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Abstract.  Electro-Discharge machining (EDM) is a thermal process comprising a complex metal removal 

mechanism. This method works by forming of a plasma channel between the tool and the workpiece 

electrodes leading to the melting and evaporation of the material to be removed. EDM is considered 

especially suitable for machining complex contours with high accuracy, as well as for materials that are not 

amenable to conventional removal methods. However, several phenomena can arise and adversely affect the 

surface integrity of EDMed workpieces. These have to be taken into account and studied in order to optimize 

the process. Recently, artificial neural networks (ANN) have emerged as a novel modeling technique that 

can   provide reliable results and readily, be integrated into several technological areas. In this paper, we use 

an ANN, namely, the multi-layer perceptron and the back propagation network (BPNN) to predict the mean 

surface roughness of electro-discharge machined surfaces. The comparison of the derived results with 

experimental findings demonstrates the promising potential of using back propagation neural networks 

(BPNNs) for getting a reliable and robust approximation of the Surface Roughness of Electro-discharge 

Machined Components. 
 

Keywords:  artificial neural networks (ANNs); back propagation neural networks (BPNNs); mean 

surface roughness; electro-discharge machining (EDM); normalization 

 
 
1. Introduction 
 

Electro-Discharge Machining is the most widely used and successful technique, among the 

various non-conventional machining methods, for the high precision manufacturing of a plethora 

of conductive materials regardless of their mechanical properties. It has been to be a very efficient 

and effective method for producing complex geometries on difficult-to-work materials; however, 
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there are several problems pertaining to the resulting surface roughness and texture which in turn 

affects the product quality and limits the possible applications. Since these problems are due to the 

random nature of surface formation, there is a lack of formal methods for analytically, estimating 

the resulting surface roughness. Instead, we rely and employ empirical methods,usually, based on 

multi-regression analysis, for predicting the roughness of EDM worked pieces (Petropoulos et al. 

2004, Petropoulos et al. 2009, Vaxevanidis et al. 2013, Al-Ghamdi and Aspinwall 2014, Al-

Ghamdi and Taylan 2015, Das et al. 2014, Kumar et al. 2014, Moghaddam and Kolahan 2015, 

Pattnaik et al. 2014, Porwal et al. 2014, Tang and Guo 2014, Pradhan and Das 2015, Pramanick et 

al. 2014, Rahman Khan et al. 2014, Sarkheyli et al. 2014, Wang et al. 2014 and Huang et al. 

2015). Detailed and in-depth state-of-the-art reports can be found in Shrivastava and Dubey 

(2014). 

The surface roughness describes the geometry of the surface to be machined and it is 

interrelated with surface texture and surface integrity. The surface roughness formation mechanism 

is a very complex procedure that mainly, depends on the machining process. (Vaxevanidis et al. 

2014) Hence, it is very difficult to determine the surface roughness through analytical equations. 

Artificial Neural Networks (ANNs) have emerged as a novel approach that has been applied in 

several areas of technology, especially, for problems where the input and output values cannot be 

directly connected by simple equations. One such area, is the manufacturing process, where this 

technique has been used, particularly, to EDM (Dini 1997). So far the relevant literature, mainly, 

includes mainly, publications, involving the application of ANNs, for determining the removal rate 

of the process, the optimization of its parameters as well as its on-line monitoring (for a review see 

Markopoulos et al. 2008). Other artificial intelligence methods such as fuzzy logic and genetic 

algorithms have also been used for modeling the EDM process (Wang et al. 2003). 

In the present paper, we consider the application of ANNs for predicting of the surface 

roughness of electrical discharge machined surfaces is investigated. We train these models, using 

data from an extensive experimental research work in the surface integrity of EDMed steels. This 

paper follows up on a statistical multi-parameter surface roughness analysis already published 

(Petropoulos et al. 2004, Petropoulos et al. 2006). Three tool steels, namely AISI D2, P20 

modified and premium H13 were tested. Based on a design-of-experiments methodology, we 

varied the pulse current Ie and the pulse-on time Ip, from roughing to near finishing, resulting to 

different pulse energies. The ANN models presented in this paper take use the workpiece material, 

the pulse current and the pulse-on time as input parameters in order to predict the center-line 

average Ra surface roughness. The suggested neural networks were trained with experimental data 

from the previous mentioned series of experiments. The proposed neural networks have been 

proven to be very successful, exhibiting very reliable predictions, and thus constituting a valid 

alternative to lengthy and costly experiments. 

 

 

2. Architecture of artificial neural networks 
 

This section summarizes the mathematical and computational aspects of artificial neural 

networks (ANNs). A special emphasis is given on a heuristic algorithm which is proposed for the 

development of a reliable and robust ANN that can predict the mean surface roughness of electro-

discharge machined surfaces. ANNs are information processing models configured for a specific 

application through a training process. A trained ANN has learned to rapidly map a given input 

into the desired output quantities (similar to curve fitting procedures) and thereby can be used as 
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meta-models enhancing the computational efficiency of a numerical analysis process. This major 

advantage of a trained ANN over conventional numerical analysis procedures like regression 

analysis, under the condition that the training and validation data cover the entire range of input 

parameters values, is that the results can be produced with much less computational effort (Hornik 

et al. 1989, Adeli 2991, Plevris and Asteris 2014 and 2015, Giovanis and Papadopoulos 2015, 

Mansouri and Kisi 2015, Asteris and Plevris 2013, 2016, Asteris et al. 2016, Zhang et al. 2016, Xu 

and Gao 2016, Mansouri et al. 2016, Asteris and Kolovos 2017, Asteris et al. 2017). 

 

2.1 Back-propagation neural networks 
 

In the present study, we use a Back-Propagation Neural Network (BPNN). This type of NN, 

works, as follows. During a training phase, the output of the network is compared with the correct 

answer to compute the error, based on a predefined error function. Then the error is fed back, from 

the output layer of the network, all the way down to the input layer, through the various 

intermediate-hidden layers of the network. Based on the error-the discrepancy between the 

computed and the desired output value, the algorithm adjusts the adaptive weights-the plastic 

contacts of the connections to the nodes, in each layer of the network. The algorithm, by changing 

the weights of the connections, seeks to modify the network response, in a direction that reduces 

the error. After repeating this process for a sufficiently large number of training cycles, the 

network will usually converge to a state of relatively small output error. At this stage, the network 

will have reached a certain target function. As the algorithm's name implies, the errors propagate 

backwards from the output to the input nodes, through the various inner layers nodes. Thus, back-

propagation is used to calculate the gradient of the error of the network with respect to the 

network's modifiable weights. To adjust the weights properly, we use a variant of the back 

propagation algorithm, based on the Levenberg-Marquard Algorithm (Lourakis 2005) for non-

linear optimization. In order to minimize the error, the derivative of the error function with respect 

to the network weights is calculated, and the weights are then adjusted to reduce the error (thus 

descending on the surface of the error function). For this reason, back-propagation can only be 

applied on networks with differentiable activation functions. Back-propagation can give to suitable 

local networks with quick convergence on satisfactory local error minima. 

A BPNN is a feed-forward, multilayer network of standard structure, i.e., neurons are not 

connected with each other in the layer they belong to, but they are connected with all the neurons 

of the previous and subsequent layer. A BPNN has a standard structure that can be written as 

N − H1 − H2 −∙∙∙ −HNHL − M (1) 

where N is the number of input neurons (input parameters);  Hi is the number of neurons in the 

i − th hidden layer for i = 1, … , NHL; NHL is the number of hidden layers and M is the number of 

output neurons (output parameters). Fig. 1 depicts an example of a BPNN composed of an input 

layer with 5 neurons, two hidden layers with 4 and 3 neurons respectively and an output layer with 

2 neurons, i.e., a 5-4-3-2 BPNN. 

Another notation for a single node (with the corresponding R-element input vector) of a hidden 

layer is presented in Fig. 2. For each node, the inputs signals p1, … ,  pR to that node are multiplied 

by the weights w1,1, … ,  w1,R  of the connections to that node and the weighted values are fed to 

the summing junction. At that point, the dot product (W.p) of the single row matrix W =

[w1,1, … , w1,R] and the column vector p = [p1, … ,  pR]T is generated. The threshold b (bias) is 

added to the dot product forming the net input n which is the argument of the transfer function  
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Fig. 1 A 5-4-3-2 BPNN 
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Fig. 2 A neuron with a single R-element input vector 

 

 

n = w1,1p1 + w1,2p2 +   … +  w1,RpR + b = Wp + b (2) 

 
2.2 Transfer functions 

 

The choice of the transfer function may strongly influence the complexity and performance of 

neural networks. Transfer functions are used in ANNs as activation functions connecting the 

weights 𝑤𝑖 of a neuron 𝑖  to the input. Although sigmoidal transfer functions are the most 

commonly used, there is no a priori reason why models based on such functions should always 

provide optimal decision borders. Past studies (Bartlett 1998, Karlik and Olgac 2011) have 

proposed a large number of alternative transfer functions. In the present study the following 

functions are used: 

 

The identity („linear‟) transfer function 

The simplest transfer function commonly used is that of the identity activation function (Fig. 

3). The output of the identity function and its derivative are given by 
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(a) 

 
(b) 

Fig. 3 Common activation functions (a) and their derivatives (b) 

 

 

(n) = n (3) 


′(n) = 1 (4) 

This function yields output values in the interval (-, +), while its derivative always yields 

output values equal to 1. It is worth mentioning that the combination of using nonlinear activation 

functions among the neurons of hidden units and the identity function for the output layer leads to 

a robust form of nonlinear regression. The network can predict continuous target values using a 

linear combination of signals that arise from one or more layers of nonlinear transformations of the 

input. 

 

The Logistic Sigmoid Activation Function 
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Another function, which is often used as output activation function, is the logistic sigmoid (Fig. 

3). The output of this function and its derivative are given by 

(n) =
1

e−n + 1
 (5) 


′(n) =

1 + e−n + 1

(1 + e−n)2
 (6) 

This function, yielding output values in the interval (0, +1) is suitable for binary classification 

problems for which the outputs values are in the interval (0, +1). 

 

The Hyperbolic Tangent activation function 

An alternative to the logistic sigmoid is the hyperbolic tangent, or tanh function (Fig. 3). The 

output of the hyperbolic tangent function and its derivative are given by 

(n) =
e2n − 1

e2n + 1
 (7) 


′(n) = 4

e2n

(e2n + 1)2
 (8) 

The tanh function is also sigmoidal (“s”-shaped). This function yields output values in the 

interval (-1, 1), while its derivative yields output values in the interval (0, 1). Thus strongly 

negative inputs to the tanh will map to negative outputs. Additionally, only zero-valued inputs are 

mapped to near-zero outputs. These properties make the network less likely to get “stuck” during 

training. 

 

2.3 Finding the best architecture of a ΑΝΝ or how to avoid the over-fitting problem 
 

The best architecture for an ANN can be identified, given the known number of parameters for 

input and output, for the present application), by estimating the optimum number of hidden layers 

and neurons. 

Finding the best architecture avoids the over-fitting problem. Over-fitting generally occurs 

when a model is excessively complex, such as having too many parameters relative to the number 

of observations as well as when the training data do not cover the entire range of the input 

parameters values of the problem. An extreme example of over-fitting where the number of 

parameters the number of parameters is equal or exceeds the observations a simple model can 

predict the training data by memorizing them but fails to predict new ones by not learning to 

generalize. In order to prevent over-fitting several techniques/algorithms and criteria have been 

proposed (Papadopoulos et al. 2012, Lamanna et al. 2012, Chen 2013, Giovanis and Papadopoulos 

2015, Asteris et al. 2016) for determining the correct number of neurons with their hidden layer 

based mainly on the number of inputs and output parameters (Blum 1992, Boger and Guterman 

1997, Berry and Linoff 1997). In the present work, we propose a simple heuristic algorithm for 

building a reliable and robust ANN suitable for learning and producing, during performance, the 

continuous mapping from the input to the output space. The steps of the proposed algorithm which 

can reliably predict the Surface Roughness of Electro-discharge Machined Components are as 

follows: 
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Step 1: Normalization of data: The normalization is carried out in a pre-processing stage. Pre-

processing has been proved to be the most crucial step of any type problem in the field of soft 

computing techniques such as the artificial neural networks techniques.  

Step 2: Development and training of several neural networks: The development and training of 

the NNs occurs with a number of hidden layers ranging from 1 to 2 and with a number of neurons 

ranging from nip-1 to 15, where nip correspond to input parameters. Each one of the NNs is 

developed and trained for a number (nf) of activation functions as well as with and without the use 

of data preprocessing techniques (step 1). 

Step 3: Determination of mean square error: For each one of the above trained NNs the mean 

square error (MSE) is computed for a set of data (validation data) which have not been used during 

the training process (training data) of the ANNs. 

Step 4: Establishment of upper and lower limits: Upper and lower limits are introduced for each 

one of the output parameters based on experimental or numerical data as well as reasonable 

estimations by the users.  

Step 5: Selection of optimum architecture: The optimum architecture is the one that gives the 

minimum mean square error while all the computed output parameters for all the validation data 

are between the upper and lower limits. 

It should be emphasized the importance of the limits established at Step 3 based on the user‟s 

expertise, since it is needed wide experience not only in relation to the neural networks but also to 

the specific field applied in order to establish reasonable estimations. 

 

 

3. Results and discussion 
 

In this section, the reliability, the effectiveness and the robustness of the above proposed 

algorithm, for finding of the best architecture of a BPΝΝ, is presented through a step-by-step 

approach. In particular, the proposed algorithm has been applied for the prediction of the mean 

surface roughness of electro-discharge machined surfaces. 

 

3.1 Experimental 
 

ED Machining was performed on a HOSTEK SH-38GP (ZNC-P type) electro-discharge 

machine-tool with working voltage of 30V and open circuit voltage of 100V. Fifty four 

experiments were conducted in typical dielectric oil (BP250) with electrolytic copper being used 

as the tool electrode (anode). In particular, three different tool steels, namely AISI D2, P20 

modified and premium H13 were machined (cathode), with the specimens being in the form of 

square plates of dimensions 70 mm×70 mm×10 mm. We varied the pulse current Ie and the pulse-

on time, tp, which are considered to be the main operational parameters, over a range from 

roughing to near finishing. More specifically Ie was set at 5, 10, 15, 20, 25, 30 (A) and tp at 100, 

300 and 500 (μs). 

We performed the surface texture analysis, using a Rank Taylor-Hobson Surtronic 3+ 

profilometer equipped with the Talyprof®  software. The cut-off length was selected at 0.8 mm 

whilst 20 measurements were conducted on every specimen at random directions, as it is known 

that EDMachining generates geometrically isotropic texture (Petropoulos et al. 2009). It is worth 

mentioning that the surface roughness parameter considered was the center-line average (mean) 

surface roughness, Ra. Worth mentioning that Ra is by far the most commonly used parameter in  
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Table 1 Experimental data/results and input and output parameters of BPNNs 

Sample Material 

Input Output 

Comments 

* 
Material Encoding with Pulse current 

Ie (A) 

Pulse 

duration tp 

(µs) 

Mean Surface 

Roughness, Ra 

(µm) 3 parameters 1 parameter 

1 AISI D2 1 0 0 1 5 100 3.95 T 

2 AISI D2 1 0 0 1 10 100 4.24 V 

3 AISI D2 1 0 0 1 15 100 6.42 Test 

4 AISI D2 1 0 0 1 20 100 7.95 T 

5 AISI D2 1 0 0 1 25 100 7.98 V 

6 AISI D2 1 0 0 1 30 100 8.12 T 

7 AISI D2 1 0 0 1 5 300 5.26 T 

8 AISI D2 1 0 0 1 10 300 8.27 V 

9 AISI D2 1 0 0 1 15 300 9.85 Test 

10 AISI D2 1 0 0 1 20 300 11.29 T 

11 AISI D2 1 0 0 1 25 300 11.97 V 

12 AISI D2 1 0 0 1 30 300 12.50 T 

13 AISI D2 1 0 0 1 5 500 7.97 T 

14 AISI D2 1 0 0 1 10 500 8.48 V 

15 AISI D2 1 0 0 1 15 500 11.46 Test 

16 AISI D2 1 0 0 1 20 500 13.72 T 

17 AISI D2 1 0 0 1 25 500 14.15 V 

18 AISI D2 1 0 0 1 30 500 14.71 T 

19 AISI P20 0 1 0 2 5 100 4.39 T 

20 AISI P20 0 1 0 2 10 100 4.50 V 

21 AISI P20 0 1 0 2 15 100 5.61 Test 

22 AISI P20 0 1 0 2 20 100 6.94 T 

23 AISI P20 0 1 0 2 25 100 8.23 V 

24 AISI P20 0 1 0 2 30 100 9.92 T 

25 AISI P20 0 1 0 2 5 300 4.92 T 

26 AISI P20 0 1 0 2 10 300 8.90 V 

27 AISI P20 0 1 0 2 15 300 11.48 Test 

Note: T: Training Data; V: Validation Data; Test: Test Data 

 

 

surface finish measurement and for general quality control. Despite its inherent limitations, it is 

easy to measure and offers a good overall description of the height characteristics of a surface 

profile (Petropoulos et al. 2004). 

The process parameters and the mean surface roughness values, we measured are tabulated in 

Table 1. Note that for the present research experiments with operational parameters reported in 

(Markopoulos et al. 2008 and Vaxevanidis et al. 2013) where repeated and additional experiments 

were performed in order to follow best practice concerning the design of experiments (Phadke 

1989). 
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Table 1 Continued 

Sample Material 

Input Output 

Comments 

* 
Material Encoding with Pulse current 

Ie (A) 

Pulse 

duration tp 

(µs) 

Mean Surface 

Roughness, Ra 

(µm) 3 parameters 1 parameter 

28 AISI P20 0 1 0 2 20 300 13.06 T 

29 AISI P20 0 1 0 2 25 300 13.44 V 

30 AISI P20 0 1 0 2 30 300 13.34 T 

31 AISI P20 0 1 0 2 5 500 7.39 T 

32 AISI P20 0 1 0 2 10 500 10.95 V 

33 AISI P20 0 1 0 2 15 500 12.12 Test 

34 AISI P20 0 1 0 2 20 500 13.39 T 

35 AISI P20 0 1 0 2 25 500 14.18 V 

36 AISI P20 0 1 0 2 30 500 14.65 T 

37 AISI H13 0 0 1 3 5 100 5.32 T 

38 AISI H13 0 0 1 3 10 100 6.01 V 

39 AISI H13 0 0 1 3 15 100 6.83 Test 

40 AISI H13 0 0 1 3 20 100 7.45 T 

41 AISI H13 0 0 1 3 25 100 7.76 V 

42 AISI H13 0 0 1 3 30 100 7.96 T 

43 AISI H13 0 0 1 3 5 300 6.69 T 

44 AISI H13 0 0 1 3 10 300 8.14 V 

45 AISI H13 0 0 1 3 15 300 10.11 Test 

46 AISI H13 0 0 1 3 20 300 11.59 T 

47 AISI H13 0 0 1 3 25 300 12.20 V 

48 AISI H13 0 0 1 3 30 300 12.62 T 

49 AISI H13 0 0 1 3 5 500 7.68 T 

50 AISI H13 0 0 1 3 10 500 8.86 V 

51 AISI H13 0 0 1 3 15 500 11.37 Test 

52 AISI H13 0 0 1 3 20 500 13.34 T 

53 AISI H13 0 0 1 3 25 500 14.15 V 

54 AISI H13 0 0 1 3 30 500 14.91 T 

Note: T: Training Data; V: Validation Data; Test: Test Data 

 

 

3.2 Normalization of data 
 

As stated above, the normalization of the parameters considered in the database has a 

significant impact on the ANN procedure. In theory, it's not necessary to normalize numeric data. 

However, practice has shown that when numeric data values are normalized, neural network 

training is often more efficient leading to more accurate predictions. Basically, if numeric data is 

not normalized, and the magnitudes of two predictors are far apart, then a change in the value of a 

neural network weight has far more relative influence on the value with larger magnitudes.  
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Table 2 Training parameters of BBNN models 

Parameter Value 

Training Goal 0 

Training Algorithm Levenberg-Marquardt Algorithm 

Epochs 1000 

Cost Function MSE; SSE 

Transfer Functions Tansig (T); Logsig (L) 

Initial Weights of Hidden Layers 1.00 

Initial Weights of Bias 1.00 

Note: MSE: Mean Square Error; SSE: Sum Square Error; Tansig (T): Hyperbolic Tangent Sigmoid transfer 

function; Logsig (L): Log-sigmoid transfer function 

 

 

In the present study, during the pre-processing stage, the Min-Max (Delen et al. 2006) as well 

as the ZScore Normalization techniques have been been used. In particular, the two input 

parameters Pulse current (Ie) and Pulse duration (tp) as well as the output parameter Roughness 

(Ra) have been normalized using the above normalization methods which involve simple 

techniques. In particular, to avoid problems associated with low learning rates of the ANN (Iruansi 

et al. 2010) it is better to normalize the values of the parameters between an appropriate upper and 

lower limit value of the subject parameter. The above mentioned three parameters have been 

normalized for the case of MinMax normalization method for upper and lower limit value between 

(0, 1) and (-1, 1). 

 

3.3 Material encoding 
 

In developing the BPNN model, we gave special emphasis to the encoding of the experimental 

data. That data involved measurements from three different materials. (AISI D2, AISI P20 and 

AISI H13). To simulate the quality (characteristics) of the materials, we considered two cases. In 

the first case the representation of the materials was by means of a single input parameter with 

values 1, 2 and 3 for the materials AISI D2, AISI P20 and AISI H13, respectively. In the second 

case the representation of the material has been achieved through three input parameters with 

values 1, 0, 0 for the material AISI D2, 0, 1, 0 for the material AISI P20 and 0, 0, 1 for the material 

AISI H13. 

 

3.4 BPNN model development 
 

Based on the above described algorithm, 2880 BPNN models have been developed and 

investigated. Each one of these models was trained by means of 27 datasets (out of the total of 54, 

that is a 50% percentage) and the reliability of the results was validated by means of 18 datasets 

(33.33%) and was tested against the remaining 9 data sets (16.67% of total), by calculating the 

Pearson‟s correlation coefficient R. The parameters used for the training of NN models are 

summarized in Table 2. The above data sets have been selected by dividing the total data set (54 

experiments) using specified indices as it is shown in the last column (“Comments”) of the Table 

1. 

The total of the 2880 developed NN models, which have been ranked based on Pearson‟s  
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Fig. 4 The Best 5-15-8-1 BPNN based on Pearson‟s correlation coefficient R 

 

 

correlation coefficient R and the architecture of the top twenty models are presented in Table 3. 

Based on these results, the optimum BPNN model is that of 5-15-8-1 (Fig. 4) with Pearson‟s 

correlation coefficient R equal to 0.99507 (see first row of Table 3 as well as Fig. 5). This network 

corresponds to the case of (a) architecture with two hidden layers, (b) the material has been 

encoded with three input parameters and (c) with ZScore normalization technique. It should be 

noted that the second one is that of 5-9-8-1 with Pearson‟s correlation coefficient R equal to 

0.99505 (see second row of Table 3) which also corresponds to a NN with two hidden layers and 

has been derived using the MinMax normalization technique for the case of upper and lower limit 

value between (-1, 1). 

Fig. 6 presents the experimental values in comparison to the predicted values by the optimum 

BPNN model of 5-15-8-1. It is clear that the mean surface roughness of electro-discharge 

machined surfaces predicted from the multilayer feed-forward neural network, are very close to 

the experimental results. 

It is also worth mentioning that  

• The majority of the top twenty models (19 from 20) corresponds to models with two hidden 

layers, 

• The way of encoding the material is a crucial parameter; in 17 from the top twenty models the 

material has been modelled using three inputs parameters, 

• The majority of the top twenty models (17 from 20), including the optimum one, corresponds 

to models where the data have been normalized, 

• The total of the top twenty models presented in Table 3 have been trained under a number of 

epochs range between 39 and 168, which means that the developed multilayer feed-forward neural 

network models can predict the mean surface roughness of electro-discharge machined surfaces 

with smaller error rates and less computational effort compared with those available in the 

literature models. 
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Table 3 Ranking of the top twenty best architectures of BPNNs based on Pearson‟s correlation coefficient R 

Ranking 
Material 

Encoding 
Preprocess 

Cost 

Function 

Architecture 

(Code) 

Training 

Functions 
Pearson‟s R 

Number of 

Epochs 

1 3 ZScore SSE 5-15-8-1 T-T-T 0.99507 91 

2 3 MinMax (-1, 1) MSE 5-9-8-1 T-L-T 0.99505 75 

3 3 ZScore SSE 5-12-12-1 T-L-T 0.99472 114 

4 3 No MSE 5-14-10-1 T-L-T 0.99450 67 

5 1 MinMax (-1, 1) MSE 3-13-5-1 T-T-T 0.99448 49 

6 3 MinMax (0, 1) MSE 5-14-1 T-T 0.99438 112 

7 3 MinMax (0, 1) SSE 5-11-6-1 T-T-T 0.99435 51 

8 3 ZScore SSE 5-9-5-1 T-L-T 0.99415 82 

9 3 ZScore SSE 5-13-7-1 T-T-T 0.99395 39 

10 3 No MSE 5-13-11-1 T-T-T 0.99363 79 

11 1 MinMax (-1, 1) SSE 3-10-5-1 T-T-T 0.99357 54 

12 3 No SSE 5-9-9-1 T-T-T 0.99353 117 

13 3 MinMax (-1, 1) SSE 5-12-6-1 T-T-T 0.99346 75 

14 3 MinMax (0, 1) MSE 5-15-6-1 T-T-T 0.99326 76 

15 3 MinMax (-1, 1) SSE 5-12-11-1 T-T-T 0.99310 168 

16 1 ZScore SSE 3-10-8-1 T-T-T 0.99306 89 

17 3 MinMax (0, 1) MSE 5-9-5-1 T-T-T 0.99293 78 

18 3 MinMax (0, 1) MSE 5-15-9-1 T-T-T 0.99293 114 

19 3 MinMax (0, 1) MSE 5-10-10-1 T-L-T 0.99290 76 

20 3 ZScore SSE 5-15-8-1 T-T-T 0.99507 91 

Note: Material Encoding: 3 means that 3 inputs parameters have been used for the encoding of the material 

encoding while Material Encoding: 1 means that only1 input parameter has been used for the encoding of 

the material 

 
 

In order to be useful, a proposed NN architecture should be accompanied by the (quantitative) 

values of weights. In such a case, the NN model can be readily implemented in an MS-Excel 

spreadsheet, thus available to anyone interested in the problem of modelling. To this end, the final 

values of weights and biases of the optimum NN architecture are explicitly reported in Fig. 7. 

 

 
4. Conclusions 
 

In this paper, the artificial neural networks method was assessed by investigating its accuracy 

in predicting the mean surface roughness of electro-discharge machined surfaces. In particular, a 

novel heuristic algorithm was proposed to find the optimal architecture out of a set of multi 

layered feed-forward back-propagation neural networks. Using this algorithm a ranking list of the 

best architectures of neural network models based on the Pearson‟s correlation coefficient R was 

selected. The mean surface roughness of electro-discharge machined surfaces predicted from the 

multilayer feed-forward neural network, are very close to the experimental results as confirmed by 

correlation coefficient R. In conclusion, mean surface roughness of electro-discharge machined  
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Fig. 5 Pearson‟s correlation coefficient R of the experimental and predicted Roughness, Ra for the best with 

two hidden layers BPNN (5-15-8-1) 

 

 

Fig. 6 Experimental vs Predicted values of Surface Roughness 

 

 
Fig. 7 Final Weights and Bias Values of the optimum BPNN model 5-15-8-1 
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surfaces can be predicted by multilayer feed-forward neural network model with smaller error 

rates and less computational effort. 

As delineated by the authors of this paper, a more reliable NN architecture (with respect to the 

presented herein) can be developed for the prediction of the mean surface roughness of electro-

discharge machined surfaces. To this end a set of additional optimization functions will be used for 

the training of the NNs as well all a set of different computational units will be used to find the 

best architecture. 
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