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Abstract.  In this paper, thermal vibration behavior of nanoscale beams made of functionally graded (FG) 

materials subjected to various types of thermal loading are investigated. A Reddy shear deformation beam 

theory which captures both the microstructural and shear deformation effects without the need for any shear 

correction factors is employed. Material properties of FG nanobeam are assumed to be temperature-

dependent and vary gradually along the thickness according to the power-law form. The influence of small 

scale is captured based on nonlocal elasticity theory of Eringen. The nonlocal equations of motion are 

derived through Hamilton’s principle and they are solved applying analytical solution. The comparison of 

the obtained results is conducted with those of nonlocal Euler-Bernoulli beam theory and it is demonstrated 

that the proposed modeling predict correctly the vibration responses of FG nanobeams. The effects of 

nonlocal parameter, material graduation, mode number, slenderness ratio and thermal loading on vibration 

behavior of the nanobeams are studied in detail. 
 

Keywords:  third-order shear deformation beam theory; thermo-mechanical vibration; functionally 

graded nanobeam; Eringen elasticity theory 

 
 
1. Introduction 
 

Functionally graded materials (FGMs) are known as modern inhomogeneous composite 

materials which have gained wide potential applications for various machineries and in various 

systems and devices under thermo-mechanical loadings, such as heat engine components, 

spacecraft heat shields, jet fighter structures, and plasma coatings for fusion reactors. In these 

novel materials, the volume fractions of two or more material constituents such as a pair of 

ceramic and metal are supposed to change continuously throughout the desired directions. The 

FGM materials constituents provide several beneficial features, for instance, the ceramic 

constituents are capable to endure vigorous temperature environments due to their better thermal 

resistance characteristics, while the metal constituents possess stronger mechanical performance 

and diminishes the possibility of disastrous fracture. Hence, presenting novel mechanical 

properties, FGMs have gained its applicability in several engineering fields, such as biomedical 
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engineering, nuclear engineering and mechanical engineering. Based on these advantages, a 

number of researches, dealing with static, buckling, dynamic characteristics of FG structures, had 

been published in the scientific literature (Ebrahimi and Rastgoo 2008a, b, c, Ebrahimi 2013, 

Ebrahimi et al. 2008, 2009a, b, 2016a, Ebrahimi and Zia 2015, Ebrahimi and Mokhtari 2015). 

Due to the awesome mechanical, chemical, and electronic properties of structural elements 

such as nanoscale beams and plates in micro/nano electro-mechanical systems (MEMS/NEMS), a 

motivation occurred in analysis of micro/nano structures where the size effects are prominent. In 

these applications, size effects become prominent. Since the invention of carbon nanotubes (CNTs) 

by Iijima (1999), nanoscale engineering materials have exposed to considerable attention in 

modern science and technology. These structures possess extraordinary mechanical, thermal, 

electrical and chemical performances that are superior to the conventional structural materials. 

Therefore nanostructures attract great interest by researchers based on molecular dynamics and 

continuum mechanics. The problem in using the classical theory is that the classical continuum 

mechanics theory does not take into account the size effects in micro/nano scale structures. The 

classical continuum mechanics over predicts the responses of micro/nano structures. An alternative 

approach to capture the size effects is using molecular dynamic simulations (MD) which is an 

accurate implement for analyzing of nano-structural components. But even the molecular dynamic 

simulation at nano scale is computationally exorbitant for modeling the nanostructures with large 

numbers of atoms. So a conventional form of continuum mechanics that can capture the small 

scale effect is required. Eringen’s nonlocal elasticity theory (Eringen 1983) is the most commonly 

used continuum mechanics theory that includes small scale effects with good accuracy to model 

micro/nano scale devices and systems. The nonlocal elasticity theory assumes that the stress state 

at a reference point is a function of the strain at all neighbor points of the body. Hence, this theory 

could take into consideration the effects of small scales. Lots of studies have been performed to 

investigate the size-dependent response of structural systems based on Eringen’s nonlocal 

elasticity theory (Ebrahimi and Salari 2015a, b, 2016, Ebrahimi et al. 2015a, 2016c, Ebrahimi and 

Nasirzadeh 2015, Ebrahimi and Barati 2016a, b, c, d, e, f, Ebrahimi and Hosseini 2016a, b, c). 

In order to investigate as well as design the FG micro and nanoscale structures several studies 

is conducted in recent years. Concerning taking into account the size-effect for FG beam structures 

based on the nonlocal constitutive relation of Eringen, a large number of studies have been 

conducted attempting to develop nonlocal beam models for predicting the mechanical responses of 

nanobeams. Peddieson et al. (2003) proposed the nonlocal Euler-Bernoulli beam theory to be 

applied to materials in micro and nano scale. Various available beam theories are formulated by 

Reddy (2007), through nonlocal differential relations of Eringen. A general nonlocal beam model 

for analysis bending, buckling, and vibration of nanobeams using different beam theories are 

presented by Aydogdu (2009). The flapwise bending-vibration of rotating nanocantilevers are 

investigated by Pradhan and Murmu (2010) using differential quadrature method. They noticed 

that size effects have a main role in the vibration behavior of rotating nanostructures. Thai (2012) 

suggested a nonlocal higher order beam theory to study mechanical responses of nanobeams. 

Civalek et al. (2010) proposed formulation of the governing equations of nonlocal Euler-Bernoulli 

beams to investigate bending of cantilever microtubules via the differential quadrature method. In 

other scientific work, Wang and Liew (2007) carried out the static analysis of micro and nano scale 

structures based on nonlocal continuum mechanics using Euler-Bernoulli and Timoshenko beam 

theory. Simsek (2014) proposed a non-classical beam model based on the Eringen’s nonlocal 

elasticity theory for nonlinear vibration of nanobeams with various boundary conditions. The 

nonlocal beam model based on Eringen’s theory for the vibration of FG and composite nanobeams 
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are presented by Zenkour et al. (2014). Ansari et al. (2015) investigate a size-dependent nonlinear 

forced vibration of magneto-electro-thermo-elastic Timoshenko nanobeams based on the nonlocal 

elasticity theory. 

To properly apply the FG micro/nano materials in micro/nano electromechanical systems 

(MEMS/NEMS), their mechanical behavior needs to be investigated. Recently, Eltaher et al. 

(2012) presented a finite element analysis for free vibration of FG nanobeams using nonlocal EBT. 

Rahmani and Pedram (2014) analyzed the size effects on vibration of FG nanobeams based on 

nonlocal TBT. Also, recently Hosseini-Hashemi et al. (2014) investigated free vibration of FG 

nanobeams with consideration surface effects and piezoelectric field using nonlocal elasticity 

theory. Ebrahimi et al. (2015) and Ebrahimi and Salari (2015a) examined the applicability of 

differential transformation method in investigations on vibrational characteristics of FG size-

dependent nanobeams. Most recently Ebrahimi and Barati (2016g, h, I, j, k, l, m, n, o, p, q, r, s, t, 

u, v, 2017a, b) and Ebrahimi et al. (2017) explored thermal and hygro-thermal effects on nonlocal 

behavior of FG nanobeams and nanoplates. Li and Hu (2017) examined torsional vibration of bi-

directional functionally graded nanotubes based on nonlocal elasticity theory. Also, they (2017) 

performed post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress 

and microstructure-dependent strain gradient effects. Li et al. (2016) carried out free vibration 

analysis of nonlocal strain gradient beams made of functionally graded material.  

Although the size-dependent FG beam models have been developed in the aforementioned 

studies, most of them ignore the effects of thermal environment. Also, the common use of FGMs 

in high temperature environment leads to considerable changes in material properties. For 

example, Young’s modulus usually reduces when temperature increases in FGMs. To predict the 

behavior of FGMs subjected to extreme temperatures more accurately, it is necessary to consider 

the temperature dependency on material constituent’s properties. Furthermore, due to the 

expansion of new industries and technologies, many systems and structures experience severe 

thermal environments, resulting in various types of thermal loads. This situation has created a need 

for a text that is focused on the analysis of thermal vibration. Thermal vibration is a phenomenon 

in many structures that should be checked to ensure the safety of structures. Consequently, thermal 

vibration analysis of beam structures is common in structural mechanics. Hence, presenting an 

accurate model of FG nanobeams is very important for successful NEMS design. Considering 

great application of beams in different engineering fields such as aerospace and mechanical 

engineering, and due to the fact that making temperatures and working temperature of structures 

are not equal, for more accurate design, it is useful to study their thermos-mechanical behavior. 

Several studies have been performed to investigate the thermal effect on mechanical responses of 

FGM beams. Wattanasakulpong et al. (2011) investigated thermal buckling and elastic vibration of 

third-order shear deformable FG beams. Thermo-mechanical buckling and nonlinear free vibration 

analysis of FG beams on nonlinear elastic foundation is investigated by Fallah and Aghdam 

(2012). Small amplitude vibrations of a FG material beam under in-plane thermal loading in the 

prebuckling and postbuckling regimes is studied by Esfahani et al. (2014). It should be cited that, 

in these work the beams are in macro scale and small scale effect is not taken into consideration. 

For the FG nanobeam problems, Ebrahimi and Salari (2015c) investigated the thermal effects on 

buckling and free vibration characteristics of FG size-dependent Timoshenko nanobeams subjected 

to an in-plane thermal loading. In another study, Thermo-mechanical vibration analysis of nonlocal 

temperature-dependent FG nanobeams with various boundary conditions is investigated by 

Ebrahimi and Salari (2015d). An exact solution for the nonlinear forced vibration of FG 

nanobeams in thermal environment based on surface elasticity theory is presented by Ansari et al. 
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(2015). It is noticed that most of the previous studies on mechanical analysis of FG nanobeams 

have been carried out based on Euler-Bernoulli and Timoshenko beam theories. It should be noted 

that the EBT fails to consider the influences of shear deformations. This theory is only applicable 

for slender beams and should not be applied for thick beams, and also it suppose that the 

transverse perpendicular to the neutral surface stays normal during and after bending, which 

indicates that the transversal shear strain is equal to zero Hence, the buckling loads and natural 

frequencies of thick beams are overestimated in which shear deformation effects are prominent. 

Timoshenko Beam Theory can enumerate the influences of shear deformations for thick beams 

with presumption of a constant shear strain state in the direction of beam thickness. So, as a 

disadvantage of this theory, a shear correction factor is required to properly demonstration of the 

deformation strain energy. To prevent using the shear correction factors, many higher-order shear 

deformation theories have been developed such as the third-order shear deformation theory 

proposed by Reddy (2007), the generalized beam theory proposed by Aydogdu (2009) and 

sinusoidal shear deformation theory of Touratier (1991). Reddy's third order beam theory (RBT) 

can be used with supposing the higher order longitudinal displacement variations of beam along 

the thickness. By verifying zero transverse shear stresses at the upper and lower surfaces of the 

beam, this theory captures both the microstructural and shear deformation effects. Therefore, The 

Reddy beam theory is more exact and provides better representation of the physics of the problem, 

which does not need any shear correction factors. This theory relaxes the limitation on the warping 

of the cross sections and allows cubic variations in the longitudinal direction of the beam, so it can 

produce adequate accuracy when applying for beam analysis. Therefore, a few numbers of studies 

have been conducted to investigate the mechanical responses of FG micro/nano beams by using 

higher shear deformation beam theories. Sahmani et al. (2015) investigated the free vibration 

response of third-order shear deformable nanobeams made of FGMs around the postbuckling 

domain incorporating the effects of surface free energy. Zhang et al. (2005) developed a size-

dependent FG beam model resting on Winkler-Pasternak elastic foundation based on an improved 

third-order shear deformation theory and provided the analytical solutions for the bending, 

buckling and free vibration problems. By searching the literature, it is found that a work analyzing 

the thermal vibration of FG nanobeams using the third-order shear deformation beam theory hasn’t 

been yet published. 

In the present work, thermo-mechanical vibrational behavior of the higher-order FG nanobeams 

in thermal environment are investigated applying Navier analytical method. The FG nanobeam is 

supposed to be exposed under three types of thermal loads including uniform, linear and nonlinear 

temperature changes. Thermo-mechanical properties of the FG nanobeams are both temperature-

dependent and position-dependent. The nonlocal governing differential equations in thermal 

environment are derived by implementing Hamilton’s principle and using nonlocal constitutive 

equations of Eringen. Accuracy of the results is examined using available date in the literature. The 

effects of small scale parameter, material graduation, thermal loading and slenderness ratio on 

thermal vibration of FG nanobeams are investigated. 

 

 

2. Governing equations 
 

2.1 Power-law functionally graded material (P-FGM) beam 
 

One of the most favorable models for FGMs is the power-law model, in which material  
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Fig. 1 Geometry and coordinates of FG nanobeam 

 

 

properties of FGMs are supposed to change according to a power law about spatial coordinates. 

The coordinate system for FG nano beam is shown in Fig. 1.  

The FG nanobeam is assumed to be combination of ceramic and metal and effective material 

properties (𝑃𝑓) of the FG beam such as Young’s modulus 𝐸𝑓 and mass density 𝜌 are supposed to 

change continuously in the direction of 𝑧-axis (thickness direction) according to an power function 

of the volume fractions of the material constituents. So, the effective material properties, 𝑃𝑓 can be 

stated as 

𝑃𝑓 = 𝑃𝑐𝑉𝑐 + 𝑃𝑚𝑉𝑚, (1) 

where subscripts 𝑚 and 𝑐 denote metal and ceramic, respectively and the volume fraction of the 

ceramic is associated to that of the metal in the following relation 

𝑉𝑐 + 𝑉𝑚 = 1. (2a) 

The volume fraction of the ceramic constituent of the beam is assumed to be given by 

𝑉𝑐 = (
𝑧

𝑕
+
1

2
)
𝑝

, (2b) 

Here 𝑝  is the power-law exponent which determines the material distribution through the 

thickness of the beam and 𝑧 is the distance from the mid-plane of the FG nanobeam. Therefore 

from Eqs. (1) and (2), the effective material properties of the FG nanobeam such as Young’s 

modulus (𝐸), mass density (𝜌), Poisson’s ratio (𝜈), coefficient of thermal expansion (𝛼𝑡 ) and 

thermal conductivity (𝜅) can be expressed as follows 

{
 
 

 
 
𝐸(𝑧)

𝜌(𝑧)

𝜈(𝑧)

𝛼𝑡(𝑧)

𝜅(𝑧) }
 
 

 
 

=

{
 
 

 
 
𝐸𝑐 − 𝐸𝑚
𝜌𝑐 − 𝜌𝑚
𝜈𝑐 − 𝜈𝑚
𝛼𝑐 − 𝛼𝑚
𝜅𝑐 − 𝜅𝑚}

 
 

 
 

(
𝑧

𝑕
+
1

2
)
𝑝

+

{
 
 

 
 
𝐸𝑚
𝜌𝑚
𝜈𝑚
𝛼𝑚
𝜅𝑚}
 
 

 
 

. (3) 

The material composition of FG nanobeam at the upper surface (𝑧 = +𝑕/2) is supposed to be 

the pure ceramic and it changes continuously to the opposite side surface (𝑧 = −𝑕/2) which is 

pure metal. To more accurate prediction of FGMs behavior under high temperature, it is necessary 

to consider the temperature dependency on material properties. The nonlinear equation of thermo-

elastic material properties in function of temperature 𝑇(K) can be expressed as Ebrahimi and 

Salari (2015c) 
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Table 1 Temperature dependent coefficients for Si3N4 and SUS304 

Material Properties 𝑃  𝑃   𝑃  𝑃  𝑃  

Si3N4 

𝐸(  ) 348.43e+9 0 -3.070e-4 2.160e-7 -8.946e-11 

-1(K )  
5.8723e-6 0 9.095e-4 0 0 

3(Kg/m )  
2370 0 0 0 0 

(W/mK)  13.723 0 -1.032e-3 5.466e-7 -7.876e-11 

  0.24 0 0 0 0 

SUS304 

𝐸(  ) 201.04e+9 0 3.079e-4 -6.534e-7 0 

-1(K )  
12.330e-6 0 8.086e-4 0 0 

3(Kg/m )  
8166 0 0 0 0 

(W/mK)  15.379 0 -1.264e-3 2.092e-6 -7.223e-10 

  0.3262 0 -2.002e-4 3.797e-7 0 

 

 

𝑃 = 𝑃 (𝑃  𝑇
  + 1 + 𝑃 𝑇 + 𝑃 𝑇

 + 𝑃 𝑇
 ), (4) 

where 𝑃 , 𝑃  , 𝑃 , 𝑃  and 𝑃  are the temperature dependent coefficients of temperature, 𝑇(K) 
which can be seen in the Table 1 that contains material properties of Si3N4 and SUB304. 

 

2.2 Kinematic relations 
 

Based on the third order shear deformation (Reddy) beam theory, the displacement field at any 

point of the beam can be written as 

𝑢𝑥(𝑥, 𝑧) = 𝑢(𝑥) + 𝑧𝜑(𝑥) − 𝛼𝑧
 (𝜑 +

𝜕𝑤

𝜕𝑥
) ,

𝑢𝑧(𝑥, 𝑧) = 𝑤(𝑥),
 (5) 

where 𝛼 = 4

3ℎ2
 and 𝑢 and 𝑤 are the longitudinal and the transverse displacements, 𝜑 is the rotation 

of the cross section at each point of the neutral axis. Nonzero strains of the Reddy beam model are 

expressed as follows 

𝜀𝑥𝑥 = 𝜀𝑥𝑥
( )
+ 𝑧𝜀𝑥𝑥

( )
+ 𝑧 𝜀𝑥𝑥

( )
,    𝛾𝑥𝑧 = 𝛾𝑥𝑧

( )
+ 𝑧 𝛾𝑥𝑧

( )
. (6) 

where 

𝜀𝑥𝑥
( )
=
𝜕𝑢

𝜕𝑥
,     𝜀𝑥𝑥

( )
=
𝜕𝜑

𝜕𝑥
,     𝜀𝑥𝑥

( )
= −𝛼 4

𝜕𝜑

𝜕𝑥
+
𝜕 𝑤

𝜕𝑥 
5 ,

𝛾𝑥𝑧
( )
= 𝜑 +

𝜕𝑤

𝜕𝑥
,    𝛾𝑥𝑧

( )
= −𝛽 (𝜑 +

𝜕𝑤

𝜕𝑥
) ,

 (7) 

and 𝛽 = 4

ℎ2
. By using the Hamilton’s principle, in which the motion of an elastic structure in the 

time interval 𝑡 < 𝑡 < 𝑡  is so that the integral with respect to time of the total potential energy is 

extremum 
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∫ 𝛿(𝐾 − 𝑈 − 𝑉)d𝑡
𝑡

 
= 0, (8) 

where 𝐾 is the kinetic energy, 𝑈 is the total strain energy and 𝑉 is the work done by external 

forces. The virtual strain energy can be calculated as 

𝛿𝑈 =∭ 𝜍𝑖𝑗𝛿𝜀𝑖𝑗dv
v

=∭ (𝜍𝑥𝑥𝛿𝜀𝑥𝑥 + 𝜍𝑥𝑧𝛿𝛾𝑥𝑧)dv
v

. (9) 

Substituting Eq. (6) into Eq. (9) yields 

𝛿𝑈 = ∫ .𝑁𝛿𝜀𝑥𝑥
( )
+𝑀𝛿𝜀𝑥𝑥

( )
+ 𝑃𝛿𝜀𝑥𝑥

( )
+ 𝑄𝛿𝛾𝑥𝑧

( )
+ 𝑅𝛿𝛾𝑥𝑧

( )
/ d𝑥

𝐿

 

. (10) 

in which the variables introduced in arriving at the last expression are defined as follows 

*𝑁,𝑀, 𝑃+ = ∬ 𝜍𝑥𝑥*1, 𝑧, 𝑧
 +d𝐴

𝐴

,

*𝑄, 𝑅+ = ∬ 𝜍𝑥𝑧*1, 𝑧
 +d𝐴

𝐴

,

 (11) 

The first variation of the work done by applied forces can be written in the form 

𝛿𝑉 = ∫ 64𝑁𝑇
𝜕𝑤

𝜕𝑥

𝜕

𝜕𝑥
+ 𝑞 + 𝛼𝑃

𝜕 

𝜕𝑥 
5𝛿𝑤 + 𝑓𝛿𝑢 − 𝑁𝛿𝜀𝑥𝑥

( )
− 𝑀̅

𝜕𝛿𝜑

𝜕𝑥
− 𝑄̅𝛿𝛾𝑥𝑧

( )
7 d𝑥

𝐿

 

, (12) 

where 𝑁𝑇 is thermal resultant, 𝑀̅ = 𝑀 − 𝛼𝑃, 𝑄̅ = 𝑄 − 𝛽𝑅 and 𝒩 is the applied axial compressive 

load and 𝑞(𝑥) and 𝑓(𝑥) are the transverse and axial distributed loads and 𝑘𝑊 and 𝑘𝑃 are linear and 

shear coefficient of elastic foundation. The thermal resultant can be expressed as 

𝑁𝑇 = ∫ 𝐸(𝑧, 𝑇)𝛼𝑡(𝑧, 𝑇)(𝑇 − 𝑇 )d𝑧
ℎ/ 

 ℎ/ 
. (13) 

The first variation of the virtual kinetic energy can be written in the form 

𝛿𝐾 = ∫ 2𝐼 .
𝜕𝑢

𝜕𝑡

𝜕𝛿𝑢

𝜕𝑡
+
𝜕𝑤

𝜕𝑡

𝜕𝛿𝑤

𝜕𝑡
/ + 𝐼 .

𝜕𝑢

𝜕𝑡

𝜕𝛿𝜑

𝜕𝑡
+
𝜕𝜑

𝜕𝑡

𝜕𝛿𝑢

𝜕𝑡
/ + 𝐼 

𝜕𝜑

𝜕𝑡

𝜕𝛿𝜑

𝜕𝑡

𝐿

 
− 𝛼 0𝐼 

𝜕𝑢

𝜕𝑡
.
𝜕2𝛿𝑤

𝜕𝑥𝜕𝑡
+

𝜕𝛿𝜑

𝜕𝑡
/ + 𝐼 

𝜕𝛿𝑢

𝜕𝑡
.
𝜕2𝑤

𝜕𝑥𝜕𝑡
 +

𝜕𝜑

𝜕𝑡
/ + 𝐼4

𝜕𝜑

𝜕𝑡
.
𝜕2𝛿𝑤

𝜕𝑥𝜕𝑡
+
𝜕𝛿𝜑

𝜕𝑡
/ + 𝐼4

𝜕𝛿𝜑

𝜕𝑡
.
𝜕2𝑤

𝜕𝑥𝜕𝑡
+
𝜕𝜑

𝜕𝑡
/ − 𝛼𝐼6 .

𝜕2𝑤

𝜕𝑥𝜕𝑡
+

𝜕𝜑

𝜕𝑡
/ .

𝜕2𝛿𝑤

𝜕𝑥𝜕𝑡
+
𝜕𝛿𝜑

𝜕𝑡
/3 d𝑥, 

(14) 

where 𝐼𝑗 represent the mass inertia  

𝐼𝑗 =∬ 𝜌𝑧𝑗d𝐴
𝐴

. (15) 

It is to be noted that for homogeneous nanobeams we have 𝐼 = 𝐼 = 0. 

By substituting Eqs. (10), (12) and (14) into Eq. (8) and setting the coefficients of 𝛿𝑢, 𝛿𝑤 and 

𝛿𝜑 to zero, the following Euler-Lagrange equation can be obtained 

 

(16) 
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where 𝐼𝑗 = 𝐼𝑗 − 𝛼𝐼𝑗+ . 

 

2.3 The nonlocal elasticity model for FG nanobeam 
 

According to Eringen nonlocal elasticity model, the stress state at a point inside a body is 

regarded to be function of strains of all points in the neighbor regions. For homogeneous elastic 

solids the nonlocal stress-tensor components 𝜍𝑖𝑗 at each point 𝑥 in the solid can be defined as 

𝜍𝑖𝑗(𝑥) =∭ 𝜓(|𝑥 − 𝑥′|, 𝜏)𝑡𝑖𝑗(𝑥
′)dv(𝑥′)

v

, (17) 

where 𝑡𝑖𝑗(𝑥
′) are the components available in local stress tensor at point 𝑥 which are associated to 

the strain tensor components 𝜀𝑘𝑙 as 

𝑡𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 . (18) 

The concept of Eq. (17) is that the nonlocal stress at any point is weighting average of local 

stress of all points in the near region that point, the size that is related to the nonlocal kernel 

𝜓(|𝑥 − 𝑥′|, 𝜏). Also |𝑥 − 𝑥′| is Euclidean distance and 𝜏 is a constant given by 

𝜏 =
𝑒 𝑎

𝑙
. (19) 

which indicates the relation of a characteristic internal length, (for instance lattice parameter, C-C 

bond length and granular distance) and a characteristic external length, 𝑙 (for instance crack length 

and wavelength) using a constant, e0, dependent on each material. The value of 𝑒  is 

experimentally estimated by comparing the scattering curves of plane waves and atomistic 

dynamics. According to (Eringen 1983) for a class of physically admissible kernel 𝜓(|𝑥 − 𝑥′|, 𝜏). 
It is possible to represent the integral constitutive relations given by Eq. (17) in an equivalent 

differential form as 

,1 − (𝑒 𝑎)
 𝛻 -𝜍𝑘𝑙 = 𝑡𝑘𝑙 , (20) 

where ∇  is the Laplacian operator. Thus, the scale length 𝑒 𝑎 consider the influences of small 

scales on the response of nano-structures. The magnitude of the small scale parameter relies on 

several parameters including mode shapes, boundary conditions, chirality and the essence of 

motion. The parameter 𝑒 = (𝜋
 − 4) / /2𝜋 ≅ 0.39 was given by Eringen (1983). Also, Zhang et 

al. (2005) found the value of 0.82 nm for nonlocal parameter when they compared the vibrational 

results of simply supported single-walled carbon nanotubes with molecular dynamics simulations. 

The nonlocal parameter, 𝜇 , is experimentally obtained for various materials; for instance, a 

conservative estimate of 𝜇 < 4 (nm)  for a single-walled carbon nanotube is proposed (Wang and 

Hu 2005). It is worth mentioning that this magnitude is dependent of size and chirality, because the 

properties of carbon nanotubes are extensively confirmed to be dependent of chirality. There is no 

serious study conducted to determining the value of small scale to simulate mechanical behavior of 

FG micro/nanobeams. Hence all researchers who worked on size-dependent mechanical behavior 

of FG nanobeams on the basis the nonlocal elasticity method investigated the influence of small 

scale parameter on mechanical behavior of FG nanobeams by changing the value of the small scale 

parameter. In the present work, the nonlocal parameter is assumed to be in the range of 0-5 (nm)  

(Eltaher et al. 2012). So, for a material in the one-dimension case, the constitutive relations of 
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nonlocal theory can be expressed as 

𝜍𝑥𝑥 − (𝑒 𝑎)
 
𝜕 𝜍𝑥𝑥
𝜕𝑥 

= 𝐸𝜀𝑥𝑥 ,

𝜍𝑥𝑧 − (𝑒 𝑎)
 
𝜕 𝜍𝑥𝑧
𝜕𝑥 

= 𝐺𝛾𝑥𝑧 ,

 (21) 

where 𝜍 and 𝜀 are the nonlocal stress and strain, respectively. 𝐸 is the Young’s modulus, 𝐺(𝑧) =
𝐸(𝑧)

2,1+𝜈(𝑧)-
 is the shear modulus (where 𝜈 is the Poisson’s ratio). For a nonlocal FG beam, Eq. (21) can 

be written as 

𝜍𝑥𝑥 − 𝜇
𝜕 𝜍𝑥𝑥
𝜕𝑥 

= 𝐸(𝑧)𝜀𝑥𝑥 ,

𝜍𝑥𝑧 − 𝜇
𝜕 𝜍𝑥𝑧
𝜕𝑥 

= 𝐺(𝑧)𝛾𝑥𝑧 ,

 (22) 

where (𝜇 = (𝑒 𝑎)
 ). Integrating Eq. (22) over the beam’s cross-section area, we obtain the force-

strain and the moment-strain of the nonlocal Reddy FG beam theory can be obtained as follows 

𝑁 − 𝜇
𝜕 𝑁

𝜕𝑥 
= 𝐴𝑥𝑥

𝜕𝑢

𝜕𝑥
+ (𝐵𝑥𝑥 − 𝛼𝐸𝑥𝑥)

𝜕𝜑

𝜕𝑥
− 𝛼𝐸𝑥𝑥

𝜕 𝑤

𝜕𝑥 
, (23) 

𝑀 − 𝜇
𝜕 𝑀

𝜕𝑥 
= 𝐵𝑥𝑥

𝜕𝑢

𝜕𝑥
+ (𝐷𝑥𝑥 − 𝛼𝐹𝑥𝑥)

𝜕𝜑

𝜕𝑥
− 𝛼𝐹𝑥𝑥

𝜕 𝑤

𝜕𝑥 
, (24) 

𝑃 − 𝜇
𝜕 𝑃

𝜕𝑥 
= 𝐸𝑥𝑥

𝜕𝑢

𝜕𝑥
+ (𝐹𝑥𝑥 − 𝛼𝐻𝑥𝑥)

𝜕𝜑

𝜕𝑥
− 𝛼𝐻𝑥𝑥

𝜕 𝑤

𝜕𝑥 
, (25) 

𝑄 − 𝜇
𝜕 𝑄

𝜕𝑥 
= (𝐴𝑥𝑧 − 𝛽𝐷𝑥𝑧) (

𝜕𝑤

𝜕𝑥
+ 𝜑), (26) 

𝑅 − 𝜇
𝜕2𝑅

𝜕𝑥2
= (𝐷𝑥𝑧 − 𝛽𝐹𝑥𝑧) .

𝜕𝑤

𝜕𝑥
+ 𝜑/, (27) 

in which the cross-sectional rigidities are defined as follows 

*𝐴𝑥𝑥 , 𝐵𝑥𝑥 , 𝐷𝑥𝑥 , 𝐸𝑥𝑥 , 𝐹𝑥𝑥 , 𝐻𝑥𝑥+ = ∫ 𝐸(𝑧)*1, 𝑧, 𝑧 , 𝑧 , 𝑧4, 𝑧6+d𝑧
ℎ/ 

 ℎ/ 

, (28) 

*𝐴𝑥𝑧, 𝐷𝑥𝑧, 𝐹𝑥𝑧+ = ∫ 𝐺(𝑧)*1, 𝑧 , 𝑧4+d𝑧
ℎ/ 

 ℎ/ 

. (29) 

The explicit relation of the nonlocal normal force can be derived by substituting for the second 

derivative of 𝑁 from Eq. (16)1 into Eq. (23) as follows 

𝑁 = 𝐴𝑥𝑥
𝜕𝑢

𝜕𝑥
+ 𝐾𝑥𝑥

𝜕𝜑

𝜕𝑥
− 𝛼𝐸𝑥𝑥

𝜕 𝑤

𝜕𝑥 
+ 𝜇 4𝐼 

𝜕 𝑢

𝜕𝑥𝜕𝑡 
+ 𝐼 

𝜕 𝜑

𝜕𝑥𝜕𝑡 
− 𝛼𝐼 

𝜕4𝑤

𝜕𝑡 𝜕𝑡 
−
𝜕𝑓

𝜕𝑥
5. (30) 

Eliminating 𝑄̅ from Eqs. (16)2 and (16)3, we obtain the following equation 

101



 

 

 

 

 

 

Farzad Ebrahimi and Mohammad Reza Barati 

𝜕 𝑀̅

𝜕𝑥 
=
𝜕

𝜕𝑥
(𝑁𝑇

𝜕𝑤

𝜕𝑥
) − 𝛼

𝜕 𝑃

𝜕𝑥 
− 𝑞 + 𝐼 

𝜕 𝑤

𝜕𝑡 
+ 𝐼 

𝜕 𝑢

𝜕𝑥𝜕𝑡 
+ 𝐼 

𝜕 𝜑

𝜕𝑥𝜕𝑡 

− 𝛼𝐼4 4
𝜕4𝑤

𝜕𝑥 𝜕𝑡 
+
𝜕 𝜑

𝜕𝑥𝜕𝑡 
5. 

(1) 

Also the explicit relation of the nonlocal bending moment can be derived by substituting the 

above equations into Eqs. (24) and (25) as follows  

𝑀̅ = 𝐾𝑥𝑥
𝜕𝑢

𝜕𝑥
+ 𝐼𝑥̅𝑥

𝜕𝜑

𝜕𝑥
− 𝛼𝐽𝑥𝑥

𝜕 𝑤

𝜕𝑥 
+ 𝜇 6

𝜕

𝜕𝑥
(𝑁𝑇

𝜕𝑤

𝜕𝑥
) − 𝛼

𝜕 𝑃

𝜕𝑥 
− 𝑞 

 +𝐼 
𝜕2𝑤

𝜕𝑡2
+ 𝐼 

𝜕3𝑢

𝜕𝑥𝜕𝑡2
+ 𝐼 

𝜕3𝜑

𝜕𝑥𝜕𝑡2
− 𝛼𝐼4 .

𝜕4𝑤

𝜕𝑥2𝜕𝑡2
+

𝜕3𝜑

𝜕𝑥𝜕𝑡2
/1, 

(32) 

where 

𝐾𝑥𝑥 = 𝐵𝑥𝑥 − 𝛼𝐸𝑥𝑥 ,     𝐼𝑥𝑥 = 𝐷𝑥𝑥 − 𝛼𝐹𝑥𝑥 ,     𝐽𝑥𝑥 = 𝐹𝑥𝑥 − 𝛼𝐻𝑥𝑥 ,     𝐼𝑥̅𝑥 = 𝐼𝑥𝑥 − 𝛼𝐽𝑥𝑥 . (33) 

By substituting for the second derivative of 𝑄̅ from Eq. (16)3 into Eq. (26) with the aid of Eq. 

(27) the following expression for the nonlocal shear force will be derived 

𝑄̅ = 𝐴𝑥𝑧
∗ (

𝜕𝑤

𝜕𝑥
+ 𝜑) + 𝜇 6

𝜕 

𝜕𝑥 
(𝑁𝑇

𝜕𝑤

𝜕𝑥
) − 𝛼

𝜕 𝑃

𝜕𝑥 
−
𝜕𝑞

𝜕𝑥
+ 𝐼 

𝜕 𝑤

𝜕𝑥𝜕𝑡 
+ 𝛼𝐼 

𝜕4𝑢

𝜕𝑥 𝜕𝑡 
 

 +𝛼𝐼4
𝜕4𝜑

𝜕𝑥2𝜕𝑡2
− 𝛼 𝐼6 .

𝜕5𝑤

𝜕𝑥3𝜕𝑡2
+

𝜕4𝜑

𝜕𝑥2𝜕𝑡2
/1, 

(34) 

where 

𝐴𝑥𝑧
∗ = 𝐴̅𝑥𝑧 − 𝛽𝐷̅𝑥𝑧,     𝐴̅𝑥𝑧 = 𝐴𝑥𝑧 − 𝛽𝐷𝑥𝑧,     𝐷̅𝑥𝑧 = 𝐷𝑥𝑧 − 𝛽𝐹𝑥𝑧. (35) 

Now we use 𝑀̅ and 𝑄̅ from Eqs. (32) and (34) and the identity that given from Eq. (25) to get 

𝛼
𝜕 

𝜕𝑥 
4𝑃 − 𝜇

𝜕 𝑃

𝜕𝑥 
5 = 𝛼𝐸𝑥𝑥

𝜕 𝑢

𝜕𝑥 
+ 𝛼𝐽𝑥𝑥

𝜕 𝜑

𝜕𝑥 
− 𝛼 𝐻𝑥𝑥

𝜕4𝑤

𝜕𝑥4
. (36) 

The nonlocal governing equations of third-order shear deformation FG nanobeam in terms of 

the displacement can be derived by substituting for 𝑁, 𝑀̅ and 𝑄̅ from Eqs. (30), (32) and (34), 

respectively, and using Eq. (36) into Eq. (16) as follows 

𝐴𝑥𝑥
𝜕 𝑢

𝜕𝑥 
+ 𝐾𝑥𝑥

𝜕 𝜑

𝜕𝑥 
− 𝛼𝐸𝑥𝑥

𝜕 𝑤

𝜕𝑥 
+ 𝑓 − 𝐼 

𝜕 𝑢

𝜕𝑡 
− 𝐼 

𝜕 𝜑

𝜕𝑡 
+ 𝛼𝐼 

𝜕 𝑤

𝜕𝑥𝜕𝑡 
 

 −𝜇 .
𝜕2𝑓

𝜕𝑥2
− 𝐼 

𝜕4𝑢

𝜕𝑥2𝜕𝑡2
− 𝐼 

𝜕4𝜑

𝜕𝑥2𝜕𝑡2
+ 𝛼𝐼 

𝜕5𝑤

𝜕𝑥3𝜕𝑡2
/ = 0, 

(37) 

𝐾𝑥𝑥
𝜕 𝑢

𝜕𝑥 
+ 𝐼𝑥̅𝑥

𝜕 𝜑

𝜕𝑥 
− 𝛼𝐽𝑥𝑥

𝜕 𝑤

𝜕𝑥 
− 𝐴𝑥𝑧

∗ (
𝜕𝑤

𝜕𝑥
+ 𝜑) − 𝐼 

𝜕 𝑢

𝜕𝑡 
− 𝐼 

𝜕 𝜑

𝜕𝑡 

+ 𝛼𝐼4 4
𝜕 𝑤

𝜕𝑥𝜕𝑡 
+
𝜕 𝜑

𝜕𝑡 
5 

 +𝜇 0𝐼 
𝜕4𝑢

𝜕𝑥2𝜕𝑡2
+ 𝐼 

𝜕4𝜑

𝜕𝑥2𝜕𝑡2
− 𝛼𝐼4 .

𝜕5𝑤

𝜕𝑥3𝜕𝑡2
+

𝜕4𝜑

𝜕𝑥2𝜕𝑡2
/1 = 0, 

(38) 
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𝐴𝑥𝑧
∗ 4

𝜕 𝑤

𝜕𝑥 
+
𝜕𝜑

𝜕𝑥
5 + 𝛼𝐸𝑥𝑥

𝜕 𝑢

𝜕𝑥 
+ 𝛼𝐽𝑥𝑥

𝜕 𝜑

𝜕𝑥 
− 𝛼 𝐻𝑥𝑥

𝜕4𝑤

𝜕𝑥4
−
𝜕

𝜕𝑥
(𝑁𝑇

𝜕𝑤

𝜕𝑥
) + 𝑞 − 𝐼 

𝜕 𝑤

𝜕𝑡 
 

 −𝛼𝐼 
𝜕3𝑢

𝜕𝑥𝜕𝑡2
− 𝛼𝐼4

𝜕3𝜑

𝜕𝑥𝜕𝑡2
+ 𝛼 𝐼6 .

𝜕4𝑤

𝜕𝑥2𝜕𝑡2
+

𝜕3𝜑

𝜕𝑥𝜕𝑡2
/ + 𝜇 0

𝜕3

𝜕𝑥3
.𝑁𝑇

𝜕𝑤

𝜕𝑥
/ −

𝜕2𝑞

𝜕𝑥2
+ 𝐼 

𝜕4𝑤

𝜕𝑥2𝜕𝑡2
 

 +𝛼𝐼 
𝜕5𝑢

𝜕𝑥3𝜕𝑡2
+ 𝛼𝐼4

𝜕5𝜑

𝜕𝑥3𝜕𝑡2
− 𝛼 𝐼6 .

𝜕6𝑤

𝜕𝑥4𝜕𝑡2
+

𝜕5𝜑

𝜕𝑥3𝜕𝑡2
/1 = 0. 

(39) 

  

 

3. Solution procedures 
 

Here, on the basis the Navier method, an analytical solution of the governing equations for free 

vibration of a simply-supported FG nanobeam is presented. To satisfy governing equations of 

motion and the simply supported boundary condition, the displacement variables are adopted to be 

of the form 

{

𝑢(𝑥, 𝑡)
𝑤(𝑥, 𝑡)
𝜑(𝑥, 𝑡)

} = ∑

{
 
 

 
 𝑈𝑛 cos .

𝑛𝜋

𝐿
𝑥/

𝑊𝑛 sin .
𝑛𝜋

𝐿
𝑥/

𝛷𝑛 cos .
𝑛𝜋

𝐿
𝑥/}
 
 

 
 

ei𝜔𝑛𝑡
∞

𝑛= 

, (40) 

where (𝑈𝑛, 𝑊𝑛, 𝛷𝑛) are the unknown Fourier coefficients to be determined for each 𝑛 value. The 

boundary conditions for simply-supported beam are given by 

𝑢(0, 𝑡) = 0,     
𝜕𝑢

𝜕𝑥
|
𝑥=𝐿

= 0,     𝑤(0, 𝑡) = 𝑤(𝐿, 𝑡) = 0,     
𝜕𝜑

𝜕𝑥
|
𝑥= 

=
𝜕𝜑

𝜕𝑥
|
𝑥=𝐿

= 0. (41) 

Substituting Eq. (40) into Eqs. (37)-(39), respectively, leads to 

{𝐼 [1 + 𝜇 .
𝑛𝜋

𝐿
/
 

]𝜔𝑛
 − 𝐴𝑥𝑥 .

𝑛𝜋

𝐿
/
 

}𝑈𝑛 + {𝐼 [1 + 𝜇 .
𝑛𝜋

𝐿
/
 

]𝜔𝑛
 − 𝐾𝑥𝑥 .

𝑛𝜋

𝐿
/
 

}𝛷𝑛 

 +
𝑛𝜋

𝐿
𝛼 {𝐸𝑥𝑥 .

𝑛𝜋

𝐿
/
 
− 𝐼 [1 + 𝜇 .

𝑛𝜋

𝐿
/
 
]𝜔𝑛

 }𝑊𝑛 = 0, 
(42) 

{𝐼 [1 + 𝜇 .
𝑛𝜋

𝐿
/
 

] 𝜔𝑛
 − 𝐾𝑥𝑥 .

𝑛𝜋

𝐿
/
 

} 𝑈𝑛 − {𝐼𝑥̅𝑥 .
𝑛𝜋

𝐿
/
 

+ 𝐴𝑥𝑧
∗ − 𝐼 [1 + 𝜇 .

𝑛𝜋

𝐿
/
 

]𝜔𝑛
 } 𝛷𝑛 

 +
𝑛𝜋

𝐿
{𝛼𝐽𝑥𝑥 .

𝑛𝜋

𝐿
/
 
− 𝐴𝑥𝑧

∗ − 𝛼𝐼4 [1 + 𝜇 .
𝑛𝜋

𝐿
/
 
]𝜔𝑛

 }𝑊𝑛 = 0, 
(43) 

𝑛𝜋

𝐿
𝛼 {𝐸𝑥𝑥 .

𝑛𝜋

𝐿
/
 

− 𝐼 [1 + 𝜇 .
𝑛𝜋

𝐿
/
 

]𝜔𝑛
 } 𝑈𝑛

+
𝑛𝜋

𝐿
{𝛼𝐽𝑥𝑥 .

𝑛𝜋

𝐿
/
 

− 𝐴𝑥𝑧
∗ − 𝛼𝐼4 [1 + 𝜇 .

𝑛𝜋

𝐿
/
 

] 𝜔𝑛
 }𝛷𝑛 

{− .
𝑛𝜋

𝐿
/
 

[𝐴𝑥𝑧
∗ + 𝛼 𝐻𝑥𝑥 .

𝑛𝜋

𝐿
/
 

]

+ [1 + 𝜇 .
𝑛𝜋

𝐿
/
 

] [𝑁𝑇 .
𝑛𝜋

𝐿
/
 

+ (𝐼 + 𝛼
 𝐼6 .

𝑛𝜋

𝐿
/
 

)𝜔𝑛
 ]}𝑊𝑛 = 0. 

(44) 

By setting the determinant of the coefficient matrix of the above equations, the analytical 

solutions can be obtained from the following equations 
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(,𝐾- + 𝑁𝑇,𝐾𝑇- − 𝜔𝑛
 ,𝑀-)*∆+ = *0+, (45) 

where *∆+ = *𝑈𝑛,𝑊𝑛 , 𝛷𝑛+
𝑇 , ,𝐾-  is the stiffness matrix, ,𝐾𝑇-  is the coefficient matrix of 

temperature change, and ,𝑀- is the mass matrix. By setting this polynomial to zero, we can find 

natural frequencies 𝜔𝑛. 

 

 

4. Types of thermal loading 
 

4.1 Uniform temperature rise (UTR) 
 

For a FG nanobeam at reference temperature 𝑇  the temperature is uniformly raised to a final 

value 𝑇 which the temperature change is ∆𝑇 = 𝑇 − 𝑇 . 

 

4.2 Linear temperature rise (LTR) 
 

For a FG nanobeam for which the beam thickness is thin enough, the temperature distribution is 

assumed to be varied linearly through the thickness as follows 

𝑇 = 𝑇𝑚 + ∆𝑇 (
𝑧

𝑕
+
1

2
), (46) 

where the buckling temperature difference is ∆𝑇 = 𝑇𝑐 − 𝑇𝑚  in which 𝑇𝑐  and 𝑇𝑚  are the 

temperature of the top surface which is ceramic-rich and the bottom surface which is metal-rich, 

respectively. 

 

4.3 Nonlinear temperature rise (NLTR) 
 

The one-dimensional temperature distribution through-the-thickness can be obtained by solving 

the steady-state heat conduction equation with the boundary conditions on bottom and top surfaces 

of the beam across the thickness 

−
d

d𝑧
(𝜅(𝑧, 𝑇)

d𝑇

d𝑧
) = 0,     𝑇|𝑧=ℎ/ = 𝑇𝑐 ,     𝑇|𝑧= ℎ/ = 𝑇𝑚 (47) 

The solution of above equation is 

𝑇 = 𝑇𝑚 + (𝑇𝑐 − 𝑇𝑚)
∫   

 

𝜅(𝑧,𝑇)
d𝑧

𝑧

 ℎ/ 

∫   
 

𝜅(𝑧,𝑇)
d𝑧

ℎ/ 

 ℎ/ 

. (48) 

 
 
5. Numerical results and discussions 
 

The thermal vibration analysis of FG nanobeams are investigated using the Navier method 

based upon third order shear deformation theory and nonlocal elasticity theory. The effective 

material properties, that elasticity modulus and mass density of the FG nanobeam vary through the 

thickness direction according to power law distribution. Simply supported boundary condition is  

104



 

 

 

 

 

 

Thermal-induced nonlocal vibration characteristics of heterogeneous beams 

Table 2 Comparison of the non-dimensional fundamental frequency for a FG nanobeam with various power-

law indexes at 𝐿/𝑕 = 20 and ∆𝑇 = 0 K 

 
 𝑝 = 0 

 
 𝑝 = 0.5 

 

𝜇 

EBT 

(Eltaher et al. 

2012) 

TBT 

(Rahmani and 

Pedram (24)) 

Present 

RBT 

EBT 

(Eltaher et 

al.  2012) 

TBT 

(Rahmani and 

Pedram (24)) 

Present 

RBT 

0 9.8797 9.8296 9.82957 7.8061 7.7149 7.71546 

1 9.4238 9.3777 9.377686 7.4458 7.3602 7.36078 

2 9.0257 8.9829 8.982894 7.1312 7.0504 7.0509 

3 8.6741 8.6341 8.634103 6.8533 6.7766 6.77714 

4 8.3607 8.323 8.323021 6.6057 6.5325 6.53296 

5 8.0789 8.0433 8.043309 6.383 6.3129 6.31342 

  𝑝 = 1   𝑝 = 5  

μ 

EBT 

(Eltaher et al. 

 2012) 

TBT 

(Rahmani and 

Pedram (24)) 

Present 

RBT 

EBT 

(Eltaher et 

al.  2012) 

TBT 

(Rahmani and 

Pedram (24)) 

Present 

RBT 

0 7.0904 6.9676 6.967613 6.0025 5.9172 5.916152 

1 6.7631 6.6473 6.6473 5.7256 5.6452 5.644175 

2 6.4774 6.3674 6.367454 5.4837 5.4075 5.406561 

3 6.2251 6.1202 6.120217 5.2702 5.1975 5.196632 

4 6.0001 5.8997 5.899708 5.0797 5.0103 5.0094 

5 5.7979 5.7014 5.701436 4.9086 4.8419 4.841049 

 

 

considered for which required the Navier method. The effects of FG material graduation, 

nonlocality effect, slenderness ratio and thermal load on the non-dimensional natural frequencies 

of the FG nanobeam will be figured out. FG nanobeam is composed of steel (SUS304) and 

alumina (Al2O3) where its properties are given in Table 1. The bottom surface of the beam is pure 

Steel, whereas the top surface of the beam is pure Alumina. The beam geometry has the following 

dimensions: 𝐿  (length)=10000 nm, 𝑏  (width)=1000 nm. A 5K increase in metal surface to 

reference temperature 0T  of FG nanobeam is considered, i.e., 𝑇𝑚 − 𝑇 = 5𝐾 . The following 

dimensionless relation is defined in order to calculate the non-dimensional natural frequencies 

𝜔̂ = 𝜔𝑛𝐿
 √
𝜌𝑐𝐴

𝐸𝑐𝐼
, (49) 

where 𝐼 = 𝑏𝑕 /12  is the moment of inertia of the cross section of the nanobeam. For the 

verification purpose, the non-dimensional natural frequency of simply supported FG nanobeam 

with various nonlocal parameters and power-law exponents are compared with the results 

presented by Eltaher et al. (2012) For Euler-Bernoulli FG nanobeams and Rahmani and Pedram 

(2014) which has been obtained by analytical method for FG Timoshenko nanobeam. In these 

works, the material properties are selected as: 𝐸𝑚 = 210 G  ,𝐸𝑐 = 390 G  ,𝜌𝑚 = 7800 𝑘𝑔/
𝑚 ,𝜌𝑐 = 3900 𝑘𝑔/𝑚

 , 𝜈𝑚 = 0.3 and 𝜈𝑐 = 0.24.  

The reliability of the presented method and procedure for FG nanobeam may be concluded 

from Table 2; where the results are in an excellent agreement as values of non-dimensional  
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Table 3 The variation of the first non-dimensional fundamental frequency for a FG nanobeam with various 

power-law indexes and nonlocal parameters (𝐿/𝑕 = 20) 

𝜇  

∆𝑇 = 10 K ∆𝑇 = 30 K ∆𝑇 = 60 K 

Power-law index Power-law index Power-law index 

0.2 0.5 1 5 0.2 0.5 1 5 0.2 0.5 1 5 

0 

UTR 7.79277 6.59689 5.76592 4.68775 7.42151 6.23435 5.41109 4.34763 6.80468 5.62434 4.8070 3.75680 

LTR 7.79580 6.60104 5.76989 4.68953 7.61805 6.43025 5.60278 4.52550 7.33302 6.15462 5.3315 4.25646 

NLTR 7.79717 6.60334 5.77265 4.69140 7.62269 6.43802 5.61216 4.53189 7.34417 6.17329 5.35413 4.27204 

1 

UTR 7.41773 6.27724 5.48484 4.45696 7.02655 5.89484 5.11022 4.09737 6.37147 5.24525 4.46528 3.46369 

LTR 7.42088 6.28154 5.48893 4.45874 7.23381 6.10160 5.31273 4.28556 6.93289 5.81020 5.02555 4.00010 

NLTR 7.42232 6.28395 5.49184 4.46071 7.23870 6.10979 5.61216 4.29230 6.94468 5.82998 5.04954 4.01667 

2 

UTR 7.08933 5.99724 5.23855 4.25463 6.67884 5.59554 4.84466 3.87599 5.98569 4.90625 4.15844 3.19838 

LTR 7.09260 6.00169 5.24276 4.25641 6.89652 5.81291 5.05775 4.07436 6.58009 5.50608 4.75497 3.77267 

NLTR 7.09411 6.00421 5.24581 4.25848 6.90165 5.82151 5.06814 4.08145 6.59252 5.52695 4.78032 3.79023 

3 

UTR 6.79854 5.74922 5.02032 4.07526 6.36922 5.32867 4.60757 3.67791 5.63803 4.59936 3.87936 2.95488 

LTR 6.80192 5.75381 5.02465 4.07705 6.59711 5.55646 4.83109 3.88635 6.2655 5.23446 4.51291 3.56854 

NLTR 6.80349 5.75644 5.02783 4.07920 6.60248 5.56545 4.84196 3.89378 6.27854 5.25640 4.53962 3.58711 

4 

UTR 6.53859 5.52742 4.82510 3.91472 6.09089 5.08841 4.39384 3.49893 5.32148 4.31853 3.62267 2.72856 

LTR 6.54208 5.53216 4.82956 3.91652 6.32879 5.32645 4.62765 3.71736 5.98224 4.98949 4.29424 3.38349 

NLTR 6.54371 5.53490 4.83286 3.91876 6.33438 5.33583 4.63900 3.72514 5.99590 5.01250 4.32230 3.40307 
 

 

frequency are consistent with presented analytical solution. It can be observed from Table 2 that 

the results of nonlocal Reddy beam theory are smaller than those of nonlocal Euler beam theory. 

This is due to the fact that Euler-Bernoulli beam model cannot capture shear deformation effect. 

The variations of the first three non-dimensional frequencies of the simply supported FG 

nanobeams for various values of power-law exponent (𝑝 = 0.2, 0.5, 1, 5), nonlocal parameters 

(𝜇 = 0, 1, 2, 3, 4 nm ) and temperature changes (Δ𝑇 = 10, 30, 60 K) for three types of thermal 

loading at 𝐿/𝑕 = 20 are presented in Tables 3-5. It is seen from the results of these tables that in 

all cases of thermal loading increasing nonlocal scale parameter leads to decreasing in the non-

dimensional frequencies at a constant power-law exponent. So it is worth noting that nonlocal 

parameter has a remarkable effect on the natural frequencies of FG nanobeams. Also, it is observed 

that, by fixing nonlocal parameter and increasing power-law exponent the non-dimensional 

frequencies reduces, especially for lower values of power-law exponent. In addition, it is 

concluded that the values of non-dimensional frequencies temperature in the case of nonlinear 

temperature change are bigger than those of uniform and linear temperature change at a constant 

power-law exponent and slenderness ratio. 

The dimensionless frequencies of FG nanobeam versus the power-law exponent under uniform, 

linear and non-linear temperature rise through-the-thickness at 𝐿/𝑕 = 20 are depicted in Figs. 2-4, 

respectively. In these figures, regardless of the thermal loading types, the dimensionless natural 

frequency decreases suddenly as the power-law exponent increases from 0 to 2, then decreases 

monotonically as the power-law exponent increases from 2 to 10. It can be observed from the 

results of the figures that by increasing the nonlocal parameter the first dimensionless frequency 

reduce for every power-law exponent and temperature change, which indicates the notability of the 

nonlocal effect.  
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Table 4 The variation of the second non-dimensional fundamental frequency for a FG nanobeam with 

various power-law indexes and nonlocal parameters (𝐿/𝑕 = 20) 

𝜇  

∆𝑇 = 10 K ∆𝑇 = 30 K ∆𝑇 = 60 K 

Power-law index Power-law index Power-law index 

0.2 0.5 1 5 0.2 0.5 1 5 0.2 0.5 1 5 

0 

UTR 31.3181 26.5766 23.2771 18.9794 30.9614 26.2332 22.9447 18.6650 30.3966 25.6860 22.4123 18.1579 

LTR 31.3221 26.5825 23.2834 18.9840 31.1513 26.4218 23.1287 18.8346 30.8815 26.1654 22.8799 18.5923 

NLTR 31.3235 26.5847 23.2861 18.9858 31.1558 26.4293 23.1377 18.8407 30.8921 26.1829 22.9009 18.6065 

1 

UTR 26.4591 22.4459 19.6535 16.0172 26.0342 22.0352 19.2548 15.6386 25.3583 21.3778 18.6132 15.0249 

LTR 26.4634 22.4521 19.6599 16.0213 26.2594 22.2588 19.4728 15.8396 25.9373 21.9512 19.1732 15.5467 

NLTR 26.4650 22.4548 19.6631 16.0235 26.2648 22.2677 19.4835 15.8469 25.9499 21.9720 19.1982 15.5637 

2 

UTR 23.3068 19.7652 17.3013 14.0933 22.8222 19.2956 16.8444 13.6585 22.0469 18.5394 16.1045 12.9483 

LTR 23.3114 19.7717 17.3078 14.0972 23.0786 19.5502 17.0927 13.8876 22.7105 19.1976 16.7484 13.5500 

NLTR 23.3133 19.7748 17.3115 14.0997 23.0847 19.5603 17.1049 13.8959 22.7248 19.2214 16.7771 13.5695 

3 

UTR 21.0485 17.8441 15.6150 12.7134 20.5098 17.3211 15.1054 12.2275 19.6427 16.4731 14.2739 11.4265 

LTR 21.0534 17.8509 15.6218 12.7172 20.7946 17.604 15.3814 12.4825 20.3846 17.2104 14.9964 12.1038 

NLTR 21.0554 17.8543 15.6258 12.7199 20.8013 17.6153 15.3950 12.4917 20.4005 17.2369 15.0284 12.1257 

4 

UTR 19.3271 16.3792 14.3288 11.6604 18.7383 15.8068 13.7703 11.1270 17.7845 14.8716 12.8513 10.2385 

LTR 19.3322 16.3864 14.3358 11.6641 19.0495 16.116 14.0723 11.4062 18.6006 15.6842 13.6491 10.9892 

NLTR 19.3344 16.3901 14.3402 11.6671 19.0569 16.1284 14.0871 11.4163 18.618 15.7134 13.6843 11.0132 

 
Table 5 The variation of the third non-dimensional fundamental frequency for a FG nanobeam with various 

power-law indexes and nonlocal parameters (𝐿/𝑕 = 20) 

𝜇  

∆𝑇 = 10 K ∆𝑇 = 30 K ∆𝑇 = 60 K 

Power-law index Power-law index Power-law index 

0.2 0.5 1 5 0.2 0.5 1 5 0.2 0.5 1 5 

0 

UTR 69.3337 58.8561 51.5575 42.0176 68.9817 58.5225 51.2382 41.7188 68.4255 57.9895 50.7237 41.2323 

LTR 69.3394 58.8650 51.5677 42.0268 69.1733 58.7134 51.4250 41.8919 68.9083 58.4661 51.1881 41.6637 

NLTR 69.3408 58.8673 51.5704 42.0287 69.1778 58.7209 51.4341 41.8980 68.9188 58.4835 51.209 41.6779 

1 

UTR 50.3412 42.7196 37.4109 30.4734 49.8482 42.2460 36.9530 30.0400 49.0685 41.4919 36.2199 29.3410 

LTR 50.3471 42.7283 37.4203 30.4807 50.1114 42.5074 37.2082 30.2759 49.7388 42.1542 36.8659 29.9424 

NLTR 50.349 42.7315 37.4241 30.4832 50.1177 42.5178 37.2207 30.2844 49.7533 42.1784 36.8949 29.9621 

2 

UTR 41.4201 35.1373 30.7616 25.0445 40.8162 34.5543 30.1957 24.5064 39.8571 33.6226 29.2868 23.6357 

LTR 41.4264 35.1464 30.7711 25.0509 41.1366 34.8723 30.5060 24.7933 40.6791 34.4360 30.0812 24.3773 

NLTR 41.4287 35.1502 30.7757 25.0540 41.1442 34.8850 30.5212 24.8036 40.6969 34.4656 30.1168 24.4015 

3 

UTR 35.9699 30.5035 26.6968 21.7240 35.2709 29.8267 26.0383 21.0961 34.1546 28.7388 24.9741 20.0727 

LTR 35.9766 30.5131 26.7065 21.7299 35.6409 30.1939 26.3966 21.4276 35.1102 29.6860 25.9008 20.9404 

NLTR 35.9793 30.5175 26.7117 21.7335 35.6496 30.2086 26.4142 21.4396 35.1308 29.7204 25.9421 20.9685 

4 

UTR 32.1966 27.2943 23.8807 19.4224 31.4125 26.5334 23.1393 18.7139 30.1523 25.3021 21.9318 17.5483 

LTR 32.2038 27.3044 23.8907 19.4281 31.8270 26.9451 23.5411 19.0860 31.2305 26.3728 22.9812 18.5343 

NLTR 32.2067 27.3093 23.8966 19.4321 31.8369 26.9615 23.5609 19.0994 31.2537 26.4114 23.0277 18.5661 
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(a)  𝜇 = 0 (b)  𝜇 = 1 

  
(c)  𝜇 = 2 (d)  𝜇 = 3 

 
(e)  𝜇 = 4 

Fig. 2 The variation of the first dimensionless frequency of the FG nanobeam under uniform temperature 

change with power-law exponent and temperature rises for different nonlocal parameters (𝐿/𝑕 = 20) 
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(a)  𝜇 = 0 (b)  𝜇 = 1 

  
(c)  𝜇 = 2 (d)  𝜇 = 3 

 
(e)  𝜇 = 4 

Fig. 3 The variation of the first dimensionless frequency of the FG nanobeam under linear temperature 

change with power-law exponent and temperature rises for different nonlocal parameters (𝐿/𝑕 = 20) 
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(a)  𝜇 = 0 (b)  𝜇 = 1 

  

(c)  𝜇 = 2 (d)  𝜇 = 3 

 
(e)  𝜇 = 4 

Fig. 4 The variation of the first dimensionless frequency of FG nanobeam under non-linear temperature 

change for different nonlocal parameters (𝐿/𝑕 = 20) 
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(a)  𝜇 = 0 (b)  𝜇 = 1 

  
(c)  𝜇 = 2 (d)  𝜇 = 3 

 
(e)  𝜇 = 4 

Fig. 5 Variations of the first dimensionless natural frequency of the FG nanobeam with respect to uniform 

temperature change for different values of power-law exponent and nonlocal parameters ( 𝐿/𝑕 = 20) 
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(a)  𝜇 = 0 (b)  𝜇 = 1 

  

(c)  𝜇 = 2 (d)  𝜇 = 3 

 
(e)  𝜇 = 4 

Fig. 6 Variations of the first dimensionless natural frequency of the FG nanobeam with respect to linear 

temperature change for different values of power-law exponent and nonlocal parameters ( 𝐿/𝑕 = 25) 
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(a)  𝜇 = 0 (b)  𝜇 = 1 

  
(c)  𝜇 = 2 (d)  𝜇 = 3 

 
(e)  𝜇 = 4 

Fig. 7 Variations of the first dimensionless natural frequency of the FG nanobeam with respect to non-linear 

temperature change for different values of power-law exponent and nonlocal parameters (𝐿/𝑕 = 50) 

 

 

Also, it must be noted that the dimensionless natural frequency of the FG nanobeam under non-
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linear temperature rise is greater than that of the FG nanobeam under linear temperature rise and 

the latter is greater than that of the FG nanobeam under uniform temperature rise. Figs. 5-7 

illustrate the variation of first dimensionless natural frequency with changing of the power-law 

exponent for different nonlocal parameter at slenderness ratio 𝐿/𝑕 = 50 of FG nanobeam under 

uniform, linear and non-linear temperature change, respectively.  

Also the variation of second dimensionless natural frequency with temperature rise for different 

power-law exponents and nonlocal parameters at slenderness ratio 𝐿/𝑕 = 50  in the case of 

uniform, linear and non-linear temperature change, are demonstrated in Figs. 8-10, respectively. 

Also, the variation of third dimensionless natural frequency with temperature rise with above 

mentioned conditions is presented in Figs. 11-13. It is seen that before a prescribed temperature, 

i.e., the critical buckling temperature, as temperature increases the first dimensionless frequency 

reduces. This is associated to the reduction in total stiffness of the beam, since geometrical 

stiffness of FG nanobeam diminishes as temperature rises. Near the critical buckling temperature, 

dimensionless frequency trends to zero. It is observed that temperature dependency of the material 

constituents leads to more accurate conclusions, whereas with supposing temperature independent 

material properties, critical buckling temperature point is exaggerated. Moreover, in the pre-

buckling region, with the temperature dependent assumption, predicted frequencies are smaller 

than those frequencies obtained with the assumption of temperature independent material. This is 

due to the less Young’s modulus of the material constituents in the case of temperature dependent 

material. Also, it should be stated that, by increasing the nonlocal parameter the critical 

temperature point shifts to the left. 

Figs. 14-16 show the variations of the first dimensionless natural frequency of the S-S FG 

nanobeam under uniform, linear and non-linear temperature change with respect to temperature 

change, respectively for different values of nonlocal parameters and power-law indexes (𝐿/𝑕 =
50). It should be noted that compressive axial forces as resultants of thermal stresses arising from 

the temperature rise in beams with micro/nano scales, can lead to buckling the beams if its value 

passes the critical value. By imposing a high external pressure to the FG nanobeam structure, the 

high stresses induced in the structure will influence its integrity and the structure is talented and 

disposed to failure. Therefore, it is observed from these figures that dimensionless frequencies of 

the FG nanobeam approaches to zero around a prescribed temperature which is the critical 

buckling temperature. Before the critical buckling point, as temperature rises the dimensionless 

frequency reduces, but after that point, as temperature growths the dimensionless frequency 

increases. Moreover, in the pre-buckling domain, by increasing the nonlocal parameter, the 

dimensionless natural frequency diminishes at a constant power-law exponent, while in the post-

buckling domain, as the nonlocal parameter increases the dimensionless frequency raises. Another 

notable observation is that, the critical point is postponed with the assumption of the smaller 

power-law indexes, related to the fact that the lower power-law indexes result in the increase of 

stiffness of the beam. 

The variations of the first dimensionless natural frequency of the S-S FG nanobeam under 

uniform, linear and non-linear temperature rise with respect to temperature change for different 

values of slenderness ratios (𝐿/𝑕 = 40, 50, 60) and nonlocal parameters at 𝑝 = 0.2 is presented in 

Figs. 17-19, respectively. It is revealed that for S-S FG nanobeams in the pre-buckling domain, 

increasing slenderness ratio leads to decrease in natural frequency. But in the post-buckling 

domain increase of slenderness ratio leads to increment in natural frequency. Also, it is seen that 

when nonlocal parameter increases the critical buckling point continuously moves to the left at a 

fixed material power-law index. 
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(a)  𝜇 = 0 (b)  𝜇 = 1 

  
(c)  𝜇 = 2 (d)  𝜇 = 3 

 
(e)  𝜇 = 4 

Fig. 8 Variations of the second dimensionless natural frequency of the FG nanobeam with respect to uniform 

temperature change for different values of power-law exponents and nonlocal parameters (𝐿/𝑕 = 50) 
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(a)  𝜇 = 0 (b)  𝜇 = 1 

  
(c)  𝜇 = 2 (d)  𝜇 = 3 

 
(e)  𝜇 = 4 

Fig. 9 Variations of the second dimensionless natural frequency of the FG nanobeam with respect to linear 

temperature change for different values of power-law exponents and nonlocal parameters ( 𝐿/𝑕 = 50) 
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(a)  𝜇 = 0 (b)  𝜇 = 1 

  

(c)  𝜇 = 2 (d)  𝜇 = 3 

 
(e)  𝜇 = 4 

Fig. 10 Variations of the second dimensionless natural frequency of the FG nanobeam with respect to non-

linear temperature change for different values of power-law exponents and nonlocal parameters (𝐿/𝑕 = 50) 
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(a)  𝜇 = 0 (b)  𝜇 = 1 

  

(c)  𝜇 = 2 (d)  𝜇 = 3 

 
(e)  𝜇 = 4 

Fig. 11 Variations of the third dimensionless natural frequency of the FG nanobeam with respect to uniform 

temperature change for different values of gradient indexes and nonlocal parameters (𝐿/𝑕 = 50) 
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(a)  𝜇 = 0 (b)  𝜇 = 1 

  
(c)  𝜇 = 2 (d)  𝜇 = 3 

 
(e)  𝜇 = 4 

Fig. 12 Variations of the third dimensionless natural frequency of the FG nanobeam with respect to linear 

temperature change for different values of gradient indexes and nonlocal parameters (𝐿/𝑕 = 50) 
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(a)  𝜇 = 0 (b)  𝜇 = 1 

  
(c)  𝜇 = 2 (d)  𝜇 = 3 

 
(e)  𝜇 = 4 

Fig. 13 Variations of the third dimensionless natural frequency of the FG nanobeam with respect to non-

linear temperature change for different values of gradient indexes and nonlocal parameters (𝐿/𝑕 = 50) 
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(a)  𝑝 = 0 (b)  𝑝 = 0.2 

  
(c)  𝑝 = 1 (d)  𝑝 = 5 

Fig. 14 Variations of the first dimensionless natural frequency of the FG nanobeam with respect to uniform 

temperature change for different values of nonlocal parameters and power-law exponents (𝐿/𝑕 = 50) 

  
(a)  𝑝 = 0 (b)  𝑝 = 0.2 

  
(c)  𝑝 = 1 (d)  𝑝 = 5 

Fig. 15 Variations of the first dimensionless natural frequency of the FG nanobeam with respect to linear 

temperature change for different values of nonlocal parameters and power-law exponents (𝐿/𝑕 = 50) 
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(a)  𝑝 = 0 (b)  𝑝 = 0.2 

  
(c)  𝑝 = 1 (d)  𝑝 = 5 

Fig. 16 Variations of the first dimensionless natural frequency of the FG nanobeam with respect to non-

linear temperature change for different values of nonlocal parameters and power-law exponents (𝐿/𝑕 = 50) 

  
(a)  𝜇 = 0 (b)  𝜇 = 1 

  
(c)  𝜇 = 2 (d)  𝜇 = 3 

Fig. 17 Variations of the first dimensionless natural frequency of the FG nanobeam with respect to uniform 

temperature change for different values of slenderness ratios and nonlocal parameters (𝑝 = 0.2 and 𝐿/𝑕 =
50) 
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(a)  𝜇 = 0 (b)  𝜇 = 1 

  
(c)  𝜇 = 2 (d)  𝜇 = 3 

Fig. 18 Variations of the first dimensionless natural frequency of the FG nanobeam with respect to linear 

temperature change for different values of slenderness ratios and nonlocal parameters (𝑝 = 0.2 and 𝐿/𝑕 =
50) 

  
(a)  𝜇 = 0 (b)  𝜇 = 1 

  
(c)  𝜇 = 2 (d)  𝜇 = 3 

Fig. 19 Variations of the first dimensionless natural frequency of the FG nanobeam with respect to non-

linear temperature change for different values of slenderness ratios and nonlocal parameters 
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6. Conclusions 
 

The thermal vibration analysis of third-order shear deformable simply-supported FG 

nanobeams is presented and effects of three types of thermal loading namely, uniform, linear and 

nonlinear temperature rise on vibration behavior of FG nanobeams are investigated. Material 

properties of FG nanobeam are assumed to change continuously along the thickness according to 

the power-law form and are assumed to be temperature-dependent. By using the Hamilton’s 

principle the governing equations of motion are derived and Navier’s type solution method is used 

to solve the equations. The obtained results based are compared with those predicted by the 

previous works to verify the accuracy of the present model. Selected numerical results are 

presented to indicate the effects of the power-law index, nonlocal parameter, slenderness ratio and 

thermal load on the vibration characteristics of FG nanobeams. It is observed that the fundamental 

frequency decreases with the increase in temperature and trends to zero at the critical temperature 

point. Diminution of frequency with thermal load before the critical point is attributed to the 

weakening effect of thermally induced compressive stress on the beam stiffness. Moreover, after 

passing the critical buckling temperature, the fundamental frequency increases with the increment 

of temperature. Also, it is concluded that under all types of temperature rises, as the power-law 

exponent growths the natural frequencies diminish, whereas, a reverse trend is observed in the 

post-buckling domain. In addition it is revealed that for the FG nanobeams subjected to nonlinear 

temperature changes through the thickness, the obtained frequencies are higher than that for the 

FG nanobeams subjected to the uniform and linear temperature changes. 
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