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Abstract.  A simple closed-form solution to calculate the interfacial shear and normal stresses of retrofitted 

concrete beam strengthened with thin composite plate under mechanical loads including the creep and shrinkage 

effect has been presented in this paper. In such plated beams, tensile forces develop in the bonded plate, and these 

have to be transferred to the original beam via interfacial shear and normal stresses. Consequently, debonding failure 

may occur at the plate ends due to a combination of high shear and normal interfacial stresses. These stresses between 

a beam and a soffit plate, within the linear elastic range, have been addressed by numerous analytical investigations. 

Surprisingly, none of these investigations has examined interfacial stresses while taking the creep and shrinkage 

effect into account. In the present theoretical analysis for the interfacial stresses between reinforced concrete beam 

and a thin composite plate bonded to its soffit, the influence of creep and shrinkage effect relative to the time of the 

casting, and the time of the loading of the beams is taken into account. Numerical results from the present analysis are 

presented both to demonstrate the advantages of the present solution over existing ones and to illustrate the main 

characteristics of interfacial stress distributions. 
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1. Introduction 
 

Advanced composite materials, e.g., fiber-reinforced polymers (FRP), have found new 

applications in the rehabilitation of reinforced concrete structures. Compared with the traditional 

materials, composite materials have some unique features, namely, high strength and stiffness to 

weight ratio, attractive corrosion resistance and ease of handling and application. The 

rehabilitation or strengthening of reinforced concrete structures is an important problem in civil 

engineering. In the last few years, FRP composites are being used in the construction industry in 

the form of laminates and pultruded plates for strengthening of existing structures Meier (1995). 

With their excellent properties such as high tensile strength, long-term durability, corrosion/fire 

resistance and low weight, FRPs have almost completely replaced steel plates as externally epoxy-

                                          

Corresponding author, Ph.D., Professor, E-mail: daouadjitahar@gmail.com 

257



 

 

 

 

 

 

Rabahi Abderezak et al. 

bonded reinforcement for concrete. An important failure mode for such members is the debonding 

of the FRP plate from the member because of high interfacial stresses near the plate ends. Accurate 

predictions of the interfacial stresses are thus important for designing against debonding failures. 

Several closed-form solutions have been developed in the past decade for the interfacial stresses in 

beams bonded with a steel or FRP plate (Tounsi et al. 2009 and Hassaine Daouadji et al. 2008). All 

these solutions are for linear elastic materials and employ the same key assumption that the 

adhesive is subject to normal and shear stresses that are constant across the thickness of the 

adhesive layer. It is this key assumption that enables relatively simple closed-form solutions to be 

obtained. In the existing solutions, two different approaches have been employed. Roberts and 

Hajikazemi (1989) used a staged analysis approach, while (Vilnay 1988, Taljsten 1997, Tounsi et 

al. 2009, Hassaine Daouadji 2013, Smith and Teng 2001, Benyoucef et al. 2014, Bouakaz et al. 

2014, Guenaneche and Tounsi 2014, Mahi et al. 2014, Touati et al. 2015, Zidani et al. 2015 and 

Krour et al. 2013) considered directly deformation compatibility conditions. Rabinovitch and 

Frostig (2001) have presented a higher order analysis in which the adhesive layer was treated as an 

elastic medium with negligible longitudinal stiffness. This leads to uniform stresses and linearly 

varying normal stresses through the thickness of the adhesive layer. The significance of their 

solution is that it is the first solution that satisfies the stress-free boundary condition at the ends of 

the adhesive layer. Using the same approach, they investigated the effects of an uneven adhesive 

layer and material non linearity. They also evaluated the energy release rate to predict debonding 

failure Rabinovich and Frostig (2001). Shen et al. (2001), Yang et al. (2003) and Ameur et al. 

(2009) proposed an alternative analytical complementary energy approach, which resulted in 

closed-form expressions. 

Interfacial stress studies accounting for the influence of adherend shear deformation are scarce. 

However, it is reasonable to assume that the shear stresses, which develop in the adhesive, are 

continuous across the adhesive–adherend interface. In addition, equilibrium requires the shear 

stress be zero at the free surface. The importance of including the shear-lag effect of the adherends 

was shown by several authors. Tounsi (2006) has extended this theory to study concrete beams 

strengthened by FRP plates. The basic assumption in these two studies is a linear distribution of 

shear stress across the thickness of the adherends. However, it is well known that, in beam theory, 

this distribution is parabolic through the depth of beam. The objective of the present investigation 

is to improve the method developed by Tounsi (2006) by assuming a parabolic shear stress across 

the depth of both FRP plate and RC beams and the effect of creep and shrinkage. In view of this, it 

is desirable that a solution methodology be developed where the effect of adherend shear 

deformations can be included in a better manner so that the accuracy of Tounsi’s solution can be 

properly assessed. With this in mind, the objectives of this paper are first to present an 

improvement to Tounsi’s solution to obtain a new closed-form solution which accounts for the 

parabolic adherend shear deformation effect in both the beam and bonded plate and second to 

compare quantitatively its solution against the new one developed in this paper by numerical 

illustrations. Numerical examples and a parametric study are presented to illustrate the governing 

parameters that control the creep and shrinkage effect on adhesive stress concentrations at the edge 

of the FRP strip. Finally, the adopted improved model describes better the actual response of the 

FRP- RC hybrid beams and permits the evaluation of the adhesive stresses, the knowledge of 

which is very important in the design of such structures. It is believed that the present results will 

be of interest to civil and structural engineers and researchers. 

The majority of the studies mentioned have focused on the short-term response characteristics 

of concrete beams strengthened with a thin hygrothermal aged composite plate (Ameur et al. 2009 
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and Amara et al. 2005). In recent applications, the authors aim at developing a fundamental 

understanding of the time-dependent (creep and shrinkage) behavior of composite/concrete 

interface of RC beams strengthened with composite plates. 

We can also mention, in addition to the composite fiber matrix materials, another alternative 

can be proposed to strengthen the structures that will be addressed in our future research, it is 

therefore the use of functionally graded materials (FGM) (Hebali et al. 2014, Draiche 2016, 

Hamidi et al. 2015 and Zidi et al. 2014) that in order to improve and ensure the material continuity 

through the thickness of the reinforcing plate, aiming as a parameter in the mechanical 

characteristics of FGM, all by passing laws adequately mixes to better meet industrial 

requirements and the environmental condition. 
 

 

2. Theoretical analysis and solutions procedure of the present method 
 

A differential section dx, can be cut out from the FRP reinforced concrete beam (Fig. 1), as 

shown in Fig. 2. The composite beam is made from three materials: reinforced concrete, adhesive 

and composite reinforcement. In the present analysis, linear elastic behaviour is regarded to be for 

all materials; the adhesive is assumed to play a role only in transferring the stresses from the 

concrete to the FRP reinforcement and the stresses in the adhesive layer do not change through the 

direction of the thickness. 
 

2.1 Basic equation of elasticity 
 

The strain b(x) in the concrete beam near adhesive interface can be expressed as 
 

 
     

b

bb

b

bb

bb
b T

IE

xN

IE

xMe

dx

xdu
x  

 

      (1) 

 

where ub(x) means horizontal displacement of the RC beam near interface, Mb(x) stands for 

bending moments applied in the concrete, Ib is the second moment area, e is distance from the 

neutral axis to the bottom of RC beam, Nb is the axial force applied in the concrete beam, Ab the 

cross-sectional area, the temperature Tb is defined in Eq. (9); Eb = Eb(t) is the time dependent 

tangent modulus of elasticity of the concrete beam given as 
 

 
 tbt

E
tE bl

b
,1 

  (2) 

 

Where Ebl is the tangent modulus of elasticity of the beam at time tbl;  is an aging coefficient 

depending on strain development with time; and tb = tbl ‒ tbc (tbc is time of casting of beams and tbl 

time at initial loading of beams); (t, tb) is the creep coefficient related to the elastic deformation 

at tb days, which is defined as Eurocode 2 Editorial Group (1991) 
 

       bbcmRHb tttftt   ,  (3) 

 

Where ϕRH, β(fcm), and β(tb) are factors depending on the relative humidity, the concrete strength, 

and the concrete age loading, respectively, which are defined as 
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Fig. 1 Simply supported beam strengthened with bonded FRP plate 
 

 

 

Fig. 2 Forces in infinitesimal element of a soffit-plated beam 
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where RH is the relative humidity of the ambient environment in %, h0 = 2Ab / Pb is the notional 

size of the beam in mm; Ab is the area of the beam cross-section; Pb is the beam perimeter in 

contact with the atmosphere and fcm is the mean compressive strength of concrete in N/mm2 at the 

age 28 days. Moreover, βcp(t ‒ tp) in Eq. (3) is a coefficient for the development of creep with time, 

which is estimated from 

y- direction 

 
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Where βH is a coefficient depending on the relative humidity RH, given as 
 

   1500250 012.01 5.1 0

18.0
 hRHH  (8) 

 

Assuming that creep and shrinkage are independent, the temperature Tb in Eq. (1) is given as 

(Eurocode 2 Editorial Group) 
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Where α is a linear coefficient of thermal expansion and εsb(t ‒ tbc) the shrinkage strain 

calculated from 

     bcsbRHcmsbbcsb ttftt       (10) 

 

Where εsb(fcm) and βRH are factors depending on the concrete strength and the relative humidity, 

respectively, which are defined as 
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Where βsc is a coefficient depending on type of cement. Moreover, βsb(t ‒ tbc) in Eq. (10) is a 

coefficient for the development of shrinkage with time, which is estimated from 
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Now, to estimate the strain ef (x) in the external FRP reinforcement near adhesive interface we 

have used the laminate theory. Furthermore, it is assumed that the ply arrangement of the plate is 

symmetrical 
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where f (x) means horizontal displacement of the external FRP reinforcement near interface; Mf(x) 

represents the bending moment applied in the external FRP reinforcement, Nf stands for the axial 

force applied in the external FRP reinforcement; bf is the width of the plate; tf is thickness of the 

external reinforcement; [A′] = [A-1] is the inverse of the extensional matrix [A′]; and [D′] = [D-1] is 

the inverse of the flexural matrix. [D′] 

(Stored in air) 

(Immersed in water) 
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By adopting the equilibrium conditions of the concrete, we have 
 

x-direction: 
 

 xb
dx

xdN
f

b 
 

(15) 

 

Where τ(x) is shear stress in the adhesive layer. 
 

y-direction: 
 

  qbx
dx

xdV
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b  
 

(16) 

 

Where Vb(x) means the shear force applied in the concrete; σn(x) means the normal stress in the 

adhesive layer and q is the uniformly distributed load. 
 

Moment equilibrium:     ebxxV
dx

xdM
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b 
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(17) 

 

The equilibrium of the external FRP reinforcement along the x, y-direction and moment 

equilibrium can also be written as 
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Where Vf(x) means the shear force applied in the external FRP reinforcement. 
 

2.2 Shear stress distribution along the FRP plate – concrete interface 
 

The shear stress in the adhesive can be expressed as follows 
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Where Δu(x) is relative horizontal displacement at the adhesive interface, Ga is the shear 

modulus in the adhesive and ta is the thickness of the adhesive. 

By differentiating Eq. (21) and by using Eqs. (1) and (14) 
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Assuming equal curvature in the beam and the FRP plate, the relationship between the 

moments in the two adherends can be expressed as 
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   xRMxM fb   (23) 
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Moment equilibrium of the differential segment of the plated beam in Fig. 2 gives 
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Where MT(x) is the total applied moment and from Eqs. (15) and (18), the axial forces are given 

as 
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The bending moment in each adherend, expressed as a function of the total applied moment and 

the interfacial shear stress, is given as 
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And 
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The first derivative of the bending moment in each adherend gives 
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By differentiating Eq. (22), we obtain 
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Substitution of the shear forces (Eqs. (29) and (30)) and axial forces (Eq. (26)) in both 

adherends into Eq. (31) gives the following governing differential equation for the interfacial shear 

stress 
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For simplicity, the general solutions presented below are limited to loading which is either 

concentrated or uniformly distributed over part or the whole span of the beam, or both. For such 

loading, d2VT(x)/dx2 = 0, and the general solution to Eq. (32) is given by 
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B1 and B2 are constant coefficients determined from the boundary conditions. 

 
2.3 Normal stress distribution along the FRP plate - concrete interface 
 

The normal stress in the adhesive can be expressed as follows 
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Where Kn is normal stiffness of the adhesive per unit length and can be deduced as 
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Where wb(x) and wf(x) are the vertical displacements of RC beam and FRP plate, respectively. 

Differentiating Eq. (36) twice results in 
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Considering the moment–curvature relationships for the beam to be strengthened and the 
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external reinforcement, respectively 
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Based on the equilibrium Eqs. (15)-(20), the governing differential equations for the deflection 

of adherends 1 and 2, expressed in terms of the interfacial shear and normal stresses, are given as 

follows 
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Substitution of Eqs. (40) and (41) into the fourth derivation of the interfacial normal stress 

obtainable from Eq. (36) gives the following governing differential equation for the interfacial 

normal stress 
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The general solution to this fourth-order differential equation is 
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For large values of x it is assumed that the normal stress approaches zero, and as a result C3 = 

C4 = 0. The general solution therefore becomes 
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C1 and C2 are constant coefficients determined from the boundary conditions. 
 

2.4 Application of boundary conditions 
 

The same loads cases used by Smith and Teng (2001) are considered in the present method. A 

simply supported beam is investigated which is subjected to a uniformly distributed load and an 

arbitrarily positioned single point load as shown in Fig. 3. This section derives the expressions of 

the interfacial shear and normal stresses for each load case by applying suitable boundary 

conditions. 
 

Interfacial shear stress for a uniformly distributed load: 
As is described by Smith and Teng (2001) the interfacial shear stress for this load case at any 

point is written as. The constants of integration need to be determined by applying suitable 

boundary conditions. The first boundary condition is applied at the bending moment at x= 0. Here, 

the moment at the plate end 

Mf (0) and the axial force of either the concrete beam or FRP plate [Nb(0) = Nf(0)] are zero. As 

a result, the moment in the section at the plate curtailment is resisted by the beam alone and can be 

expressed as 
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Applying the above boundary condition in Eq. (22) 
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Fig. 3 Load cases 
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By substituting Eq. (33) into (49), B2 can be determined as 
 

  q
m

aL
maq

B  
2

  12
2


  (50) 

 

The second boundary condition requires zero interfacial shear stress at mid-span due to 

symmetry of the applied load. B1 can therefore be determined as 
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For practical cases 
𝜆𝐿𝜎

2
≻ 10 and as a result tanh  
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2
 ≈ 1. So the expression for B1 can be 

simplified to 
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Substitution of B1 and B2 into Eq. (33) gives an expression for the interfacial shear stress at any 

point 
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where q is the uniformly distributed load and x, a, L and Lp are defined in Fig. 1. Contrary, to the 

method presented by Smith and Teng (2001), the expression of m2 in the present method which 

take into account the shear deformations of adherends become: 
 

Interfacial shear stress for a single point load 
The general solution for the interfacial shear stress for this load case is 
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where P is the concentrated load (Fig. 3(b)) and k = λ(b ‒ a). The expression of m1, m2 and, takes 

into consideration the shear deformation of adherends. 
 

Interfacial shear stress for two point loads 
The general solution for the interfacial shear stress for this load (Fig. 3(c)) case is 
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a < b: 
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Interfacial normal stress: general expression for all three load cases 
The constants C1 and C2 are determined using the appropriate boundary conditions and they are 

written as follow 
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The above expressions for the constants C1 and C2 have been left in terms of the bending 

moment MT(0) and shear force VT(0) at the end of the soffit plate. With the constants C1 and C2 

determined, the interfacial normal stress can then be found using Eq. (44) for all three load cases. 

 

 

3. Comparison with experimental results 
 

To validate the present method, a rectangular section is used here. One of the tested beams 

bonded with steel plate by Jones (Jones et al. 1988), beams F31, is analysed here using the present 

improved solution. The beam is simply supported and subjected to four-point bending, each at the 

third point. The geometry and materials properties of the specimen are summarized in the Table 1. 

The interfacial shear stress distributions in the beam bonded with a soffit steel plate under the 

applied load 60 kN , i.e., P = 30 kN , are compared between the experimental results and those 

obtained by the present method. As it can be seen from Fig. 4, the predicted theoretical results are 

in reasonable agreement with the experimental results. 

 

 
Table 1 Dimensions and material properties 

Concrete b1 = 155 mm t1 = 255 mm E1 = 31 MPa  

Steel b2 = 125 mm t1 = 6 mm E2 = 200 000 MPa  

Adhesive ba = b2= 125 mm ta = 1,5 mm Ea = 280 MPa Ga = 108 MPa 
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Fig. 4 Comparison of interfacial shear of the steel plated RC beam with the experimental results 

 

 

4. Results and discussion 
 

Three cases are numerically studied. The first example focuses on the comparison between the 

interfacial stresses from the different existing methods and the present solution. In this example, 

the creep and shrinkage effect is not taken into account. In the second example, the time dependent 

behaviour of interface composite/RC beam is investigated. Finally, a parametric study is presented 

to show the effect of various parameters on the distributions of the interfacial stresses in an RC 

beam bonded with an FRP plate. 
 

4.1 Material used 
 

The material used for the present studies is an RC beam bonded with a glass or carbon fibre 

reinforced plastic (CFRP or GFRP) or with a steel plate. The beams are simply supported and 

subjected to a uniformly distributed load. A summary of the geometric and material properties is 

given in Table 2. 
 

4.2 Comparison of analytical solutions 
 

A comparison between the interfacial shear and normal stresses from the different existing 
 

 

Table 2 Geometric and material properties 

Material E11 (GPa) E22 (GPa) G12 (GPa) 12 Width (mm) Depth (mm) 

CFRP plate 140 10 5 0.28 bf = 200 tf = 4 

GFRP plate 50 10 5 0.28 bf = 200 tf = 4 

Steel plate 200   0.3 bf = 200 tf = 4 

RC beam 30 30  0.18 bf = 200 tb = 300 

Adhesive layer 3 3  0.35 bf = 200 ta = 4 
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Table 3 Comparison of peak interfacial shear and normal stresses (MPa) 

Load Theory 
RC beam with CFRP plate RC beam with GFRP plate 

τ σ τ σ 

UDL 

uniformly 

distributed load 

Present 1.874 0.996 1.153 0.780 

Tounsi et al. 2009 1.791 1.078 1.085 0.826 

Smith and Teng 2001 3.834 2.101 1.975 1.244 

mid-point load 

Present 2.362 1.242 1.434 0.963 

Tounsi et al. 2009 2.051 1.234 1.228 0.935 

Smith and Teng 2001 4.310 2.364 2.677 1.837 

two point loads 

Present 2.045 1.223 1.276 0.939 

Tounsi et al. 2009 2.936 2.423 1.789 1.135 

Smith and Teng 2001 8.993 4.902 5.708 3.895 

 

 

closed-form solutions, and the present new solution is undertaken in this section without taking the 

creep and shrinkage effect into account. An RC beam bonded with a CFRP soffit plate is being 

considered. 

The beam is simply supported and subjected to a uniformly distributed load. A summary of the 

geometric and material properties is given in Table 2. The span of The RC beam is 3000 mm, the 

distance from the support to the end of the plate is 300 mm and the uniformly distributed load is 

50 kN/m. Fig. 5 shows the distribution of the interfacial shear stress and the longitudinal normal 

stress near the plate end for the example RC beam bonded with a CFRP plate for the uniformly 

distributed load case. It can be seen from the figure that the stress distributions predicted by the 

present method are in good agreement with those obtained by using other methods. 

The results of the peak interfacial shear and normal stresses (at the end of the soffit plate) are 

given in Table 3 for the RC beam strengthened by bonding GFRP and CFRP plate. As it can be 
 

 

 

Fig. 5 Comparison of interfacial shear and normal stresses for an RC beam with a bonded CFRP 

soffit plate subjected to a uniformly distributed load (without creep and shrinkage effect) 
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Fig. 6 Time development of interfacial edge stresses for an RC beam with a bonded CFRP soffit plate 
 

 

  
(a) 

 

 
(b) 

Fig. 7 (a) Effect of adhesive layer thickness on edge shear stresses in CFRP strengthened RC beam; 

(b) Effect of adhesive layer thickness on edge normal stresses in CFRP strengthened RC beam 
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seen from the results, the peak interfacial stresses assessed by the present theory are smaller 

compared to those given by Smith and Teng solution (2001). This implies that adherend shear 

deformation is an important factor influencing the adhesive interfacial stresses distribution. 
 

4.3 Parametric study 
 

In this section, numerical results of the present solutions are presented to study the effect of 

various parameters on the distributions of the interfacial stresses in an RC beam bonded with an 

FRP plate. These results are intended to demonstrate the main characteristics of interfacial stress 

distributions in these strengthened beams. 
 

4.3.1 Effect of creep and shrinkage on edge interfacial stresses 
On the basis of the presented analytical method, a computer program has been written and 

 

 

 

(a) 
 

 

(b) 

Fig. 8 (a) Effect of maximum edge shear stress with different thickness of CFRP; 

(b) Effect of maximum edge normal stress with different thickness of CFRP 
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a representative example has been studied to demonstrate the effect of creep and shrinkage on edge 

interfacial stresses. In Fig. 6, the time development of the edge interfacial stresses is presented. 

From the obtained results we can conclude that the edge interfacial stresses exhibit the lower value 

after 28 days. These stresses take a peak value during the first months and begin to decrease until 

they become almost constant after a very long time. 
 

4.3.2 Effect of adhesive layer thickness 
Figs. 7(a) and (b) show the effects of the thickness of the adhesive layer on the interfacial 

stresses. Increasing the thickness of the adhesive layer leads to a significant reduction in the peak 

interfacial stresses. Thus using thick adhesive layer, especially in the vicinity of the edge, is 

recommended. In addition, it can be shown that these stresses decrease during time, until they 

become almost constant after a very long time. 
 

 

 
(a) 

 

   
(b) 

Fig. 9 (a) Influence of length of unstrengthened region on edge shear stress in CFRP strengthened RC beam; 

(b) Influence of length of unstrengthened region on edge normal stress in CFRP strengthened RC 

beam 
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Fig. 10 Effect of the fiber orientation on the interfacial shear stresses for RC beam with a bonded CFRP 

soffit plate 
 

 

 

Fig. 11 The effect of fiber volume fraction on the variation of both shear and normal adhesive stresses 

in RC beam bonded with composite plate 
 

 

4.3.6 Fiber volume fractions effect 
Fig. 11 shows, the effect of fiber volume fractions Vf (= 0.5, 0.6 and 0.7) on the variation of 

shear and normal adhesive stresses. It can be seen that the interfacial shear stresses are reduced 

with decreases in fiber volume fraction. However, almost no effect is observed on the variation of 

interfacial normal stresses. 
 

 

5. Conclusions 
 

A simple closed-form solution to calculate the interfacial shear and normal stresses of 

retrofitted concrete beam strengthened with thin composite plate under mechanical loads including 

the creep and shrinkage effect has been presented in this paper. The evaluation of interfacial 
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stresses provides the basis for understanding plate-end debonding failures in such beam and for the 

development of suitable design rules. By comparing with experimental and analytical results, this 

solution provides satisfactory predictions to the interfacial stress in the plated beams, which 

demonstrates that the adherend shear deformations and the bending deformations in CFRP plate 

have only a very small effect. In the final part of this paper, extensive parametric studies were 

undertaken by using the new solution for strengthened beams with various ratios of design 

parameters. 
 

The following conclusions to be drawn from this investigation are: 
 

(1) The proposed solution permits the study of the behavior of composite plate –RC hybrid 

beams due to the opposed effects of creep and shrinkage. 

(2) The maximum edge interfacial stresses increase with increasing alignment of all high 

strength fibers in CFRP plantain beam's longitudinal direction. 

(3) The maximum edge interfacial stresses decrease as the thickness of the adhesive increases, 

the thickness of FRP plate decreases or the length of unstrengthened region decreases. 

(4) The interfacial shear stresses are reduced with decreases in fiber volume fraction. However, 

almost no effect is observed on the variation of interfacial normal stresses. 

(5) No effect on the variation of adhesive stresses is observed when we use hygrothermal aged 

FRP plate to strengthen the RC beam. 
 

In conclusion, we can say that in addition to matrix composite fiber materials, another 

alternative may be proposed for strengthening structures, this will involve the use of functionally 

graded materials FGM (Bourada et al. 2015, Bennoun et al. 2016, Belabed et al. 2014, Bellifa et al. 

2017, Bouafia et al. 2017, Bousahla et al. 2014, Abualnou et al. 2018 and Abdelaziz et al. 2017) in 

order to ensure continuity properties lift through the thickness of the reinforcement plate. 
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