0, θ = 0, F0 = 0, L/d = 10) 

r 
Mode 1 Mode 2 Mode 3 

Wang 2007 Present Wang 2007 Present Wang 2007 Present 

0 3.1416 3.141593 6.2832 6.283185 9.4248 9.424777 

0,1 3.0685 3.068531 5.7817 5.781668 8.0400 8.039987 

0,3 2.6800 2.679996 4.3013 4.301343 5.4422 5.442246 

0,5 2.3022 2.302231 3.4604 3.460401 4.2941 4.294061 

0,7 2.0212 2.021245 2.9585 2.958479 3.6485 3.648549 
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second and third frequencies of the SWCNTs have been studied. 
The material properties used in the present study are the mass density ρ = 2300 kg/m3, the 

Poisson ratio υ = 0.19, the Young’s modulus E = 5.5 MPa and the thermal expansion coefficients at 
high temperature α0 = 1.1×10-6 K-1 (Yao and Han 2006). Another, Young’s modulus, thermal 
expansion coefficients of CNTs and the spring constant of polymer matrix, under temperature 
changes environments, which may be a function of temperature change as present in Eq. (12). In 
the beginning of this study, the validation our model local Euler-Bernoulli for simply supported 
beam boundary condition is presented in Table 5, with case α = 0, µ = 0, θ = 0, k = 0, F0 = 0 and 
L/d = 10. The temperature effect and Winkler modulus parameter have been considered here. The 
details of first three non-dimensional frequency  for four kinds of boundary conditions with and 
without elastic medium using nonlocal Euler-Bernoulli beam model are listed in table 2. The ratio 
of the length to the diameter, (L/d), is 10 and the scale coefficients (ε = 0, 0.5, 1). 

The results show the dependence of the frequency on the mode number and the elastic medium. 
It is noted that the frequency increases when elastic medium is neglected. This increasing is 
attributed to the stiffness of the elastic medium. With higher values of mode number the rate of 
increase of frequency reduces, and becomes more significant with the higher of small-scale 
parameter. This is interpreted as the small-scale effect makes the CNTs more flexible as CNT 
being assumed as atoms linked by springs, the external elastic medium “grips” the SWCNTs and 
forces it to be stiffer. In addition, it is clearly that the frequency increases when the vibrational 
mode number increases. 

The results in Table 3 show the dependence of the frequency of first three non-dimensional 
frequency  with temperature change using nonlocal Euler-Bernoulli beam model. The ratio of the 
length to the diameter, (L/d), is 10 and the scale coefficients, (ε = 0, 0.5, 1). We consider the 
temperature change values as θ = 20, 40 and 60. 

It is noted that the first three non-dimensional frequency  decreases as the temperature change 
θ increases, and becomes more significant with the small-scale parameter. This dependence of the 
frequency on the temperature change appraises in simply supported beam. 

 
 

Table 2 The effect of Winkler modulus parameter on first three non-dimensional frequency  of nonlocal 
Euler-Bernoulli for simply supported beam and (L/d = 10, θ = 0, F0 = 0) 

ε 
Without elastic medium With elastic medium 

Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3 

0 3.141593 6.283185 9.424778 3.102895 6.278431 9.423370 

0.5 2.302231 3.460401 4.294057 2.198958 3.431617 4.279104 

1 1.730201 2.491001 3.061400 1.435812 2.411026 3.019494 
 
 

Table 3 The effect of temperature change on First three non-dimensional frequency  of nonlocal Euler-
Bernoulli for simply supported beam with (k = 0.1, F0 = 0 and L/d = 10) 

ε 
θ = 20 θ = 40 θ = 60 

Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3

0 3.140149 6.282464 9.424297 3.138592 6.281686 9.423779 3.136921 6.280853 9.423224

0.5 2.298556 3.456074 4.288967 2.294578 3.451396 4.283459 2.290293 3.446363 4.277537

1 1.721497 2.479342 3.047268 1.711975 2.466599 3.031828 1.701592 2.452723 3.015015
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Table 4 The effect of dynamic load on First three non-dimensional frequency  of nonlocal Euler-Bernoulli 
for simply supported beam With (k = 0.1 end L/d = 10) 

ε 
F0 = 10-3 F0 = 10-2 F0 = 10-1 

Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3

0 3.181725 6.289413 9.427180 3.178361 6.288978 9.427050 3.144121 6.284625 9.425759

0.5 2.268336 3.446134 4.2910530 2.272248 3.448288 4.292303 2.310303 3.469618 4.304749

1 1.5311616 2.4412869 3.0504308 1.555180 2.448323 3.054150 1.75006 2.515568 3.090617
 
 
In Table 4 show the dependence of the frequency of first three non-dimensional frequency  

with dynamic load change using nonlocal Euler-Bernoulli beam model. The ratio of the length to 
the diameter, L/d = 10, and the scale coefficients, (ε = 0, 0.5, 1). We consider the temperature 
change values as F0 = 10-3 nN, F0 = 10-2 nN, F0 = 10-1 nN. It is noted that the first three non-
dimensional frequency  decreases as the dynamic load change F0 increases, and becomes more 
significant with the small-scale parameter. This dependence of the frequency on the temperature 
change appraises in simply supported beam. 

The results are including and excluding, in order to study the effect of the small-scale parameter, 
the elastic medium and the change of temperature on the vibrations of single-walled nanotubes. 

The Fig. 2 shows the dependence of the frequency ratios on the small scale and vibrational 
mode number of (SWCNTs) embedded in an elastic medium using thermal effects. The frequency 
ratio serves as an index to assess quantitatively the scale effect on CNT vibration solution. It is 
observed from Fig. 2 that the frequency ratios are less than unity. This means that the application 
of the local Euler-Bernoulli beam model for CNT analysis would lead to an over prediction of the 
frequency if the scale effect between the individual carbon atoms in CNTs is neglected. However 
for larger values of α, this dependence becomes very largest. However the small scale effect makes 
the beam more flexible. In addition, it is clearly that as the vibrational mode number increases, this 
dependence becomes very largest. This significance in higher modes is attributed to the influence 
of small wavelength for higher modes. For smaller wavelengths, interactions between atoms are 
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Fig. 3 The effect of elastic medium on first non-dimensional frequency of a short-SWCNT for 
simply supported beam with different parameter α and (θ = 40, L/d = 10) 

 
 

increasing and this leads to an increasing in the small scale effect. The effect of elastic medium on 
first and third non-dimensional frequency of a short-SWCNT for simply supported beam with 
different parameter α is shown in Fig. 3 with the aspect ratio is L/d = 10 and θ = 40. It can be seen 
that the difference between the frequency ratios with and without elastic medium is very weak 
forsmall values of α and for the higher values this difference become clear. In addition, the range 
of the frequency ratios without elastic medium is the smallest for frequency ratios with elastic 
medium because the elastic medium grips the CNT and forces it to be stiffer. 

The Fig. 4 illustrates dependence of the first and third non-dimensional frequency ratios on the 
temperature change with the aspect ratio L/d = 10 and with elastic medium. It is clearly seen from 
Fig. 4 that the frequency ratios are less than unity and the difference between the frequency ratios 
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Fig. 5 The effect of dynamic load on non-dimensional frequency of a short-SWCNT for clamped 
ends with different parameter α and (m = 1, k = 0.1, L/d = 10) 

 
 

with and without temperature change is clear for higher values of α and in first mode. 
The Fig. 5 illustrates influence of dynamic load of the first and third non-dimensional 

frequency ratios with the aspect ratio is L/d = 10 and with elastic medium. It is clearly seen from 
Fig. 5 that the frequency ratios are less than unity and the difference between the frequency ratios 
at temperature 40 is clear augment if dynamic load augment for higher values of ε and in first 
mode. 

 
 

4. Conclusions 
 
Based on local and non-local Euler–Bernoulli beam theory, free and forced vibration of CNT 

embedded in an elastic medium including thermal and dynamic load effects is studied. Non-
dimensional frequency ratios for the local and non-local Euler beam models are given for 
SWCNTs and DWCNTs. It is found that the non-local models give higher amplitudes when 
compared with the local Euler–Bernoulli beam models. This study can be extended to other 
boundary conditions and Timoshenko beam theory. The presented investigation may be helpful in 
the application of (CNTs), such as nano-electronics, nano-devices, mechanical sensors and nano-
composites. 
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