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Abstract. Thermo-mechanical vibration characteristics of in homogeneousporous functionally graded (FG) 

micro/nanobeam subjected to various types of thermal loadings are investigated in the present paper based on 

modified couple stress theory with consideration of the exact position of neutral axis. The FG micro/nanobeam is 

modeled via a refined hyperbolic beam theory in which shear deformation effect is verified needless of shear 

correction factor. A modified power-law distribution which contains porosity volume fraction is used to describe the 

graded material properties of FG micro/nanobeam. Temperature field has uniform, linear and nonlinear distributions 

across the thickness. The governing equations and the related boundary conditions are derived by Extended 

Hamilton’s principle and they are solved applying an analytical solution which satisfies various boundary conditions. 

A comparison study is performed to verify the present formulation with the known data in the literature and a good 

agreement is observed. The parametric study covered in this paper includes several parameters such as thermal 

loadings, porosity volume fraction, power-law exponents, slenderness ratio, scale parameter and various boundary 

conditions on natural frequencies of porous FG micro/nanobeams in detail. 
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1. Introduction 
 

Functionally graded materials (FGMs) are known as the great materials in mechanical 

properties, thermal and corrosive resistance. Due to the advances in manufacturing technology and 

extended behavior of FGM, researchers eager to study different behaviors of this material. For the 

first time, a group of Japanese scientists in the mid-1980s, introduced FGMs as a novel generation 

of heterogeneous composites and as thermal barrier materials in severe temperature environments. 

FGMs were recovered by controlling the volume fractions, microstructure, porosity, etc. of the 

material constituents during manufacturing, resulting in spatial gradient of macroscopic material 

properties (Ebrahimi and Rastgoo 2008). 

Therefore, FGMs with a mixture of the ceramic and metal are applied to the thermal barrier 

structures for the space shuttle, combustion chamber and nuclear planets etc. (Ebrahimi et al. 2009, 
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Ebrahimi and Rastgoo 2009, 2011, Aghelinejad et al. 2011). In view of these advantages, a number 

of investigations, dealing with static, buckling, dynamic characteristics of functionally graded (FG) 

structures, had been published in the scientific literature. (Ebrahimi and Barati 2016a-e, Ebrahimi 

et al. 2016a, Ebrahimi and Dabbagh 2016, Ebrahimi and Hosseini 2016a, b). In the last decade, the 

trend of using beams and plates made of FGMs for engineering structures has significantly 

increased (Şimşek and Kocatürk (2009) – Thai and Vo (2012)). Therefore, understanding the 

behavior of structures made of porous FGMs subjected to a variety of mechanical and thermal 

loadings is very important for their accurate design. 

Due to creation of micro voids or porosities inside FGMs during fabrication, the mechanical 

behavior of structural components made of such materials is influenced by the value of porosity 

volume fraction. The porous materials are composed of two elements, one of which is solid and 

the other is either liquid or gas and can be found in nature, such as wood and stone. Following this, 

for analysis of porous FG structures, a vibration analysis of layered functionally graded beams is 

conducted by Wattanasakulpong et al. (2012). They validated the obtained results with 

experimental results and reported that discrepancies between theoretical and experimental results 

could arise from porosities due to imperfect infiltration and from approximation in material profile 

in calculation. Also, Wattanasakulpong and Ungbhakorn (2014) studied vibration behavior of 

porous FGM beams with elastically restrained ends. They used a modified form of rule of mixture 

to illustrate the material properties of FG beam with porosities. Ebrahimi and Mokhtari presented 

the transverse vibration analysis of rotating porous FGM beams by using differential transform 

method (DTM) (Ebrahimi and Mokhtari 2015). Ebrahimi and Zia (2015) utilized the Galerkin and 

multiple scale methods to solve the motion equations of porous FG beams for the large amplitude 

nonlinear vibration analysis. Ebrahimi et al. (2016b) examined thermal effects on vibrational 

behavior of temperature-dependent FG Euler-Bernoulli beams with porosities employing 

differential transform method. In another study, Ebrahimi and Jafari (2016) investigated thermo-

mechanical vibration characteristics of porous FG beams subjected to uniform, linear and 

nonlinear thermal loadings. They indicated that type of thermal loading as well as porosity volume 

fractions have a significant influence on vibration frequencies of porous FG beams. 

With the quick expansion of technology, it is now substandard to use FG beams and plates in 

micro/nano electromechanical systems (MEMS/NEMS), electrically actuated MEMS devices and 

atomic force microscopes (AFMs) (Lü et al. (2009) - Hasanyan et al. (2008) - Ebrahimi et al. 

(2016a)-(2017)). It is obvious that classical continuum mechanics does not account for such size 

effects in micro, nanoscale structures. To eliminate this problem, the modified couple stress and 

the strain gradient elasticity theories have been widely handled to analysis the static and dynamic 

behavior of Microscale structures. Due to the experimentally determining of micro-structural 

material length scale parameters is difficult, Yang et al. (2002) have suggested the modified couple 

stress theory (MCST) in which the strain energy has been demonstrated to be a quadratic function 

of the strain tensor and the symmetric part of curvature tensor, and a length scale parameter is 

included (Yang et al. 2002). In this field, Asghari et al. (2010) investigated the size-dependent 

static and vibrational behavior of FG microbeams based on modified couple stress theory (Asghari 

et al. 2011). Nonlinear vibration of FG microbeams according to modified couple stress theory and 

von- Kármán geometric nonlinearity is studied by Ke et al. (2012). Şimşek et al. (2013) explored 

the static behavior FG microbeams based on Timoshenko beam model. Akgöz and Civalek (2013) 

researched vibration behavior of axially FG tapered microbeams based on the modified couple 

stress theory. Şimşek and Reddy (2013) proposed a higher order beam model for bending and 

vibration of FG microbeams using the modified couple stress theory. Also, Akgöz and Civalek 
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(2014) explored thermal buckling of FG microbeams embedded in elastic foundation. Al-Basyouni 

et al. (2015) presented a refined beam model for size-dependent bending and vibration analysis of 

FG microbeams based on neutral surface position. They stated that contrary to the other high order 

beam theories, their proposed transverse displacement is assumes both of bending and shear 

components and there is no need for any shear correction factor. So, the sinusoidal beam theory 

(SBT) together with the classical beam theory (CBT) can be easily created. They compared the 

results of classical, first order and sinusoidal beam theories in their work. Ghadiri and Shafiei 

(2016) conducted vibration analysis of rotating FG microbeams under different temperature 

distributions. Dehrouyeh-Semnani et al. (2016) examined free flexural vibration of geometrically 

imperfect functionally graded microbeams using a weighted-residual method. Ansari et al. (2016) 

investigated nonlinear mechanical behavior of third-order FG microbeams using the variational 

differential quadrature method. In the above mentioned papers concerning with analysis of FG 

microbeams, porosity effect was not considered. However, to the authors’ best knowledge, no 

research dealing with influence of porosity distribution on the thermal vibration analysis of FGM 

microbeams with different boundary conditions. Actually, by exerting a high temperature 

environment to the FGM based structures, the material properties vary significantly. For instance, 

Young’s modulus usually reduces due to temperature rise. For more precise prediction of FGMs 

response exposed to extreme temperatures, material properties should be dependent on 

temperature. Hence, it is crucial to investigate free vibration behavior of porous FG microbeam 

with temperature-dependent material properties subjected to different temperature fields. 

In this paper, thermo-mechanical vibration behavior of FG microbeams with porosities is 

examined based on modified couple stress theory in conjunction with a higher-order refined theory. 

The model contains a hyperbolic shear strain function to capture the shear deformation effects. 

Also, the exact position of neutral axis is considered in this study to provide more accurate results. 

Three type of thermal loading called uniform, linear and nonlinear temperature rises are 

considered. The material properties of FG microbeam are estimated to vary in the thickness 

direction according to a modified power-law function. The governing differential equations of 

motion are derived by using Extended Hamilton’s principle and an analytical solution is employed 

to solve the equations for various boundary conditions. The results of present study are compared 

with those of porous FG macro beams and also size-dependent FG microbeams without porosity 

effect. The influences of the various thermal loadings, porosity volume fraction, gradient index, 

slenderness ratio, scale parameter and different boundary conditions on natural frequencies of 

porous FG microbeam are investigated. The advantage of the present article is that the effects of 

various factors on vibration characteristics of FG micro/nanoscale beams with porosities are 

investigated in detail. 
 

 

2. Theoretical formulation 
 

2.1 Power-law functionally graded beams with porosities 
 

In this paper a porous FG micro-scale beam with length of L and thickness h is supposed. Due 

to the reason that the material properties of FG beam are not symmetric with respect to the middle 

axis, the stretching and bending equations are coupled. Two different axis are considered for the 

measurement of z, namely 𝑧𝑚𝑠  and 𝑧𝑛𝑠  measured from the central axis and the neutral axis, 

respectively to determine the exact position of neutral axis of FG microbeam, as shown in Fig. 1. 

Based on the rule of mixture, the effective material properties, 𝑃𝑓 , can be expressed by 
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𝑃𝑓 = 𝑃𝑐𝑉𝑐 + 𝑃𝑚𝑉𝑚  (1) 
 

Where 𝑃𝑐 , 𝑃𝑚 , 𝑉𝑐  and 𝑉𝑚  are the material properties and the volume-fraction of the metal 

and ceramic phases, respectively which are related by 
 

𝑉𝑐 + 𝑉𝑚 = 1 (2) 
 

And the volume-fraction of ceramic phase 𝑉𝑐  is expressed as 
 

𝑉𝑐 =  
𝑧𝑚𝑠
𝑕

+
1

2
 
𝑝

=  
𝑧𝑛𝑠 + 𝐶

𝑕
+

1

2
 
𝑝

 (3) 

 

Where the physical neutral axis of FG beams can be defined as a function of Láme’s constants 

(λ and µ) as (Al-Basyouni 2015) 
 

𝐶 =

 [𝜆 𝑧𝑚𝑠  + 2𝜇(𝑧𝑚𝑠 )]𝑧𝑚𝑠𝑑𝑧𝑚𝑠

𝑕
2

−
𝑕
2

 [𝜆 𝑧𝑚𝑠  + 2𝜇(𝑧𝑚𝑠 )]
𝑕
2

−
𝑕
2

𝑑𝑧𝑚𝑠

 (4) 

 

It is clear that distance (C) becomes zero for homogeneous microbeams. It is assumed in this 

paper that the FG microbeam has porosities spreading within the cross-section due to defect during 

production. Finally, the effective material properties such as Young’s modulus (𝐸), Poisson’s ratio 

(𝜈), mass density (𝜌), thermal conductivity (K), and thermal expansion coefficient (𝛾) can be 

expressed based on the modified power-law model as follows (Ebrahimi and Jafari 2016) 
 

𝐸 𝑧𝑛𝑠  =  𝐸𝑐 − 𝐸𝑚   
𝑧𝑛𝑠 + 𝐶

𝑕
+

1

2
 
𝑝

+ 𝐸𝑚 + (𝐸𝑐 − 𝐸𝑚 )
𝛼

2
 (5) 

 

𝜌 𝑧𝑛𝑠  =  𝜌𝑐 − 𝜌𝑚   
𝑧𝑛𝑠 + 𝐶

𝑕
+

1

2
 
𝑝

+ 𝜌𝑚 + (𝜌𝑐 − 𝜌𝑚 )
𝛼

2
 (6) 

 

𝜈 𝑧𝑛𝑠  =  𝜈𝑐 − 𝜈𝑚   
𝑧𝑛𝑠 + 𝐶

𝑕
+

1

2
 
𝑝

+ 𝜈𝑚 + (𝜈𝑐 − 𝜈𝑚 )
𝛼

2
 (7) 

 

𝛾 𝑧𝑛𝑠 =  𝛾𝑐 − 𝛾𝑚   
𝑧𝑛𝑠 + 𝐶

𝑕
+

1

2
 
𝑝

+ 𝛾𝑚 + (𝛾𝑐 − 𝛾𝑚 )
𝛼

2
 (8) 

 

𝑘 𝑧𝑛𝑠 =  𝑘𝑐 − 𝑘𝑚   
𝑧𝑛𝑠 + 𝐶

𝑕
+

1

2
 
𝑝

+ 𝑘𝑚 + (𝑘𝑐 − 𝑘𝑚 )
𝛼

2
 (9) 

 

Where the subscripts of m, c denote the metal and ceramic constituents and 𝛼 is the volume 

fraction of porosity. Also, the temperature-dependency of material properties can be defined using 

the following expression 
 

𝑃 = 𝑃0(𝑃−1𝑇
−1 + 1 + 𝑃1𝑇 + 𝑃2𝑇

2 + 𝑃3𝑇
3) (10) 
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Where 𝑃0 , 𝑃1, 𝑃2 and 𝑃3 are material coefficients which can be seen in the Table 1 for 

SUS304 and Al2O3. The bottom surface of FGM beam is pure metal (SUS304), whereas the top 

surface is pure ceramic (Si3N4). 
 

2.2 The modified couple stress theory 
 

According to the modified couple stress model, the strain energy, U of an elastic material 

occupying region Ωis related to the strain and curvature tensors as 
 

𝑈 =
1

2
 (𝜍𝑖𝑗 𝜀𝑖𝑗 + 𝑚𝑖𝑗 𝜒𝑖𝑗 )𝑑𝑉
Ω

  (𝑖. 𝑗 = 1.2.3) (11) 

 

Where 𝜍, 𝜀, 𝑚 and 𝜒 are Cauchy stress tensor, classical strain tensor, deviatoric part of the 

couple stress tensor and symmetric curvature tensor, respectively. 

The strain and curvature tensors can be defined by 
 

𝜀𝑖𝑗 =
1

2
(𝑢𝑖.𝑗 + 𝑢𝑗 .𝑖) (12) 

 

 

 

Fig. 1 The geometry and position of neutral axis for a FG microbeam with porosity 

 

 
Table 1 Temperature-dependent coefficients for Si3N4 and SUS304 (Lee and Kim 2013) 

Material Properties P0 P-1 P1 P2 P3 

Si3N4
 

E (Pa) 348.43e+9 0 -3.070e-4 2.160e-7 -8.946e-11 

γ (K-1) 5.8723e-6 0 9.095e-4 0 0 

ρ (Kg/m3) 2370 0 0 0 0 

κ (W/mK) 13.723 0 -1.032e-3 5.466e-7 -7.876e-11 

ѵ 0.24 0 0 0 0 

SUS304 

E (Pa) 201.04e+9 0 3.079e-4 -6.534e-7 0 

γ (K-1) 12.330e-6 0 8.086e-4 0 0 

ρ (Kg/m3) 8166 0 0 0 0 

κ (W/mK) 15.379 0 -1.264e-3 2.092e-6 -7.223e-10 

ѵ 0.3262 0 -2.002e-4 3.797e-7 0 
 

283



 

 

 

 

 

 

Farzad Ebrahimi, Fateme Mahmoodi and Mohammad Reza Barati 

𝜒𝑖𝑗 =
1

2
(𝜃𝑖.𝑗 + 𝜃𝑗 .𝑖) (13) 

 

Where u and θ are the components of the displacement and rotation vectors written by 
 

𝜃𝑖 =
1

2
𝑒𝑖𝑗𝑘 𝑢𝑘.𝑗  (14) 

 

In which 𝑒𝑖𝑗𝑘  is the permutation symbol. The constitutive relations can be expressed as 
 

𝜍𝑖𝑗 = 𝜆 𝑧𝑛𝑠 𝜖𝑘𝑘𝛿𝑖𝑗 + 2𝜇(𝑧𝑛𝑠 )𝜖𝑖𝑗  (15) 

 

𝑚𝑖𝑗 = 2𝜇 𝑧𝑛𝑠  [𝑙(𝑧𝑛𝑠)]2𝑋𝑖𝑗  (16) 
 

Where 𝛿𝑖𝑗  is the Kroenke delta, 𝑙is the material length scale parameter which reflects the 

effect of couple stress. Also, the Láme’s constants can be defined by 
 

𝜆 𝑧𝑛𝑠 =
𝐸(𝑧𝑛𝑠)𝜈(𝑧𝑛𝑠 )

 1 + 𝜈(𝑧𝑛𝑠 ) [1 − 2𝜈(𝑧𝑛𝑠)]
 (17) 

 

𝜇 𝑧𝑛𝑠  =
𝐸(𝑧𝑛𝑠)

2[1 + 𝜈(𝑧𝑛𝑠)]
 (18) 

 

2.3 The refined FGM microbeam model 
 

The displacement field of FG microbeam according to the refined shear-deformable beam 

model can be expressed by (Al-Basyouni et al. 2015) 
 

𝑢𝑥 𝑥, 𝑧𝑛𝑠 , 𝑡 = 𝑢0 𝑥, 𝑡 − 𝑧𝑛𝑠
𝜕𝑤𝑏

𝜕𝑥
− 𝑓(𝑧𝑛𝑠 )

𝜕𝑤𝑠

𝜕𝑥
 (19) 

 

𝑢𝑦 𝑥, 𝑧𝑛𝑠 , 𝑡 = 0 (20) 

 

𝑢𝑧 𝑥, 𝑧𝑛𝑠 , 𝑡 = 𝑤𝑏 𝑥, 𝑡 + 𝑤𝑠(𝑥, 𝑡) (21) 
 

In which u is displacement component of the mid-axis and wb and ws denote the bending and 

shear transverse displacement, respectively. 

Also: 

 For the classical beam theory (CBT) 
 

𝑤𝑠 𝑥. 𝑡 = 0 (22) 
 

 For the first order beam theory (FBT) 
 

𝑓 𝑧𝑛𝑠 = 0 (23) 
 

 For the sinusoidal beam theory (SBT) (Al-Basyouni et al. 2015) 

284



 

 

 

 

 

 

Thermo-mechanical vibration analysis of functionally graded micro/nanoscale beams... 

𝑓 𝑧𝑛𝑠  =  𝑧𝑛𝑠 + 𝐶 −
𝑕

𝜋
sin  

𝜋 𝑧𝑛𝑠 + 𝐶 

𝑕
  (24) 

 

 For the hyperbolic beam theory (HBT) (Şimşek et al. 2013) 

 

𝑓 𝑧𝑛𝑠  =

𝑕
𝜋

sinh  
𝜋 𝑧𝑛𝑠 + 𝐶 

𝑕
 −  𝑧𝑛𝑠 + 𝐶 

cosh(
𝜋
2

) − 1
 (25) 

 

Finally, the non-zero strains of the present refined beam model are achieved as 

 

𝜖𝑥 =
𝜕𝑢0

𝜕𝑥
− 𝑧𝑛𝑠

𝜕2𝑤𝑏

𝜕𝑥2
− 𝑓 𝑧𝑛𝑠  

𝜕2𝑤𝑠

𝜕𝑥2
 (26) 

 

𝜖𝑦 = 𝜖𝑧 = 𝛾𝑥𝑦 = 𝛾𝑦𝑧 = 0 (27) 

 

𝛾𝑥𝑧 = 2𝜖𝑥𝑧 = 𝑔 𝑧𝑛𝑠  
𝜕𝑤𝑠

𝜕𝑥
 (28) 

 

Where 𝑔 𝑧𝑛𝑠  = 1 − 𝑓 ′(𝑧𝑛𝑠). In addition, Eqs. (12)-(13) and (14) give 

 

𝜃𝑦 = −
𝜕𝑤𝑏

𝜕𝑥
−

1

2
𝜓 𝑧𝑛𝑠  

𝜕𝑤𝑠

𝜕𝑥
, 𝜃𝑥 = 𝜃𝑧 = 0 (29) 

 

With, 𝜓 𝑧𝑛𝑠 = 1 + 𝑓 ′(𝑧𝑛𝑠 ) 

Substitution of Eq. (29) into (13) leads to the following expression for the non-zero 

components of the symmetric curvature tensor 

 

𝑋𝑥𝑦 = −
1

2

𝜕2𝑤𝑏

𝜕𝑥2
−

1

4
𝜓 𝑧𝑛𝑠  

𝜕2𝑤𝑠

𝜕𝑥2
, 𝑋𝑦𝑧 = −

1

4
𝑓 ′′  𝑧𝑛𝑠  

𝜕𝑤𝑠

𝜕𝑥
 (30) 

 

𝑋𝑥𝑥 = 𝑋𝑦𝑦 = 𝑋𝑧𝑧 = 𝑋𝑥𝑧 = 0 (31) 

 

2.4 The governing equations 
 

Governing equations of motions and boundary conditions for the free vibration of a FG micro-

beam have been derived via Extended Hamilton’s principle. The principle can be presented in 

analytical form as 

 𝛿 𝑈 + 𝑉 − 𝐾 𝑑𝑡 = 0

𝑇

0

 (32) 

 

Here U is strain energy, K is kinetic energy and V is work done by external forces. 𝛿𝑈 is the 

virtual variation of the strain energy of the beam that can be stated as 
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𝛿𝑈 =    𝜍𝑖𝑗 𝛿𝜖𝑖𝑗 + 𝑚𝑖𝑗 𝛿𝑋𝑖𝑗  𝑑𝑧𝑛𝑠𝑑𝑥

𝑕
2
−𝐶

−
𝑕
2
−𝐶

𝑙

0

 

=    𝜍𝑥𝛿𝜖𝑥 + 𝜏𝑥𝑧𝛿𝛾𝑥𝑧 + 2𝑚𝛿𝑋𝑥𝑦 + 2𝑚𝑦𝑧𝛿𝑋𝑦𝑧  𝑑𝑍𝑛𝑠𝑑𝑥

𝑕
2
−𝐶

−
𝑕
2
−𝐶

𝑙

0

 

=   𝑁
𝑑𝛿𝑢0

𝑑𝑥
−  𝑀𝑏 + 𝑌1 

𝑑2𝛿𝑤𝑏

𝑑𝑥2
−  𝑀𝑠 +

1

2
𝑌1 +

1

2
𝑌2 

𝑑2𝛿𝑤𝑠

𝑑𝑥2
+  𝑄 −

1

2
𝑌3 

𝑑𝛿𝑤𝑠

𝑑𝑥
 𝑑𝑥

𝑙

0

 

(33) 

 

Where L is the length of the micro-scale beam, N is the axial force, M is the bending moment 

and Q is the shear force, the following stress resultants are presented as 

 

 𝑁.𝑀𝑏 . 𝑀𝑠 =   1. 𝑧𝑛𝑠 . 𝑓 𝜍𝑥𝑑𝑧𝑛𝑠

𝑕
2
−𝐶

−
𝑕
2
−𝐶

, 𝑄 =  𝑔𝜏𝑥𝑧𝑑𝑧𝑛𝑠

𝑕
2
−𝐶

−
𝑕
2
−𝐶

 (34) 

 

 𝑌1 . 𝑌2 =   1. 𝑓 ′ 𝑚𝑥𝑦𝑑𝑧𝑛𝑠

𝑕
2
−𝐶

−
𝑕
2
−𝐶

, 𝑌3 =  𝑓 ′′𝑚𝑦𝑧𝑑𝑧𝑛𝑠

𝑕
2
−𝐶

−
𝑕
2
−𝐶

 (35) 

 

𝛿𝑉 is the variation of work done by the external applied forces, that can be expressed as 

 

𝛿𝑉 = − 𝑁𝑇

𝑙

0

𝜕 𝑤𝑏 + 𝑤𝑠 

𝜕𝑥
𝛿  

𝜕 𝑤𝑏 + 𝑤𝑠 

𝜕𝑥
 𝑑𝑥 (36) 

 

Where 𝑁𝑇
 is thermal resultant can be expressed as 

 

𝑁𝑇 =  𝐸 𝑧𝑛𝑠 . 𝑇 𝛼 𝑧𝑛𝑠 . 𝑇 

𝑕
2
−𝐶

−
𝑕
2
−𝐶

(𝑇 − 𝑇0)𝑑𝑧 (37) 

 

The kinetic energy for present beam model can be expressed as 

 

𝐾 =
1

2
  𝜌 𝑧𝑛𝑠 . 𝑇   

𝜕𝑢𝑥
𝜕𝑡

 
2

+  
𝜕𝑢𝑦

𝜕𝑡
 

2

+  
𝜕𝑢𝑧
𝜕𝑡

 
2

 𝑑𝐴𝑑𝑥

𝐴

𝑙

0

 (38) 
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The variation of kinetic energy is written as 

 

𝛿𝐾 =   𝜌 𝑧𝑛𝑠 . 𝑇  𝑢 𝑥𝛿𝑢 𝑥 + 𝑢 𝑧𝛿𝑢 𝑧 

𝑕
2
−𝐶

−
𝑕
2
−𝐶

𝑙

0

𝑑𝑧𝑛𝑠𝑑𝑥 

=   𝐼0 𝑢 0𝛿𝑢 0 +  𝑤 𝑏 + 𝑤 𝑠  𝛿𝑤 𝑏 + 𝛿𝑤 𝑠  − 𝐼1  𝑢 0
𝑑𝛿𝑤 𝑏
𝑑𝑥

+
𝑑𝑤 𝑏
𝑑𝑥

𝛿𝑢 0 + 𝐼2  
𝑑𝑤 𝑏
𝑑𝑥

𝑑𝛿𝑤 𝑏
𝑑𝑥

  

𝑙

0

 

 −𝐽1  𝑢 0
𝑑𝛿𝑤 𝑠
𝑑𝑥

+
𝑑𝑤 𝑠
𝑑𝑥

𝛿𝑢 0 + 𝐾2  
𝑑𝑤 𝑠
𝑑𝑥

𝑑𝛿𝑤 𝑠
𝑑𝑥

 + 𝐽2  
𝑑𝑤 𝑏
𝑑𝑥

𝑑𝛿𝑤 𝑠
𝑑𝑥

+
𝑑𝑤 𝑠
𝑑𝑥

𝑑𝛿𝑤 𝑏
𝑑𝑥

  𝑑𝑥 

(39) 

 

In which dot-superscript convention indicates the differentiation with respect to the time 

variable t; and (𝐼0, 𝐼1, 𝐽1,𝐼2, 𝐽2, 𝐾2) are the mass inertias determined as 

 

 𝐼0 . 𝐼1 . 𝐽1 . 𝐼2 . 𝐽2 . 𝐾2 =  (1. 𝑧𝑛𝑠 . 𝑓. 𝑧𝑛𝑠
2 . 𝑧𝑛𝑠𝑓. 𝑓2)𝜌(𝑧𝑛𝑠 )𝑑𝑧𝑛𝑠

𝑕
2
−𝐶

−
𝑕
2
−𝐶

 (40) 

 

Inserting the expressions for 𝛿𝑈, 𝛿𝑉 and 𝛿𝐾 from Eqs. (33), (36) and (39) into Eq. (32) 

andintegrating by parts versus both space and time variables, and collecting the coefficients 

of𝛿𝑢0, 𝛿𝑤𝑏  and 𝑤𝑠 , the following equations of motion of the FG microbeam are obtained 

 

𝛿𝑢0 ∶  
𝑑𝑁

𝑑𝑥
= 𝐼0𝑢 0 − 𝐼1

𝑑𝑤 𝑏
𝑑𝑥

− 𝐽1
𝑑𝑤 𝑠
𝑑𝑥

 (41) 

 

𝛿𝑤𝑏 ∶  
𝑑2𝑀𝑏

𝑑𝑥2
+
𝑑2𝑌1

𝑑𝑥2
+ 𝑞 + 𝑁𝑇 𝑤 𝑏 + 𝑤 𝑠 = 𝐼0 𝑤 𝑏 + 𝑤 𝑠 + 𝐼1

𝑑𝑢 0
𝑑𝑥

− 𝐼2
𝑑2𝑤 𝑏
𝑑𝑥2

− 𝐽2
𝑑2𝑤 𝑠
𝑑𝑥2

 (42) 

 

 

𝛿𝑤𝑠 ∶  
𝑑2𝑀𝑠

𝑑𝑥2
+

1

2

𝑑2𝑌1

𝑑𝑥2
+

1

2

𝑑2𝑌2

𝑑𝑥2
−

1

2

𝑑𝑌3

𝑑𝑥
+
𝑑𝑄

𝑑𝑥
+ 𝑞 + 𝑁𝑇 𝑤 𝑏 + 𝑤 𝑠  

= 𝐼0 𝑤 𝑏 + 𝑤 𝑠 + 𝐽1
𝑑𝑢 0
𝑑𝑥

− 𝐽2
𝑑2𝑤 𝑏
𝑑𝑥2

− 𝐾2

𝑑2𝑤 𝑠
𝑑𝑥2

 

(43) 

 

And the following boundary conditions are obtained at x = 0 and x = L. 

 

Specify    𝑢𝑜  or  𝑁 (44) 

 

Specify 

𝑤𝑏  or 𝑉𝑏 =
𝑑𝑀𝑏

𝑑𝑥
+
𝑑𝑌1

𝑑𝑥
− 𝐼1𝑢 0 + 𝐼2

𝑑𝑤 𝑏
𝑑𝑥

+ 𝐽2
𝑑𝑤 𝑠
𝑑𝑥

+ 𝑁𝑇
𝑑 𝑤𝑏 + 𝑤𝑠 

𝑑𝑥
− 𝐼0

𝑑 𝑤𝑏 + 𝑤𝑠 

𝑑𝑥
 

(45) 
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Specify 

𝑤𝑠  or 𝑉𝑠 =
𝑑𝑀𝑠

𝑑𝑥
+

1

2

𝑑𝑌1

𝑑𝑥
+

1

2

𝑑𝑌2

𝑑𝑥
−

1

2
𝑌3 + 𝑄 − 𝐽𝑢 0 

+𝐽2
𝑑𝑤 𝑏
𝑑𝑥

+ 𝐾2

𝑑𝑤 𝑠
𝑑𝑥

+ 𝑁𝑇
𝑑 𝑤𝑏 + 𝑤𝑠 

𝑑𝑥
− 𝐼0

𝑑 𝑤𝑏 + 𝑤𝑠 

𝑑𝑥
 

(46) 

 

Specify      
𝑑𝑤𝑏

𝑑𝑥
   or   𝑀𝑏 + 𝑌1 + 𝑁𝑇 − 𝐼0 (47) 

 

Specify     
𝑑𝑤𝑠

𝑑𝑥
   or   𝑀𝑠 +

1

2
𝑌1 +

1

2
𝑌2 + 𝑁𝑇 − 𝐼0 (48) 

 

By employing Eqs. (34)-(35) and (41)- (42) and (43) the equations of motion of FG microbeam 

in terms of the displacements are calculated as 

 

𝐴11

𝑑2𝑢0

𝑑𝑥2
− 𝐵11

𝑠
𝑑3𝑤𝑠

𝑑𝑥3
= 𝐼0𝑢 0 − 𝐼1

𝑑𝑤 𝑏
𝑑𝑥

− 𝐽1
𝑑𝑤 𝑠
𝑑𝑥

−  𝐷11 + 𝐴13 
𝑑4𝑤𝑏

𝑑𝑥4
 (49) 

 

− 𝐷11
𝑠 +

1

2
 𝐴13 + 𝐵13  

𝑑4𝑤𝑠

𝑑𝑥4
+ 𝑞 + 𝑁𝑇 𝑤 𝑏 + 𝑤 𝑠  

= 𝐼0 𝑤 𝑏 + 𝑤 𝑠 + 𝐼1
𝑑𝑢 0
𝑑𝑥

− 𝐼2
𝑑2𝑤 𝑏
𝑑𝑥2

− 𝐽2
𝑑2𝑤 𝑠
𝑑𝑥2

 

(50) 

 

𝐵11
𝑠
𝑑3𝑢0

𝑑𝑥3
−  𝐷11

𝑠 +
1

2
 𝐴13 + 𝐵13  

𝑑4𝑤𝑏

𝑑𝑥4
−  𝐻11

𝑠 +
1

4
 𝐴13 + 2𝐵13 + 𝐷13  

𝑑4𝑤𝑠

𝑑𝑥4
 

+ 𝐴55
𝑠 +

1

4
𝐸13 

𝑑2𝑤𝑠

𝑑𝑥2
+ 𝑞 + 𝑁𝑇 𝑤 𝑏 + 𝑤 𝑠  

= 𝐼0 𝑤 𝑏 + 𝑤 𝑠 + 𝐽1
𝑑𝑢 0
𝑑𝑥

− 𝐽2
𝑑2𝑤 𝑏
𝑑𝑥2

− 𝐾2

𝑑2𝑤 𝑠
𝑑𝑥2

 

(51) 

 

Where 𝐴11 , 𝐵11
𝑠 , etc., are the beam stiffness, defined by 

 

 𝐴11 . 𝐷11 . 𝐵11
𝑠 . 𝐷11

𝑠 𝐻11
𝑠  =  𝜆(𝑧𝑛𝑠 )

1 − 𝜈 𝑍𝑛𝑠  

𝜈 𝑍𝑛𝑠  
(1. 𝑧𝑛𝑠

2 . 𝑓. 𝑧𝑛𝑠𝑓. 𝑓2)𝑑𝑧𝑛𝑠

𝑕
2
−𝐶

−
𝑕
2
−𝐶

 (52) 

 

(𝐴13 . 𝐵13 . 𝐷13 . 𝐸13) =  𝜇 𝑧𝑛𝑠 [𝑙(𝑧𝑛𝑠 )]2[1. 𝑓 ′ .  𝑓 ′ 2 .  𝑓 ′′  2]𝑑𝑧𝑛𝑠

𝑕
2
−𝐶

−
𝑕
2
−𝐶

 (53) 
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𝐴55
𝑠 =  𝜇 𝑧𝑛𝑠  𝑔

2𝑑𝑧𝑛𝑠

𝑕
2
−𝐶

−
𝑕
2
−𝐶

 (54) 

 

 

3. Solution method 
 

Here, an analytical solution of the governing equations is employed for free vibration porous 

FG microbeam under three types of boundary conditions (S-S, C-S and C-C). 
 

 Simply-supported (S): 

𝑤𝑏 = 𝑤𝑠 = 𝑀 = 0  at  𝑥 = 0 , 𝐿 

 Clamped (C): 

𝑢 = 𝑤𝑏 = 𝑤𝑠 = 0  at  𝑥 = 0 , 𝐿 
 

Thus, the following expansions of displacements are supposed as 
 

 

𝑢0

𝑤𝑏

𝑤𝑠

 =  

 
 

 𝑈𝑛
𝜕𝑋𝑚 (𝑥)

𝜕𝑥
𝑒𝑖𝜔𝑡

𝑊𝑏𝑛 𝑋𝑚 (𝑥) 𝑒𝑖𝜔𝑡

𝑊𝑠𝑛 𝑋𝑚(𝑥) 𝑒𝑖𝜔𝑡  
 

 ∞

𝑛=1

 (55) 

 

Where, 𝑈𝑛 , 𝑊𝑏𝑛  and 𝑊𝑠𝑛  are Fourier coefficients and 𝜔 is the eigenfrequency associated 

with nth eigen mode. Substituting Eq. (55) into Eq. (49)-(50) and (51) leads to 

 

  

𝑆11 0 𝑆13

0 𝑆22 𝑆23

𝑆13 𝑆23 𝑆33

 − 𝜔2  

𝑚11 𝑚12 𝑚13

𝑚12 𝑚22 𝑚23

𝑚13 𝑚23 𝑚33

   

𝑈𝑛
𝑊𝑏𝑛

𝑊𝑠𝑛

 =  0  (56) 

 

Where 
 

𝑆11 = 𝐴11𝛽3 ,     𝑆13 = −𝐵11
𝑠 𝛽9,     𝑆22 =   𝐷13 + 𝐴13 𝛽9 − 𝑁𝑇𝛽7 

𝑆23 =  𝐷11
𝑠 +

1

2
 𝐴13 + 𝐵13  𝛽9 + 𝑁𝑇𝛽7 

𝑆33 =  𝐻11
𝑠 +

1

2
 𝐵13 +

1

2
(𝐷13 + 𝐴13)  𝛽9 +  𝐴55

𝑠 +
1

4
𝐸13 + 𝑁𝑇 𝛽7 

(57) 

 

𝑚11 = 𝐼0𝛽1 ,   𝑚12 = −𝐼1𝛽1 ,     𝑚13 = −𝐽1𝛽7 ,  

𝑚22 = 𝐼0𝛽5 + 𝐼2𝛽7 ,     𝑚23 = 𝐼0𝛽5 + 𝐽2𝛽7 ,     𝑚32 = 𝐼0𝛽5 + 𝐾2𝛽7 
(58) 

 

In which 
 

 𝛽1 . 𝛽3 . 𝛽5 . 𝛽7 . 𝛽9 =   𝑋𝑚
′ 𝑋𝑚

′ . 𝑋𝑚𝑋𝑚
′′′ . 𝑋𝑚𝑋𝑚 . 𝑋𝑚

′′ 𝑋𝑚 . 𝑋𝑚
′′′′ 𝑋𝑚 

𝐿

0

𝑑𝑥 (59) 
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The function 𝑋𝑚  for different boundary conditions is defined by 
 

S-S: 

𝑋𝑚  𝑥 = sin(𝜆𝑛𝑥) 

 

𝜆𝑛 =
𝑛𝜋

𝐿
 

(60) 

 

C-C: 

𝑋𝑚  𝑥 = sin 𝜆𝑛𝑥 − sinh 𝜆𝑛𝑥  

−𝜉𝑚 (cos 𝜆𝑛𝑥 − cosh 𝜆𝑛𝑥 ) 

 

𝜉𝑚 =
sin 𝜆𝑛𝑥 − sinh 𝜆𝑛𝑥 

cos 𝜆𝑛𝑥 − cosh 𝜆𝑛𝑥 
 

 

𝜆𝑛 =
 𝑛 + 0.5 𝑛

𝐿
 

(61) 

 

C-S: 

𝑋𝑚  𝑥 = sin 𝜆𝑛𝑥 − sinh 𝜆𝑛𝑥  

−𝜉𝑚 (cos 𝜆𝑛𝑥 − cosh 𝜆𝑛𝑥 ) 

 

𝜉𝑚 =
sin 𝜆𝑛𝑥 + sinh 𝜆𝑛𝑥 

cos 𝜆𝑛𝑥 + cosh 𝜆𝑛𝑥 
 

 

𝜆𝑛 =
 𝑛 + 0.25 𝑛

𝐿
 

(62) 

 

 

4. Various types of thermal loading 
 

4.1 Uniform temperature rise (UTR) 
 

In this case, the FG microbeam initial temperature is assumed to be 𝑇0 = 300 and uniformly 

changes to a final temperature of T. The temperature rise through the thickness direction is defined 

by 

Δ𝑇 = 𝑇 − 𝑇0 (63) 
 

4.2 Linear temperature rise (LTR) 
 

In this case, the temperature of the top surface is 𝑇𝑐  and it is considered to change linearly 

along the thickness to the bottom surface temperature, 𝑇𝑚 . Hence, the temperature profile as a 

function of thickness is obtained as (Barati et al. (2016) - Kiani (Kiani and Eslami 2013)) 
 

𝑇 = 𝑇𝑚 + Δ𝑇(
1

2
+
𝑧𝑛𝑠 + 𝐶

𝑕
) (64) 

 

4.3 Nonlinear temperature rise (NLTR) 
 

The steady-state one dimensional heat conduction equation with the known temperature 

boundary conditions on bottom and top surfaces of the FG microbeam can be obtained by solving 
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the following equation (Ebrahimi and Jafari 2016) 
 

−
𝑑

𝑑𝑧
 𝑘 𝑧𝑛𝑠 . 𝑇 

𝑑𝑇

𝑑𝑧
 = 0 

𝑇  
𝑕

2
− 𝐶 = 𝑇𝑐    .   𝑇  −

𝑕

2
− 𝐶 = 𝑇𝑚  

(65) 

 

The solution of Eq. (55) subjected to the boundary conditions can be solved by the following 

equation 

𝑇 = 𝑇𝑚 + Δ𝑇

 
1

𝑘 𝑧𝑛𝑠 . 𝑇 
𝑍𝑛𝑠

−
𝑕
2
−𝐶

𝑑𝑧

 
1

𝑘 𝑧𝑛𝑠 . 𝑇 

𝑕
2
−𝐶

−
𝑕
2
−𝐶

𝑑𝑧

 (66) 

 

Where, Δ𝑇 = 𝑇𝑐 − 𝑇𝑚 . 
 

 

5. Numerical results and discussions 
 

In this section, the effect of different temperature rises, porosity volume fraction, length scale 

parameter, slenderness ratio and boundary conditions on the natural frequencies of porous FG 

microbeam will be explored.  It is assumed that the temperature increase in metal surface to 

reference temperature 𝑇0 of the FGM microbeam is 𝑇𝑚 − 𝑇0 = 5𝐾. The scale parameter in this 

study is taken as 𝑙 = 15 𝜇𝑚. the following relation is accomplished in order to compute the non-

dimensional natural frequencies 
 

𝜔 =
𝜔𝐿2

𝑕
 
𝜌𝑐
𝐸𝑐

 (67) 

 

The validation study is carried out in two parts. First the results are validated with those of 

porous FG macro beams, and then they are validated with those of FG microbeams. Table 2 

 

 
Table 2 Comparison of the non-dimensional natural frequency for porous FG beam under uniform 

temperature rise with various gradient indices (ΔT = 20) 

B.C. 

𝑝 = 0.1 𝑝 = 0.2 𝑝 = 0.5 

Ebrahimi et al. 

(2016b) 
Present 

Ebrahimi et al. 

(2016b) 
Present 

Ebrahimi et al. 

(2016b) 
Present 

S-S 

𝛼 = 0 4.6536 4.61306 4.3867 4.35032 3.8974 3.8686 

𝛼 = 0.1 4.8339 4.79159 4.5215 4.48397 3.9598 3.92528 

𝛼 = 0.2 5.0693 5.02443 4.6925 4.65326 4.0328 4.00373 

C-C 

𝛼 = 0 10.8800 10.6858 10.2835 10.1045 9.1879 9.03596 

𝛼 = 0.1 11.2496 11.0504 10.5501 10.3685 9.2904 9.13965 

𝛼 = 0.2 11.7437 11.5371 10.8984 10.7126 9.417 9.26731 
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Table 3 Comparison of the non-dimensional natural frequency for a S–S FG micro-

beam with various gradient indices (𝑕 𝑙 = 2) 

𝐿/𝑕 Beam theory 
Gradient index 

𝑝 = 0.3 𝑝 = 1 𝑝 = 3 𝑝 = 10 

10 

CBT (Al-Basyouni et al. 2015) 7.9307 6.6159 5.7362 5.1231 

FBT (Al-Basyouni et al. 2015) 7.8233 6.5211 5.6383 5.0237 

SBT (Al-Basyouni et al. 2015) 7.8722 6.5670 5.6876 5.0731 

Present 7.8720 6.5666 5.6876 5.0716 

100 

CBT (Al-Basyouni et al. 2015) 7.9651 6.6471 5.7633 5.1453 

FBT (Al-Basyouni et al. 2015) 7.9640 6.6461 5.7623 5.1442 

SBT (Al-Basyouni et al. 2015) 7.9645 6.6466 5.7628 5.1448 

Present 7.9641 6.6466 5.7628 5.1450 

 

 

presented the comparison of the natural frequency of a porous FG beam under uniform 

temperature rise with those presented by Ebrahimi et al. (2016a) using differential transform 

method and Euler-Bernoulli beam model. Table 3 compares the results of the present study for S-S 

FG microbeams and the results presented by Al-Basyouni et al. (2015). In this case, the effects of 

temperature distributions and porosity volume fraction are omitted. According to this table, the 

results are presented for different power-law exponent, slenderness ratio and beam theories (CBT, 

FBT, SBT and HBT) and a good agreement is observed. 

Table 4 presents the non-dimensional natural frequencies of porous FG microbeams subjected 

to uniform (UTR), linear (LTR) and nonlinear temperature rises (NLTR) under different boundary 

conditions (S-S, C-S and C-C) for various values of the volume fraction of porosity (𝛼 =  0, 

0.1, 0.2) and temperature changes (∆𝑇 =  20 /40 / 80) at 𝐿/ 𝑕 =  10, 𝑙 𝑕 = 2 and 𝑝 = 1. It 

is noticed that for all boundary conditions and thermal loadings, an increase in the temperature 

leads to smaller natural frequencies. It is evident that increasing the porosity parameter yields the 

growth in dimensionless frequencies for all types of thermal loading which highlights the 
 

 

Table 4 Variation of the first non-dimensional frequency of S-S FG pouros microbeam for various porosity 

volume fraction, temperature, thermal loading, and boundary conditions (𝑝 = 1, 𝑕 𝑙 = 2, 𝐿 𝑕 = 10) 

Boundary 

condition 

Load 

Type 

𝛼 = 0 𝛼 = 0.1 𝛼 = 0.2 

Δ𝑇 = 20 Δ𝑇 = 40 Δ𝑇 = 80 Δ𝑇 = 20 Δ𝑇 = 40 Δ𝑇 = 80 Δ𝑇 = 20 Δ𝑇 = 40 Δ𝑇 = 80 

S-S 

UTR 2.65833 2.64379 2.61235 2.76034 2.74561 2.71387 2.87074 2.85583 2.82378 

LTR 2.66282 2.65641 2.64215 2.76486 2.75837 2.74398 2.8753 2.86871 2.85421 

NLTR 2.66276 2.65635 2.64225 2.76481 2.75832 2.74411 2.87526 2.86868 2.85438 

C-S 

UTR 4.13143 4.11758 4.0872 4.2899 4.27581 4.24504 4.46138 4.44705 4.41589 

LTR 4.13611 4.13036 4.11697 4.2946 4.2887 4.27511 4.4661 4.46006 4.44628 

NLTR 4.13606 4.1303 4.11707 4.29455 4.28866 4.27525 4.46606 4.46003 4.44646 

C-C 

UTR 5.90382 5.89078 5.86149 6.13039 6.11704 6.08727 6.37555 6.36189 6.33165 

LTR 5.90874 5.90376 5.89136 6.13531 6.13012 6.11744 6.38048 6.37508 6.36212 

NLTR 5.90869 5.9037 5.89146 6.13526 6.13007 6.11758 6.38044 6.37505 6.36230 
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Table 5 Variation of the first non-dimensional frequency of S-S FG pouros microbeam for various scale 

parameter, temperature, thermal loading, and boundary conditions (𝑝 = 1, 𝛼 = 0.2, 𝐿 𝑕 = 10) 

Boundary 

condition 

Load 

Type 

𝛼 = 0 𝛼 = 0.1 𝛼 = 0.2 

Δ𝑇 = 20 Δ𝑇 = 40 Δ𝑇 = 80 Δ𝑇 = 20 Δ𝑇 = 40 Δ𝑇 = 80 Δ𝑇 = 20 Δ𝑇 = 40 Δ𝑇 = 80 

C-C 

UTR 4.53254 4.52373 4.50396 2.87074 2.85583 2.82378 2.44148 2.42371 2.38572 

LTR 4.5356 4.53198 4.52306 2.87530 2.86871 2.85421 2.44677 2.43884 2.42167 

NLTR 4.53558 4.53196 4.52317 2.87526 2.86868 2.85438 2.44673 2.43881 2.42187 

C-C 

UTR 7.0483 7.04021 7.0212 4.46138 4.44705 4.41589 3.79242 3.77521 3.73823 

LTR 7.05157 7.04861 7.0403 4.4661 4.46006 4.44628 3.79788 3.79047 3.7741 

NLTR 7.05154 7.04859 7.04041 4.46606 4.46003 4.44646 3.79783 3.79043 3.7743 

C-C 

UTR 10.0869 10.0797 10.0616 6.37555 6.36189 6.33165 5.41396 5.39737 5.36135 

LTR 10.0904 10.0883 10.0807 6.38048 6.37508 6.36212 5.41962 5.41282 5.39733 

NLTR 10.0904 10.0883 10.0808 6.38044 6.37505 6.36230 5.41957 5.41278 5.39753 

 

 

  

(a) ∆𝑇 = 0 (b) ∆𝑇 = 40 

 

 

 

 

(c) ∆𝑇 = 100 (d) ∆𝑇 = 200 

Fig. 2 Variation of the dimensionless frequency of S-S FG microbeam with material graduation and 

porosity for differentuniform temperature rises (𝐿 𝑕 = 20 , 𝑕 𝑙 = 2) 
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(a) 𝑈𝑇𝑅 (b) 𝐿𝑇𝑅 
 

 

(c) 𝑁𝐿𝑇𝑅 

Fig. 3 Variation of dimensionless frequency of S–S porous FG microbeam versus temperature 

changes for various values of porosity volume fraction (𝐿/𝑕 =  30, 𝑕/𝑙 = 2, 𝑝 = 1) 

 

 

importance of the porosity effect on vibration behavior of FG microbeams. Also, it can be 

observed that the dimensionless natural frequencies according to UTR are minimum among all 

types of thermal loadings and the natural frequencies for LTR are maximum. So, vibration 

behavior of FG microbeams is significantly affected by the type of thermal loading, value of 

temperature change and also porosity distribution. 

Table 5 presents the dimensionless frequency as a function of length scale parameter (h/l) and 

temperature change for different boundary conditions at 𝑝 = 1, 𝛼 = 0.2, 𝐿 𝑕 = 10. It is revealed 

that at a constant porosity volume fraction (𝛼), increasing length scale parameter leads to 

reduction in vibration frequencies of FG microbeams. Therefore, size effect plays a major role on 

vibration behavior of porous FG microbeams. Also, it is observable from this table that a porous 

FG microbeam with C-C boundary conditions possesses larger frequencies than C-S microbeams 

and the later has larger frequencies than those with S-S boundary conditions, regardless of thermal 

loading type. This is due to the fact that stronger supports at ends make the microbeam more rigid 

and vibration frequencies increases. 

Fig. 2 shows the variation of the dimensionless frequency of simply-supported porous FG 

microbeam under uniform temperature rise with power-law exponent (p) for different porosity 

volume fractions at L/h = 20, h/l = 2. Various values of temperature change are considered in this 
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figure as ∆T = 0/40/100/200. It is observed that at a fixed porosity volume fraction, an increment 

in the power-law exponent leads to decreasing the dimensionless natural frequency. Such behavior 

is more announced at lower power-law exponents. This is due to the reason that by increasing the 

value of power-law exponent, the percentage of metal phase will rise, thus makes such FGM 

microbeams less rigid. Moreover, frequency decrement with respect to power-law exponent 

depends on the magnitude of porosity volume fraction. Growth of porosity volume fraction 

increases the natural frequencies for every value of power-law exponent and temperature change. 

The variation of dimensionless natural frequencies of S–S and C-C FG microbeam subjected to 

three cases of thermal loadings (UTR, LTR and NLTR) for different porosity volume fraction and 

temperature changes at constant slenderness ratio L/h = 30, scale parameter h/l = 2 and power-law 

exponent p = 1 is depicted in Figs. 3 and 4. It is observed from the results of these figures that the 

dimensionless frequencies of porous FG microbeam decrease with the increment of temperature 

until it reaches to zero at the critical temperature point. This is due to stiffness reduction of 

microbeam with the rise of temperature. After the critical point, temperature increment gives larger 

frequencies at a constant porosity volume fraction. One significant observation within the range of 

temperature before the critical temperature is that the FG microbeams with larger values of 

porosity parameter possess higher frequency results. But, this trend is opposite in the range of 

 

 

  

(a) 𝑈𝑇𝑅 (b) 𝐿𝑇𝑅 
 

 

(c) 𝑁𝐿𝑇𝑅 

Fig. 4 Variation of the dimensionless frequency of C–C FG porous microbeam with respect to various 

temperature rises for different values of porosity volume fraction (𝐿/𝑕 =  30, 𝑕/𝑙 = 2, 𝑝 = 1) 
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temperature further the critical point. So, larger values of porosity volume fraction provide larger 

critical temperatures for every kind of thermal loading. Also, it can be concluded that the critical 

temperature according to nonlinear temperature rise (NLTR) is larger than that of UTR and LTR 

for every value of porosity volume fraction. In addition, for every kind of thermal loading the 

critical temperatures of C-C porous FG microbeam is higher than those of S-S FG microbeams. 

In Fig. 5, variation of the dimensionless frequency of S-S FG porous microbeam versus 

porosity volume fraction for various length scale parameters and temperature rises is illustrated at 

Δ𝑇 = 100, 𝐿/𝑕 = 10, 𝑝 = 1. It is visible from this figure that the magnitudes of natural frequencies 

become smaller as the length scale parameter increases. This indicates that generally, natural 

frequencies increase with increasing in the porosity coefficient due to enhancement of FG 

microbeam structure. 

The influence of porosity volume fraction and boundary condition on non-dimensional 

frequency of a FG microbeam subjected to three cases of temperature rise at Δ𝑇 = 100, 𝐿/𝑕 = 10, 

𝑕/𝑙 = 2, 𝑝 = 1 is demonstrated in Fig. 6. As expected, increasing the number of constraints at 

edges makes the microbeam stiffer and vibration frequencies increase. So, at a fixed temperature 

change and porosity volume fraction, the results of porous FG microbeam obey the following 

relation: C-C > C-S > S-S. Also, it is found that effect of porosity volume fraction on vibration 
 

 

  

(a) 𝑈𝑇𝑅 (b) 𝐿𝑇𝑅 
 

 

(c) 𝑁𝐿𝑇𝑅 

Fig. 5 Variation of the dimensionless frequency of S-S FG porous microbeam versus porosity volume 

fraction for various scale parameters and temperature rises (Δ𝑇 = 100, 𝐿/𝑕 = 10, 𝑝 = 1) 
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(a) 𝑈𝑇𝑅 (b) 𝐿𝑇𝑅 
 

 

(c) 𝑁𝐿𝑇𝑅 

Fig. 6 The variation of the dimensionless frequency of FG porous microbeam versus porosity 

volume fraction for different temperature rises and boundary conditions 

(Δ𝑇 = 100, 𝐿/𝑕 = 10, 𝑕/𝑙 = 2, 𝑝 = 1) 

 

 

 

  

(a) 𝑈𝑇𝑅 (b) 𝐿𝑇𝑅 

Fig. 7 The variation of dimensionless frequency of S-S FG porous micro-beam versus slenderness 

ratiofor various porosity volume fractions (Δ𝑇 = 100, 𝑕/𝑙 =  2, 𝑝 = 1). 
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(c) 𝑁𝐿𝑇𝑅 

Fig. 7 Continued 

 

 

increment of FG microbeams with C-C boundary conditions is more announced than C-S and S-S 

one. So, effect of porosities on thermal vibration behavior of FG microbeams depends on the type 

of boundary condition. 

In Fig. 7 the variation of the dimensionless frequency of S-S FG porous microbeam with 

respect to slenderness ratio according to different porosity volume fractions is shown at Δ𝑇 = 100, 

𝑕/𝑙 =  2, 𝑝 = 1. It can be understand that dimensionless frequency decrease when slenderness 

ratio increases at a prescribed porosity volume fraction. So, thinner porous FG microbeams have 

lower frequencies compared to thicker one. Moreover, porosity volume fraction has a same 

influence on both thick and thin FG microbeams and increases the vibration frequencies. 
 

 

6. Conclusions 
 

In this paper, thermal vibration of FG microbeams with porosities is examined in framework of 

a higher order refined beam theory. A modified power-law model is adopted in which the volume 

fraction of porosities is involved. Hence, the graded material properties of FG microbeam are 

described according to this model for the first time. Also, different temperature distributions 

through the thickness direction (UTR, LTR and NLTR) and boundary conditions (S-S, S-C and C-C) 

are considered in this analysis. An analytical approach is used to solve governing partial 

differential equations. Numerical results show the following: 
 

 Rising the porosity volume fraction increases the non-dimensional natural frequencies of FG 

microbeams. 

 The non-dimensional frequencies are found to decrease by increasing the power-law index 

value. 

 The natural frequencies are decreased by increasing the thickness-to-length scale parameter.  

Inclusion of couple stress effect makes the FG beam stiffer, and hence, leads to increment in 

vibration frequencies regardless of the value of porosity volume fraction that is because of 

the material properties of the FG microbeams are assumed to vary in the thickness direction. 

 For all the boundary conditions, the non-dimensional frequency predicted by NLTR is 

always greater than those UTR and LTR. So, NLTR and UTR respectively provide the 
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highest and lowest critical temperatures. 

 One significant observation within the range of temperature before the critical temperature 

is that the FG microbeams with larger values of porosity volume fraction have higher 

frequency results. But, this trend is opposite in the range of temperature further the critical 

point. So, larger values of porosity volume fraction provide larger critical temperatures for 

every type of thermal loading. 

 A C-C porous FG microbeam provide larger critical temperatures than S-S one at a constant 

porosity volume fraction. 
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