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Abstract.  Thermal bifurcation buckling behavior of fully clamped Euler-Bernoulli nanobeam built of a through 

thickness functionally graded material is explored for the first time in the present paper. The variation of material 

properties of the FG nanobeam are graded along the thickness by a power-law form. Temperature dependency of the 

material constituents is also taken into consideration. Eringen’s nonlocal elasticity model is employed to define the 

small-scale effects and long-range connections between the particles. The stability equations of the thermally induced 

FG nanobeam are derived via the principal of the minimum total potential energy and solved analytically for 

clamped boundary conditions, which lead for more accurate results. Moreover, the obtained buckling loads of FG 

nanobeam are validated with those existing works. Parametric studies are performed to examine the influences of 

various parameters such as power-law exponent, small scale effects and beam thickness on the critical thermal 

buckling load of the temperature-dependent FG nanobeams. 
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1. Introduction 
 

It is well known that the traditional composite materials represent some deficits in drastic 

thermal environments, which can affect the safety of such structures. To deal with such cases, 

Japanese scientists in the mid-1980s designed an advanced sort of composite materials (Koizumi 

1997), which are named functionally graded materials (FGMs) by changing the fraction of two or 

more constituents from one surface to another (thickness or axial direction), consequently getting a 

continuous change of material properties. The advantages of this feature lead to build a new FG 

structures which can withstand in high mechanical loadings under high temperature environments 

(Zenkour and Sobhy 2011, Attia et al. 2015). More recently, beams and plates made of FGMs have 

been implemented in the design phases like structural elements in the modern industries, such as 

thermal barrier in aeronautics/aerospace manufacturing production, mechanical and civil 

engineering, nuclear reactors and medicine. Displaying such novel properties, functionally graded 

ceramic/metals have received a great attention of the research community in latest years, which 

were principally based on the study their stability, static and vibration characteristics of theses 

functionally graded or sandwich (FG) structures (Li 2008, Aydogdu 2009, Zenkour and Sobhy 
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2010, Bouramena et al. 2013, Tornabene et al. 2014, Bourada et al. 2015, Larbi et al. 2013, 

Bensaid et al. 2017). 

Due to the fast progression of technology, FG miniaturized structures are implemented in 

various micro/nano-electromechanical systems (MEMS/NEMS) (Zhou and Li 2001, Fleck and 

Hutchinson 1997, Kuzumaki et al. 1998, Schadler et al. 1998, Yang et al. 2002), such as the 

components of nanosensors and nanoactuators, thin films and shape memory alloy. The classical 

continuum theory is limited for mechanical investigation of the macroscopic structures because the 

classical continuum theory does not consider nanoscale impact by the length scale parameter. 

Nevertheless, researchers in an effort have established numerous theories to describe attitude of 

nanoscale structures. The most well-known among them is the nonlocal elasticity theory proposed 

by Eringen (1978, 1982), this theory suppose that the stress state at any point depends on strains at 

all points in the body. Based on this model, a number of studies have been carried out to explore 

the size-dependent behavior of nanosize structures recently based on Eringen’s nonlocal elasticity 

theory (Peddieson et al. 2003, Reddy 2007, Murmu and Pradhan 2009a, b, Thai 2012a, b, 

Berrabah 2013, Benguediab 2014, Tounsi et al. 2013a, b, Chakraverty and Behera 2014, Kheroubi 

et al. 2017, Bensaid 2017). For analysis of graphene sheets and nanoplate, Sobhy and his 

coworkers provided several works taking into account several physical effects such as thermal and 

hygro-thermal effects (Zenkour and Sobhy 2013, Alzahrani and Sobhy et al. 2013, Sobhy 2014a, 

b, Sobhy 2015, 2016, 2018, Sobhy and Zenkour 2018). 

Furthermore, Eltaher et al. (2013) developed a finite element model to investigate the static 

buckling and vibrational behavior of FG nano beams via the nonlocal classical beam model. 

Simsek (2012) also examined the static bending and stability of nano-scaled FG beam by using an 

analytical model. Rahmani and Pedram (2014) explored the size dependency effects on dynamic 

characteristic of FG nanobeams according to the nonlocal TBT. Ebrahimi and Salari (2015) 

applied for the first time the differential transformation method to examine the applicability of on 

vibrational characteristics of FG size-dependent nanobeams. Based on a nonlocal third-order shear 

deformation theory, Rahmani and Jandaghian (2015) researched the buckling behavior of 

functionally graded nanobeams. Ebrahimi and Barati (2015) provided a nonlocal higher-order 

beam model for dynamic analysis of nano-sized FG beams. Chaht et al. (2015) explored size-

dependent bending and buckling examination of higher-order FG nanobeams based on a new 

simple shear and normal deformations theory. Zemri et al. (2015) researched the mechanical 

response of functionally graded nanosize beam by analyzing the bending, vibration and buckling 

of FG nanoscale beams applying higher order refined beam model. Ahouel et al. (2015) inspected 

the size effect behavior of FG higher order shear deformable nanobeams considering neutral axis 

location. Nguyen et al. (2014) developed closed analytical solutions for static bending of 

transversely or axially nonlocal FG beams. In another work, Ebrahimi and Barati (2017) examined 

the buckling behavior of nonlocal strain gradient axially functionally graded nanobeams lying on 

variable elastic medium, in which two parameters were introduced taking into account of both 

nonlocal stress field and strain gradient effects to capture size effect more accurately. A novel quasi 

3-D nonlocal hyperbolic plate theory for free vibration and buckling of FGM nanoplates was 

developed by Sobhy and Radwan (2017). Recently, Bensaid (2017) investigated for the first time 

the static bending and buckling of nonhomogenous nanobeams having porosities and geometrical 

neutral surface position.  

However, as can be seen from the studies cited previously, most of them have been elaborated 

based on the negligence of the thermal environment impacts. Only few works have dealt with the 

thermal effect of temperature changes. Ebrahimi and Salari (2015) carried out an analytical 
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Fig. 1 Schematic arrangement of thermally induced a functionally graded nanobeam 

 

 

solution to explore the thermal effects on buckling and free vibration characteristics of FG size-

dependent Timoshenko nanobeams exposed to an in-plane thermal loading. The impact of various 

types of thermal loadings on buckling and vibrational characteristics of nonlocal temperature-

dependent functionally graded nanobeams has been investigated by Ebrahimi and Salari (2016). 

Mouffoki et al. (2017) developed a novel two-unknown trigonometric shear deformation beam 

mode to analyze dynamic behavior of nonlocal advanced nanobeams in hygro-thermal 

environment. Mashat et al. (2016) carried out an investigation on the vibration and thermal 

buckling of nanobeams embedded in an elastic medium considering various boundary conditions. 

More recently, Dehrouyeh-Semnani (2017) presented a comparison study between the use of 

simplified and original boundary conditions of functionally graded beams subjected to an in plane 

thermal loading. He discussed the advantage and the disadvantage of the two approaches on the 

thermo mechanical vibrations characteristics of FG beams. 

As one can observe above, few papers are reported on thermal buckling analysis of FG 

nanobeams that take into consideration the thermal environment effects. Moreover, most of earlier 

works on thermal stability of FG nanobeams have been examined only simply supported boundary 

conditions and neglected the clamped boundaries and geometries neutral surface positions, which 

can lead to inaccurate results as pointed by Kiani and Eslami 2013, Shen and Wang 2014. So, it is 

important to understand the thermal buckling behavior of FG nanobeams in considering the effects 

of temperature changes and clamped boundary conditions. 

According to this deficiency, in this work, thermal buckling bifurcation of temperature-

dependent FG nanosize beam having neutral surface position and considering the effect of thermal 

loading is investigated. In this study, incorporation of small scale parameter is achieved via 

nonlocal elasticity theory of Eringen. The material properties of the FG nanobeam are supposed 

changing continuously across the beam thickness via a power-law model and are temperature 

dependency. The governing equations of motion have derived via the minimum total potential 

energy based on classical beam theory. These are solved analytically by Galerkin procedure for 

clamped boundary conditions. Comparison survey is also carried out to check the present model 

with those of preceding works. Finally, a parametric study is presented to show the impacts of 

thickness of the nanobeam, power law index, nonlocal parameter and temperature change on the 

critical buckling temperature of FG nanobeam. 
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Table 1 Temperature dependency coefficients material properties for Si3N4 and SUS 304 FG Nanobeams 

Material Properties P0 P-1 P1 P2 P3 

Si3N4 E (Pa) 348.43e+9 0 -3.070e-4 2.160e-7 -8.946e-11 

 α (K-1) 5.8723e-6 0 9.095e-4 0 0 

 (Kg/m3) 2370 0 0 0 0 

  (W/mk) 13.723 0 -1.032e-3 5.466e-7 -7.876e-11 

  0.24 0 0 0 0 

SUS304 E (Pa) 201.04e+9 0 3.079e-4 -6.534e-7 0 

 α (K-1) 12.330e-6 0 8.086e-4 0 0 

 (Kg/m3) 8166 0 0 0 0 

  (W/mk) 15.379 0 -1.264e-3 2.092e-6 -7.223e-10 

  0.3262 0 -2.002e-4 3.797e-7 0 

 
 
2. Theory and formulation 
 

2.1 The material properties of FG nanobeams 
 
Let assume a ceramic-metal nanobeam having length L, width b and uniform thickness h in the 

reference configuration. The FG nanobeam is subjected to uniform distributed thermal loadings 

which can be seen in Fig. 1. Material properties are supposed to be graded continuously through in 

the thickness direction (z-axis direction) of nanobeam by a power law form of the volume fraction 

of the constituents as (Natarajan et al. 2012, Larbi et al. 2013, Wattanasakulpong and 

Chaikittiratana 2015, Zemri et al. 2015, Ahouel et al. 2015, Chaht et al. 2015, Bourada et al. 2015, 

Ebrahimi and Salari 2016, Bensaid and Kerboua 2017, Zidi et al. 2017). Thus, the material 

inhomogeneous properties of FG nanobeam P, such as Young’s modulus (E), Poisson’s ratio (v), 

the shear modulus (G) and the mass density (ρ), can be described by 

( ) ( )
1

2

p

t b b

z
P z P P P

h

 
= − + + 

 
 (1a) 

Here Pt and Pb are the corresponding material property at the top and bottom surfaces of the FG 

nanobeam. And p is the power law index which takes the value greater or equal to zero and 

determines the material distribution through the thickness of the beam. 

To explore the behavior of FGM materials in high temperature environment more exactly, it is 

required to consider the temperature dependency on material properties. The nonlinear equation of 

thermo-elastic material properties in relation of temperature T(K) can be expressed as (Touloukian 

1967) 

( )1 2 3

0 1 1 2 31P P P T PT PT PT−

−= + + + +  (1b) 

in which P0, P-1, P1, P2 and P3 are the temperature-dependent coefficients, in which their values 

can be taken from the table of materials properties (Table 1) for Si3N4 and SUS 304. The base 

surface (z = –h/2) of FG nanobeam is full metal (SUS 304), while the top surface (z = h/2) is pure 

ceramics (Si3N4). 
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2.2 Kinematics and strains 
 

Based on the classical beam theory, the displacement field at any point of the beam taking into 

accounts the exact position of the neutral surface written as (Zhang and Zhou 2008, Zhang 2013, 

Barati and Zenkour 2018, She et al. 2017) 

( ) ( ) ( )1 ,
w

u x z u x z z
x

 
= − −


 (2a) 

( ) ( )3 ,u x z w x=  (2b) 

And 

( )

( )

/2

/2

/2

/2

h

h

h

h

E z zdz

z

E z dz

 −

−

=




 (3) 

In which u is the displacement of the mid-surface and w is the bending displacement. The 

associated nonzero strains of the current beam model are expressed as 

2
0 0 0 0

2

( ) ( )
, ,xx xx x xx x

u x w x
zk k

x x
  

 
= − = =

 
 (4) 

In order to obtain the governing equations of motion, the principal of the minimum total 

potential energy in static stability form can be use as follow (Simsek 2012, Chaht et al. 2015) 

( )int 0extU W  = − =  (5) 

in which Π is the total potential energy. δUint is the virtual variation of the strain energy; and δWext 

is the variation of work induced by external forces. The first variation of the strain energy is given 

as 

2

int

0

2

( )

h

L

x x

h

U dzdx  

−

=    (6) 

2

0

2

0

L
d u d w

N M dx
dx dx

  
= + 

 
  (7) 

where N and M are the stress resultants defined as 

( )
2

2

, (1, )

h

x

h

N M z dx

−

=   (8) 
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The first-order variation of the work to temperature change can be obtained by 

0

L

T w w
W N dx

w x




 
=

   (9) 

where NT is thermal axial force can be written as 

( ) ( )( )0, ,TN E z T z T T T dz= −  (10) 

where T0 in Eq. (10) is the reference temperature. 

Substituting the expressions for δUint and δWext from Eqs. (7) and (9) into Eq. (5) and 

integrating by parts and collecting the coefficients of δu0 and δw0, the following governing 

equations of thermally induced FGM nanobeam are obtained 

0 0
dN

u
dx

 = =  (11a) 

2 2

2 2
: 0TM w

M N
x x


 

− =
 

 (11b) 

 
2.3 The nonlocal elasticity model 
 
Contrary to the classical (local) theory, in the nonlocal elasticity theory of Eringen (1972, 

1983), the stress at a reference point x is considered to be a functional of the strain field at every 

point in the body. For example, in the non-local elasticity, the uniaxial constitutive law is 

expressed as elasticity Eringen (1972, 1983). 

( )
2

2

xx
xx xx

d
E z

dx


  − =  (12) 

μ = (e0a)2 is a nonlocal parameter revealing the nanoscale effect on the response of nanobeams, 

e0 is a constant appropriate to each material and a is an internal characteristic length. In general, a 

conservative estimate of the nonlocal parameter is e0a < 2.0 nm for a single wall carbon nanotube 

(Wang 2005, Heireche et al. 2008a, b, Tounsi et al. 2013b, c) 

Using Eqs. (12), (8) and (4), the force-strain and the moment-strain relations of the nonlocal FG 

Euler-Bernouli beam hypothesis can be obtained as 

22

0 0

2 2xx xx

u wN
N A B

x x x


 
− = −

  
 (13) 

22

0 0

2 2xx xx

u wM
M B D

x x x


 
− = −

  
 (14) 

In which the constants (Axx, Bxx, Dxx) are defined as 

( ) ( )( )2, , , 1, ,xx xx xx

L

A B D E z T z z dA=   
(15) 
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By substituting Eqs. (13), (14), (15) into Eqs. (11a), (11b), the nonlocal equations of motion 

can be expressed in terms of displacements (u0, w0) as follows 

2 3

0 0

2 3
0xx xx

u w
A B

x x

 
− =

 
 (16) 

3 4 2 4

0 0 0 0

3 4 2 4
0T

xx xx

u w w w
B D N

x x x x


    
+ − − = 

    
 (17) 

 

2.4 Uniform temperature rise (UTR) 
 
In this study we assume that the FG nanobeam has an initial temperature (T0 = 300K), which is 

a stress-free state, uniformly changed to final temperature with ΔT. The temperature rise is stated 

by 

0T T T = −  (18) 

 

 

3. Solution procedure 
 

In this part, the governing equations of graded nanobeam with simply-supported (S) and 

clamped (C) boundaries are resolved, which are presented as follows 

– Simply-supported (S) 

0 0,xx xxw N M at x L= = = =  (19) 

– Clamped (C) 

0 0,
w

u w at x L
x


= = = =


 (20) 

To assure previous-mentioned boundary conditions, the new displacement functions are 

introduced (Ebrahimi and Barati 2017b) as follows 

1

ni tm
m

n

X
u U e

x




=


=


  (21) 

1

ni t

m m

m

w W X e




=

=  (22) 

in which (Um, Wm) are the unknown coefficients. Placing equations (22) and (21) into equations 

(16) and (17), respectively, leads to 

11 12

21 22

0
m

m

Uk k

Wk k

    
=   

     
 (23) 
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where 

( )

11 12 12 13

21 12

22 13 11 13

, ,

,

( )

xx xx

xx

T

xx xx

k A k B

k B

k B D N

 



  

= =

= −

= − + + − +

  

In which 

( )

( )

( )

11

0

12

0

13

0

L

m m

L

m m

L

m m

X X dx

X X dx

X X dx







=

 =

=







 (24) 

The above system of equations is resolved by calculating determinant of the coefficients of 

exceeding matrix and making it equal to zero, with the help of the Eq. (10), we can get the thermal 

buckling loads. The shape functions cited previously for different boundary conditions are 

specified by 

( ) sin( )m

m

S S X x x

m

L






− =

=
 (25) 

( ) ( ) ( ) ( ) ( )( )

( ) ( )

( ) ( )

( )
1 2 3 4 5

sin sinh cos cosh

sin sinh

cos cosh

0.5
4.730, 7.853, 10.996, 14.137,

m m m m m m

m m

m

m m

m

C C X x x x x x

x x

x x

m

L

    

 


 


     

− = − − −

−
=

−

+
= = = = =

 (26) 

 

 

 

4. Results and discussion 
 

In this part, the size-dependent critical thermal bifurcation responses of FG nanobeams will be 

tabulated and illustrated based nonlocal Euler-Bernoulli beam model. The functionally graded 

nanosize beam is made of Steel (SUS 304) and Silicon nitride (Si3N4), in which properties are 

provided in Table 1. In the first step of this analysis, different types of boundary conditions are 

considered (S-S and C-C). It is supposed that the FG beam has the following dimensions: L 

(length) = 10 nm, b (width) = 1 nm and h (thickness) changeable. It is presumed that the 

temperature increases in metal surface to reference temperature T0 of the FG nanobeam is Tm - T0 = 

5 K (Kiani and Eslami 2013b). 
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Table 2 Nondimensional buckling loads of FG nanobeam for various gradient indices and nonlocal 

parameters (L/h = 20)  

 p=0  p=0.2  p=1  p=5  

μ (nm)2 REF(a) Present REF(a) Present REF(a) Present REF(a) Present 

1 8.98302 8.9830 10.4585 10.4585 12.4479 12.4478 14.3191 14.3191 

2 8.24258 8.2425 9.59648 9.5964 11.4219 11.4218 13.1389 13.1388 

3 7.61492 7.6149 8.86572 8.8657 10.5521 10.5521 12.1384 12.1383 

4 7.07608 7.0760 8.23837 8.2383 9.80543 9.8054 11.2794 11.2794 

5 6.60846 6.6084 7.69394 7.6939 9.15744 9.1574 10.534 10.5340 

(a) Ebrahimi and Barati (2017a) 

 

Table 3 Thermal buckling loads of FG nanobeam for various gradient indices, nanobeam thickness and 

nonlocal parameters (L = 10nm) 

 Power law index 

μ (nm)2 h (nm) 0 0.2 1 2 5 

0 0.15 472.4957 408.2533 331.7339 310.3996 292.5423 

 0.25 1312.4883 1134.0371 921.4832 862.221 812.6177 

 0.35 2572.4770 2222.7127 1806.1071 1689.9534 1592.7301 

1 0.15 336.5917 290.8273 236.3172 221.1193 208.3943 

 0.25 934.9771 807.8538 656.4362 614.2203 578.8843 

 0.35 1832.5551 1583.3935 1286.6162 1203.8719 1134.6133 

2 0.15 261.4040 225.8625 183.5288 171.7258 161.8464 

 0.25 726.1224 627.3958 509.8023 477.0161 449.5734 

 0.35 1423.1999 1229.6959 999.2125 934.9516 881.1640 

3 0.15 213.6737 184.6218 150.0179 140.3700 132.2945 

 0.25 593.5381 512.8383 416.7164 389.9167 367.4848 

 0.35 1163.3348 1005.1631 816.7164 764.2368 720.2703 

4 0.15 180.6825 156.1162 126.8551 118.6969 111.8682 

 0.25 501.8959 433.6561 352.3754 329.7136 310.7452 

 0.35 983.7160 849.9660 690.6558 646.2387 609.0607 

 

 

To check the correctness of the developed model, the obtained thermal buckling results are 

compared with those predicted by Ebrahimi and Barati 2017a based on classical beam theory and 

analytical solution. Table 2 presents the comparison results for a simply supported FG nanobeam 

taking a different nonlocal parameters and power law indices and a good correlation is noticed 

between two results. 

Next, after the validation step of the present model, the effects of different parameters, such as, 

nonlocal parameter, nanobeam thickness, magnitude of thermal loading and power law index on 

the thermal buckling of FG nanobeam will be explored. 

Table 3 presents the effect of the thickness of FG nanobeam (h), power law index (p) and 

nonlocal parameter (μ) on the pick value of critical buckling temperature of the C-C graded 

nanobeam based on analytical solution method. According to these tabulated values, increasing in 
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nonlocal scale parameter yields the decrease in the critical buckling temperature. Additionally, it is 

seen that the ΔTcr reduce by rising power law index (p) due to the augmentation in percentage of 

metal phase. On the other hand, increasing beam thickness (h) will lead to a considerable increase 

of ΔTcr. 

Fig. 2 displays the variations of the critical buckling temperature ΔTcr of clamped FG nanosize 

beam under uniform temperature change for numerous values of nonlocal parameters and power 

law indexes. One can see from this figure that thermal buckling loads increase with increasing the 

nanobeam thickness. Also, it is concluded that the thermal buckling temperature reduces by rising 

nonlocality parameters due to softening effect. 

Critical buckling temperature load of FG nanobeam as function of thickness (h) for various 

power-law indices and fixed values of nonlocal parameter (μ= 0, 2, 4) is illustrated in Fig. 3. As 

the previous discussion, it can be observed that an increment in the thickness (h) causes an 

increase in the thermal buckling load. It is also noticed that ΔTcr becomes less important at bigger 

values of gradient index. Moreover, as the variation parameter increases, the thermal buckling 

loads of the FG nanobeam tend to be diminished. 

Variation of thermal bifurcation load of clamped-clamped FG nanobeam with respect to change 

of the power law index parameter (p) for various values of nanosize parameters and beam 

thickness is displayed in Figs. 4 and 5, respectively. One can see from these figures that an 

increase in the beam thickness generates a rising in critical buckling temperature of FG nanobeam. 

Moreover in Figs. 4 and 5, it is shown that the thermal buckling diminishes with remarkable rate 

where the power indices between values of 0 to 2 than that where the power law exponent is 

comprised between 2 and 10. Also, increasing the nonlocal parameter generates a considerable 

decrease in the critical buckling temperature at fixed material distribution. 

 

 

 
Fig. 2 Variation of thermal buckling load of the C-C FGP nanobeam versus nanobeam thickness under 

uniform temperature rise for different values of nonlocal parameters and power index 
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Fig. 3 Variation of thermal bifurcation load of the C-C FGP nanobeam versus nanobeam thickness under 

uniform temperature rise for numerous values of power index and nonlocal parameters. 
 

 
Fig. 4 Variation of thermal bifurcation load of C-C FGP nanobeam as function of power law index and 

nanobeam thickness for numerous values of nonlocal parameters 
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Fig. 5 Variation of thermal bifurcation load of C-C FGP nanobeam as function of power law index and 

nonlocal parameters for different values of nanobeam thickness 

 

 

5. Conclusions 
 

In this work, we have analyzed thermal buckling bifurcation characteristic of temperature 

dependent FG nanobeams subjected to uniform temperature rise through the thickness direction by 

using Euler-Bernoulli beam theory and the concept of neutral surface position. Eringen’s nonlocal 

elasticity model is deployed to account for small scale effects. Material properties are supposed to 

be temperature dependent and graded in the thickness direction via a power-law model. The 

governing equations of motion are derived by using principle of minimum total potential energy 

which are resolved by applying an analytical approach for various boundary edges. Accuracy of 

the results is validated with available data existing in the literature and a good agreement was 

shown. With the consideration of clamped boundary condition, thermal buckling bifurcation type 

can occur, due to eliminating the extra thermal bending moment at the edges and lead to more 

accurate results, which has not been considered in previous studies. It is deduced through the 

parametric that various parameters such as small-scale parameter, material-distribution index, 

temperature increment change and nanobeam thickness have significant impact on the thermal 

buckling response of the FG nanobeams. Finally, the present model can be improved to consider 

influences of transverse shear deformation effect (Li et al. 2016, Bouremana et al. 2013, Bourada 

et al. 2015, Chaht et al. 2015, Zemri et al. 2015, Ahouel et al. 2015, Bensaid et al. 2017). 
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