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Abstract. In this paper, thermal vibration behavior of nanoscale beams made of functionally graded (FG)
materials subjected to various types of thermal loading are investigated. A Reddy shear deformation beam
theory which captures both the microstructural and shear deformation effects without the need for any shear
correction factors is employed. Material properties of FG nanobeam are assumed to be temperature-
dependent and vary gradually along the thickness according to the power-law form. The influence of small
scale is captured based on nonlocal elasticity theory of Eringen. The nonlocal equations of motion are
derived through Hamilton’s principle and they are solved applying analytical solution. The comparison of
the obtained results is conducted with those of nonlocal Euler-Bernoulli beam theory and it is demonstrated
that the proposed modeling predict correctly the vibration responses of FG nanobeams. The effects of
nonlocal parameter, material graduation, mode number, slenderness ratio and thermal loading on vibration
behavior of the nanobeams are studied in detail.

Keywords: third-order shear deformation beam theory; thermo-mechanical vibration; functionally
graded nanobeam; Eringen elasticity theory

1. Introduction

Functionally graded materials (FGMs) are known as modern inhomogeneous composite
materials which have gained wide potential applications for various machineries and in various
systems and devices under thermo-mechanical loadings, such as heat engine components,
spacecraft heat shields, jet fighter structures, and plasma coatings for fusion reactors. In these
novel materials, the volume fractions of two or more material constituents such as a pair of
ceramic and metal are supposed to change continuously throughout the desired directions. The
FGM materials constituents provide several beneficial features, for instance, the ceramic
constituents are capable to endure vigorous temperature environments due to their better thermal
resistance characteristics, while the metal constituents possess stronger mechanical performance
and diminishes the possibility of disastrous fracture. Hence, presenting novel mechanical
properties, FGMs have gained its applicability in several engineering fields, such as biomedical
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engineering, nuclear engineering and mechanical engineering. Based on these advantages, a
number of researches, dealing with static, buckling, dynamic characteristics of FG structures, had
been published in the scientific literature (Ebrahimi and Rastgoo 2008a, b, ¢, Ebrahimi 2013,
Ebrahimi et al. 2008, 2009a, b, 2016a, Ebrahimi and Zia 2015, Ebrahimi and Mokhtari 2015).

Due to the awesome mechanical, chemical, and electronic properties of structural elements
such as nanoscale beams and plates in micro/nano electro-mechanical systems (MEMS/NEMS), a
motivation occurred in analysis of micro/nano structures where the size effects are prominent. In
these applications, size effects become prominent. Since the invention of carbon nanotubes (CNTS)
by lijima (1999), nanoscale engineering materials have exposed to considerable attention in
modern science and technology. These structures possess extraordinary mechanical, thermal,
electrical and chemical performances that are superior to the conventional structural materials.
Therefore nanostructures attract great interest by researchers based on molecular dynamics and
continuum mechanics. The problem in using the classical theory is that the classical continuum
mechanics theory does not take into account the size effects in micro/nano scale structures. The
classical continuum mechanics over predicts the responses of micro/nano structures. An alternative
approach to capture the size effects is using molecular dynamic simulations (MD) which is an
accurate implement for analyzing of nano-structural components. But even the molecular dynamic
simulation at nano scale is computationally exorbitant for modeling the nanostructures with large
numbers of atoms. So a conventional form of continuum mechanics that can capture the small
scale effect is required. Eringen’s nonlocal elasticity theory (Eringen 1983) is the most commonly
used continuum mechanics theory that includes small scale effects with good accuracy to model
micro/nano scale devices and systems. The nonlocal elasticity theory assumes that the stress state
at a reference point is a function of the strain at all neighbor points of the body. Hence, this theory
could take into consideration the effects of small scales. Lots of studies have been performed to
investigate the size-dependent response of structural systems based on Eringen’s nonlocal
elasticity theory (Ebrahimi and Salari 2015a, b, 2016, Ebrahimi et al. 2015a, 2016c, Ebrahimi and
Nasirzadeh 2015, Ebrahimi and Barati 20164, b, ¢, d, e, f, Ebrahimi and Hosseini 20164, b, c).

In order to investigate as well as design the FG micro and nanoscale structures several studies
is conducted in recent years. Concerning taking into account the size-effect for FG beam structures
based on the nonlocal constitutive relation of Eringen, a large number of studies have been
conducted attempting to develop nonlocal beam models for predicting the mechanical responses of
nanobeams. Peddieson et al. (2003) proposed the nonlocal Euler-Bernoulli beam theory to be
applied to materials in micro and nano scale. Various available beam theories are formulated by
Reddy (2007), through nonlocal differential relations of Eringen. A general nonlocal beam model
for analysis bending, buckling, and vibration of nanobeams using different beam theories are
presented by Aydogdu (2009). The flapwise bending-vibration of rotating nanocantilevers are
investigated by Pradhan and Murmu (2010) using differential quadrature method. They noticed
that size effects have a main role in the vibration behavior of rotating nanostructures. Thai (2012)
suggested a nonlocal higher order beam theory to study mechanical responses of nanobeams.
Civalek et al. (2010) proposed formulation of the governing equations of nonlocal Euler-Bernoulli
beams to investigate bending of cantilever microtubules via the differential quadrature method. In
other scientific work, Wang and Liew (2007) carried out the static analysis of micro and nano scale
structures based on nonlocal continuum mechanics using Euler-Bernoulli and Timoshenko beam
theory. Simsek (2014) proposed a non-classical beam model based on the Eringen’s nonlocal
elasticity theory for nonlinear vibration of nanobeams with various boundary conditions. The
nonlocal beam model based on Eringen’s theory for the vibration of FG and composite nanobeams
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are presented by Zenkour et al. (2014). Ansari et al. (2015) investigate a size-dependent nonlinear
forced vibration of magneto-electro-thermo-elastic Timoshenko nanobeams based on the nonlocal
elasticity theory.

To properly apply the FG micro/nano materials in micro/nano electromechanical systems
(MEMS/NEMS), their mechanical behavior needs to be investigated. Recently, Eltaher et al.
(2012) presented a finite element analysis for free vibration of FG nanobeams using nonlocal EBT.
Rahmani and Pedram (2014) analyzed the size effects on vibration of FG nanobeams based on
nonlocal TBT. Also, recently Hosseini-Hashemi et al. (2014) investigated free vibration of FG
nanobeams with consideration surface effects and piezoelectric field using nonlocal elasticity
theory. Ebrahimi et al. (2015) and Ebrahimi and Salari (2015a) examined the applicability of
differential transformation method in investigations on vibrational characteristics of FG size-
dependent nanobeams. Most recently Ebrahimi and Barati (2016g, h, I, j, k, I, m,n,0,p, q, 1, S, t,
u, v, 2017a, b) and Ebrahimi et al. (2017) explored thermal and hygro-thermal effects on nonlocal
behavior of FG nanobeams and nanoplates. Li and Hu (2017) examined torsional vibration of bi-
directional functionally graded nanotubes based on nonlocal elasticity theory. Also, they (2017)
performed post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress
and microstructure-dependent strain gradient effects. Li et al. (2016) carried out free vibration
analysis of nonlocal strain gradient beams made of functionally graded material.

Although the size-dependent FG beam models have been developed in the aforementioned
studies, most of them ignore the effects of thermal environment. Also, the common use of FGMs
in high temperature environment leads to considerable changes in material properties. For
example, Young’s modulus usually reduces when temperature increases in FGMs. To predict the
behavior of FGMs subjected to extreme temperatures more accurately, it is necessary to consider
the temperature dependency on material constituent’s properties. Furthermore, due to the
expansion of new industries and technologies, many systems and structures experience severe
thermal environments, resulting in various types of thermal loads. This situation has created a need
for a text that is focused on the analysis of thermal vibration. Thermal vibration is a phenomenon
in many structures that should be checked to ensure the safety of structures. Consequently, thermal
vibration analysis of beam structures is common in structural mechanics. Hence, presenting an
accurate model of FG nanobeams is very important for successful NEMS design. Considering
great application of beams in different engineering fields such as aerospace and mechanical
engineering, and due to the fact that making temperatures and working temperature of structures
are not equal, for more accurate design, it is useful to study their thermos-mechanical behavior.
Several studies have been performed to investigate the thermal effect on mechanical responses of
FGM beams. Wattanasakulpong et al. (2011) investigated thermal buckling and elastic vibration of
third-order shear deformable FG beams. Thermo-mechanical buckling and nonlinear free vibration
analysis of FG beams on nonlinear elastic foundation is investigated by Fallah and Aghdam
(2012). Small amplitude vibrations of a FG material beam under in-plane thermal loading in the
prebuckling and postbuckling regimes is studied by Esfahani et al. (2014). It should be cited that,
in these work the beams are in macro scale and small scale effect is not taken into consideration.
For the FG nanobeam problems, Ebrahimi and Salari (2015c¢) investigated the thermal effects on
buckling and free vibration characteristics of FG size-dependent Timoshenko nanobeams subjected
to an in-plane thermal loading. In another study, Thermo-mechanical vibration analysis of nonlocal
temperature-dependent FG nanobeams with various boundary conditions is investigated by
Ebrahimi and Salari (2015d). An exact solution for the nonlinear forced vibration of FG
nanobeams in thermal environment based on surface elasticity theory is presented by Ansari et al.
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(2015). It is noticed that most of the previous studies on mechanical analysis of FG nanobeams
have been carried out based on Euler-Bernoulli and Timoshenko beam theories. It should be noted
that the EBT fails to consider the influences of shear deformations. This theory is only applicable
for slender beams and should not be applied for thick beams, and also it suppose that the
transverse perpendicular to the neutral surface stays normal during and after bending, which
indicates that the transversal shear strain is equal to zero Hence, the buckling loads and natural
frequencies of thick beams are overestimated in which shear deformation effects are prominent.
Timoshenko Beam Theory can enumerate the influences of shear deformations for thick beams
with presumption of a constant shear strain state in the direction of beam thickness. So, as a
disadvantage of this theory, a shear correction factor is required to properly demonstration of the
deformation strain energy. To prevent using the shear correction factors, many higher-order shear
deformation theories have been developed such as the third-order shear deformation theory
proposed by Reddy (2007), the generalized beam theory proposed by Aydogdu (2009) and
sinusoidal shear deformation theory of Touratier (1991). Reddy's third order beam theory (RBT)
can be used with supposing the higher order longitudinal displacement variations of beam along
the thickness. By verifying zero transverse shear stresses at the upper and lower surfaces of the
beam, this theory captures both the microstructural and shear deformation effects. Therefore, The
Reddy beam theory is more exact and provides better representation of the physics of the problem,
which does not need any shear correction factors. This theory relaxes the limitation on the warping
of the cross sections and allows cubic variations in the longitudinal direction of the beam, so it can
produce adequate accuracy when applying for beam analysis. Therefore, a few numbers of studies
have been conducted to investigate the mechanical responses of FG micro/nano beams by using
higher shear deformation beam theories. Sahmani et al. (2015) investigated the free vibration
response of third-order shear deformable nanobeams made of FGMs around the postbuckling
domain incorporating the effects of surface free energy. Zhang et al. (2005) developed a size-
dependent FG beam model resting on Winkler-Pasternak elastic foundation based on an improved
third-order shear deformation theory and provided the analytical solutions for the bending,
buckling and free vibration problems. By searching the literature, it is found that a work analyzing
the thermal vibration of FG nanobeams using the third-order shear deformation beam theory hasn’t
been yet published.

In the present work, thermo-mechanical vibrational behavior of the higher-order FG nanobeams
in thermal environment are investigated applying Navier analytical method. The FG nanobeam is
supposed to be exposed under three types of thermal loads including uniform, linear and nonlinear
temperature changes. Thermo-mechanical properties of the FG nanobeams are both temperature-
dependent and position-dependent. The nonlocal governing differential equations in thermal
environment are derived by implementing Hamilton’s principle and using nonlocal constitutive
equations of Eringen. Accuracy of the results is examined using available date in the literature. The
effects of small scale parameter, material graduation, thermal loading and slenderness ratio on
thermal vibration of FG nanobeams are investigated.

2. Governing equations
2.1 Power-law functionally graded material (P-FGM) beam

One of the most favorable models for FGMs is the power-law model, in which material
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Fig. 1 Geometry and coordinates of FG nanobeam

properties of FGMs are supposed to change according to a power law about spatial coordinates.
The coordinate system for FG nano beam is shown in Fig. 1.

The FG nanobeam is assumed to be combination of ceramic and metal and effective material
properties (Pr) of the FG beam such as Young’s modulus Er and mass density p are supposed to
change continuously in the direction of z-axis (thickness direction) according to an power function
of the volume fractions of the material constituents. So, the effective material properties, Pr can be
stated as

Pr = P.Vo + BV, (1)

where subscripts m and ¢ denote metal and ceramic, respectively and the volume fraction of the
ceramic is associated to that of the metal in the following relation

V.+V, =1 (2a)
The volume fraction of the ceramic constituent of the beam is assumed to be given by
z 1\?
Y i 2b
Ve (h * 2) : (20)

Here p is the power-law exponent which determines the material distribution through the
thickness of the beam and z is the distance from the mid-plane of the FG nanobeam. Therefore
from Egs. (1) and (2), the effective material properties of the FG nanobeam such as Young’s
modulus (E), mass density (p), Poisson’s ratio (v), coefficient of thermal expansion («;) and
thermal conductivity () can be expressed as follows

I( E (Z)\I (EC —E, E,
p(Z) Pc — Pm Pm
41/(2)$={vc—vm}<%+%>p+<vm}. (3)
La’t(Z) [ Oe —0m Om

k(z) J Ke — Km) ka)

The material composition of FG nanobeam at the upper surface (z = +h/2) is supposed to be
the pure ceramic and it changes continuously to the opposite side surface (z = —h/2) which is
pure metal. To more accurate prediction of FGMs behavior under high temperature, it is necessary
to consider the temperature dependency on material properties. The nonlinear equation of thermo-
elastic material properties in function of temperature T(K) can be expressed as Ebrahimi and
Salari (2015c)
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Table 1 Temperature dependent coefficients for SisN, and SUS304

Material Properties P, P, P, P, P,
E(Pa) 348.43e+9 0 -3.070e-4 2.160e-7  -8.946e-11

a(K?hy 5.8723¢-6 0 9.095e-4 0 0

SizN, p(Kg/m®) 2370 0 0 0 0
K (W/mK) 13.723 0 -1.032¢-3 5.466e-7  -7.876e-11

v 0.24 0 0 0 0

E(Pa) 201.04e+9 0 3.079-4 -6.534e-7 0

a(K?hy 12.330e-6 0 8.086e-4 0 0

SUS304 p(Kgim) 8166 0 0 0 0
K (W/mK) 15.379 0 -1.264¢-3 2.092e-6  -7.223e-10

v 0.3262 0 -2.002¢-4 3.797e-7 0

P =Py(P_sT™' + 1+ P T+ P,T? 4+ P;T3), 4)

where Py, P_;, P;, P, and P; are the temperature dependent coefficients of temperature, T'(K)
which can be seen in the Table 1 that contains material properties of SizN4 and SUB304.

2.2 Kinematic relations

Based on the third order shear deformation (Reddy) beam theory, the displacement field at any
point of the beam can be written as
ow
— — 73 il
w,(0,2) = u (@) +20(0) - az* (9 + ), ©
uz(x,z) = w(x),

where a = % and u and w are the longitudinal and the transverse displacements, ¢ is the rotation

of the cross section at each point of the neutral axis. Nonzero strains of the Reddy beam model are
expressed as follows

0 1 3 0 2
tox = €0 + 26D + 236Dy, =y 4 22y 2. (6)
where
Lo oy O @ (0 0w
I L D ox 0x2)’ )
0) _ aW () _ aW
Vo =@+ 520 Yoz =—p p+o-)

and g = :—2 By using the Hamilton’s principle, in which the motion of an elastic structure in the

time interval t; < t < t, is so that the integral with respect to time of the total potential energy is
extremum
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Jy 8(K = U =V)dt =0, (8)

where K is the kinetic energy, U is the total strain energy and V is the work done by external
forces. The virtual strain energy can be calculated as

oU = fff 0;;6g;jdv = fff (Oyx08xx + Oz 0Vxz)AV. )
v \%
Substituting Eq. (6) into Eqg. (9) yields
5U = L g (N5e® + M5l + Pocl? + QoyY + RoYD) dx. (10)
in which the variables introduced in arriving at the last expression are defined as follows

(N.M,P} = ﬂ 0. {1,2,23}dA,
A

(11)
@R = || outt?aa,
A
The first variation of the work done by applied forces can be written in the form
L ow 0 92 _d5¢p  _
sV = NT —— P—|ow + fou — N6el® — M—— Q5y2|d 12

where NT is thermal resultant, M = M — aP, Q = Q — BR and JV is the applied axial compressive
load and g(x) and f(x) are the transverse and axial distributed loads and k,, and kp are linear and
shear coefficient of elastic foundation. The thermal resultant can be expressed as

NT = _"ﬁz E(z T)a.(z, T)(T — Ty)dz. (13)

The first variation of the virtual kinetic energy can be written in the form

L oudéu , Oow dsw oudde . dpddu dp 8¢ ou (925w

= o4 52 1, (0 2220 0
o fo o\arar T or or 1\at ot ' ot ot 29t ot 3 ot \axat
66(/)) adu [ a*w G10) dp (9%6w = 08¢ a8 (9*w | o 2%w (14)
) ()4t (E ) e 20) o
ac ) 1350 \orar tocr) Thav, 0xdt tor ) Tl Grar T oe e \orac +

64)) (a Sw a&p)}

ot dx0t + at dx,

where I; represent the mass inertia
[; = ff pz/dA. (15)
A

It is to be noted that for homogeneous nanobeams we have I; = I3 = 0.
By substituting Egs. (10), (12) and (14) into Eq. (8) and setting the coefficients of du, éw and
S to zero, the following Euler-Lagrange equation can be obtained

aN a?u - 8% acw
D=1 22l
ax f=I arz T 1 gr2 3 pxar?’

ol =  » 8*u  » @%@ ~ (w8
U hgethas —al (ﬁ‘x@t2 + 3{'2)' (16)
a*w a3 )
axZat?  axat?

azp 3w a3u 3
9Q _ 4 (yTdw a°p _ g 9w _0%u O o
(N x) tageta= Lo oz t aly otz T aly ootz ls (
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where 1] = I] — a1j+2'
2.3 The nonlocal elasticity model for FG nanobeam

According to Eringen nonlocal elasticity model, the stress state at a point inside a body is
regarded to be function of strains of all points in the neighbor regions. For homogeneous elastic
solids the nonlocal stress-tensor components o;; at each point x in the solid can be defined as

0 () = f f W(lx — '], Dty (v, 17)

where t;;(x") are the components available in local stress tensor at point x which are associated to
the strain tensor components &; as

tij = Cijki€ki- (18)

The concept of Eq. (17) is that the nonlocal stress at any point is weighting average of local
stress of all points in the near region that point, the size that is related to the nonlocal kernel
Y(|lx —x'],7). Also |x — x| is Euclidean distance and 7 is a constant given by

epa

T= T (19)
which indicates the relation of a characteristic internal length, (for instance lattice parameter, C-C
bond length and granular distance) and a characteristic external length, [ (for instance crack length
and wavelength) using a constant, e,, dependent on each material. The value of e, is
experimentally estimated by comparing the scattering curves of plane waves and atomistic
dynamics. According to (Eringen 1983) for a class of physically admissible kernel ¥ (|x — x'|, 7).
It is possible to represent the integral constitutive relations given by Eq. (17) in an equivalent
differential form as

[1 - (e0a)?V?]ow; = ty, (20)

where V2 is the Laplacian operator. Thus, the scale length eya consider the influences of small
scales on the response of nano-structures. The magnitude of the small scale parameter relies on
several parameters including mode shapes, boundary conditions, chirality and the essence of
motion. The parameter e, = (w2 — 4)¥/2 /2w = 0.39 was given by Eringen (1983). Also, Zhang et
al. (2005) found the value of 0.82 nm for nonlocal parameter when they compared the vibrational
results of simply supported single-walled carbon nanotubes with molecular dynamics simulations.
The nonlocal parameter, u, is experimentally obtained for various materials; for instance, a
conservative estimate of u < 4 (nm)? for a single-walled carbon nanotube is proposed (Wang and
Hu 2005). It is worth mentioning that this magnitude is dependent of size and chirality, because the
properties of carbon nanotubes are extensively confirmed to be dependent of chirality. There is no
serious study conducted to determining the value of small scale to simulate mechanical behavior of
FG micro/nanobeams. Hence all researchers who worked on size-dependent mechanical behavior
of FG nanobeams on the basis the nonlocal elasticity method investigated the influence of small
scale parameter on mechanical behavior of FG nanobeams by changing the value of the small scale
parameter. In the present work, the nonlocal parameter is assumed to be in the range of 0-5 (nm)?
(Eltaher et al. 2012). So, for a material in the one-dimension case, the constitutive relations of
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nonlocal theory can be expressed as
2

0.
Oxx — (eoa)z sz = Eeyy,
x 1)
X
o-XZ - (eoa)z axzz = nyzl

where ¢ and ¢ are the nonlocal stress and strain, respectively. E is the Young’s modulus, G(z) =

Z[f(z) is the shear modulus (where v is the Poisson’s ratio). For a nonlocal FG beam, Eq. (21) can
+v(2)]

be written as

d%o
Oxx — U axazcx = E(2)&xy, ”
0%0,, (22)
Oxz — U Ox2 = G(2)Vxz

where (u = (eya)?). Integrating Eq. (22) over the beam’s cross-section area, we obtain the force-
strain and the moment-strain of the nonlocal Reddy FG beam theory can be obtained as follows

92N ou op 0w
N — HW = Axxa + (Bxx - (ZExx) a - (ZExx ﬁ, (23)
9*M ou g 0w
M_.uwzBxxa_i'(Dxx_anx)a_anfo (24)
d%p ou o 02w
p _#m = Exxa"' (Fxx _aHxx)a_ aHxxﬁ' (25)
0%Q ow
Q- MW = (sz - .Bsz) (a + <P>, (26)
0°R )
R_.uﬁz (sz_ﬁsz) (%+<p), (27)
in which the cross-sectional rigidities are defined as follows
h/2
{Axx:Bxx' Dy, Exx:Fxx'Hxx} = j E(Z){l' 2'22123'24:26}(12: (28)
—h/2
h/2
e D Fed = | 601,722 (29)
—h/2

The explicit relation of the nonlocal normal force can be derived by substituting for the second
derivative of N from Eq. (16), into Eq. (23) as follows

N=A au+1< 0P E 62W+ 1 Ou +1I A I o'w__of (30)
= Aax gy T hax g T FRax i TR oG az T oxaee T Y2 9202 ox )

Eliminating Q from Egs. (16), and (16)3, we obtain the following equation
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aZM_a(NTaW> a2p HaZWH 23u N 93¢
ox2  ox\ ox) %oxz T 1T 02 T a2 T 2 9x0r2
tw 93¢ 1)
- 0( 4 + .
0x20t?2  0xo0t?

Also the explicit relation of the nonlocal bending moment can be derived by substituting the
above equations into Egs. (24) and (25) as follows

_ ou _ d¢ 0w a ( 0w a%p
M =Kxxa+’xxa ~ g ol (V) —egm
3 4 3 (32)
3u d°¢ _ *w d°¢@
+I° a2 T+ 500 dxdt? +1 axdt? aly (6x26t2 + 6x6t2)]’
where
Kyx = Byx — @Exy,  Lyx = Dyx — QFyy,  Jxx = Fex — @Hyy, I_xx = Ly — @ xx- (33)

By substituting for the second derivative of Q from Eq. (16)s into Eq. (26) with the aid of Eq.
(27) the following expression for the nonlocal shear force will be derived
2 (NT 6w> 3P dq 23w 0*u

_ aw d
(3249 ,
=G T0) |52V 5x) ~ %53 “ax T oaxa T B axzar a0
2 65w 64([)
taly 5 e Zatz —a'ls (6x36t2 + 6x26t2)]'
where
Ay = sz - .Bﬁxz' sz = Ay; — BDxz, Exz = Dy, — BFys. (35)
Now we use M and Q from Egs. (32) and (34) and the identity that given from Eq. (25) to get
02 a%p 3u e 0w

(Xﬁ P—‘Llﬁ =0(Exxﬁ+a]xxﬁ—a Hxxw. (36)

The nonlocal governing equations of third-order shear deformation FG nanobeam in terms of
the displacement can be derived by substituting for N, M and Q from Egs. (30), (32) and (34),
respectively, and using Eqg. (36) into Eq. (16) as follows

0%u 9%¢ 3w 0’u . 9% 3w
gz YK gz =BGzt~ ~hga + *hyap 37)
%f o*u F R Sw \ _
H (ﬁ ~logze —Ih oxzoz T sy 36t2) =0,
’u _ 9% dw 0w L 0%u | 0%
Kxxa_2+ xxaxz_a]xxax_o,_ xz(a‘k(p)_ 1m_12 ot2
pai, (22 O (38)
“4\oxaez T 92

s~ 9%u PO ) A 25w 2%
i i —al ( )] -
TH [ 1 5x29¢2 1 axzarz . Y4 \5x3ar2 + Ax29t2 0,
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. (9*w  dp 9%u Bp . d'w a/ 0w 9%w
Ao\ Guz Tox ) T B gz t a3 “Hxxax‘*_&(N ax) 1=lo5z
Ll P g B0 oy (w0 ) 19 (prowy o 0w (39)
als Axdt2 al, dx E)tz +a‘ls (axZatZ t 6x6t2) t [ax3 (N ax) dx2 lo 9x29t2

5 aS 66 65
e 2 (_W _<ﬂ)] -
taly oo dx30t2 +al, oxsorz & e dx*at2 + dx39t2 0.

3. Solution procedures

Here, on the basis the Navier method, an analytical solution of the governing equations for free
vibration of a simply-supported FG nanobeam is presented. To satisfy governing equations of
motion and the simply supported boundary condition, the displacement variables are adopted to be
of the form

w(x, t) =Z Wnsin(—x) el@nt, (40)

where (U,, W, ®,) are the unknown Fourier coefficients to be determined for each n value. The
boundary conditions for simply-supported beam are given by

dp
— =0, w(0,t)=w(Lt)=0 —
0xl =y 0x

Substituting Eq. (40) into Egs. (37)- (39) respectively, leads to

{IO [1 +u nLn) ]w% — A,y (nf) }U + {Il [1 +u (n:)z] w2 — Ky, (TLL_T[)Z}(pn

+”L—"a{Exx ("T”)2 — 1 [1 + ("L—”)Z] a),zl} W, =0,
(o () ok = e () o= (e (F) w10 (F) Joifor
+2E {a]xx ("L’T)2 — AL, —al, [1 +u ("L—”)Z] w,%} W, =0,

G T (i RN R i P A
+ nL_n{a]xx (72_7'[)2 — AL, —al, [1 +u (E)Z] wrzl} b,
nm
) v (]

+ [1 +u(nL—” ”NT nL—”) (10 +a Is(n:) )wg]}wn = 0.

By setting the determinant of the coefficient matrix of the above equations, the analytical
solutions can be obtained from the following equations

_0e

u(0,t) =0 =
x=0 ox x=L

= 0. (41)

(42)

(44)



104 Farzad Ebrahimi and Mohammad Reza Barati

([K] + NT[KT] — wi[M]D{A} = {0}, (49)
where {A} = {U,,W,,®,}T , [K] is the stiffness matrix, [KT] is the coefficient matrix of

temperature change, and [M] is the mass matrix. By setting this polynomial to zero, we can find
natural frequencies w,,.
4. Types of thermal loading

4.1 Uniform temperature rise (UTR)

For a FG nanobeam at reference temperature T, the temperature is uniformly raised to a final
value T which the temperature change is AT = T — Ty,

4.2 Linear temperature rise (LTR)

For a FG nanobeam for which the beam thickness is thin enough, the temperature distribution is
assumed to be varied linearly through the thickness as follows

z 1
T=T, AT [+ = 46
AT (7 45), (46)
where the buckling temperature difference is AT =T, —T,, in which T, and T,, are the
temperature of the top surface which is ceramic-rich and the bottom surface which is metal-rich,
respectively.

4.3 Nonlinear temperature rise (NLTR)

The one-dimensional temperature distribution through-the-thickness can be obtained by solving

the steady-state heat conduction equation with the boundary conditions on bottom and top surfaces
of the beam across the thickness

d dr
_&(K(Z: T) E) =0, T|z=h/2 =T T|z=—h/2 =Tn (47)
The solution of above equation is
z 1
dz
—h/2 T
T =Ty + (Te = T) 75 el (48)
“n2 wen 92

5. Numerical results and discussions

The thermal vibration analysis of FG nanobeams are investigated using the Navier method
based upon third order shear deformation theory and nonlocal elasticity theory. The effective
material properties, that elasticity modulus and mass density of the FG nanobeam vary through the
thickness direction according to power law distribution. Simply supported boundary condition is
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Table 2 Comparison of the non-dimensional fundamental frequency for a FG nanobeam with various power-
law indexes at L/h = 20 and AT = 0 K

p=0 p =05

EBT TBT. Present EBT TBT_ Present
u (Eltaher etal. (Rahmani and RBT (Eltaher et (Rahmani and RBT

2012) Pedram (24)) al. 2012) Pedram (24))
0 9.8797 9.8296 9.82957 7.8061 7.7149 7.71546
1 9.4238 9.3777 9.377686 7.4458 7.3602 7.36078
2 9.0257 8.9829 8.982894 7.1312 7.0504 7.0509
3 8.6741 8.6341 8.634103 6.8533 6.7766 6.77714
4 8.3607 8.323 8.323021 6.6057 6.5325 6.53296
5 8.0789 8.0433 8.043309 6.383 6.3129 6.31342

p=1 pP=5

EBT TBT Present EBT TBT Present
U (Eltaher etal. (Rahmani and RBT (Eltaher et (Rahmani and RBT

2012) Pedram (24)) al. 2012) Pedram (24))
0 7.0904 6.9676 6.967613 6.0025 5.9172 5.916152
1 6.7631 6.6473 6.6473 5.7256 5.6452 5.644175
2 6.4774 6.3674 6.367454 5.4837 5.4075 5.406561
3 6.2251 6.1202 6.120217 5.2702 5.1975 5.196632
4 6.0001 5.8997 5.899708 5.0797 5.0103 5.0094
5 5.7979 5.7014 5.701436 4.9086 4.8419 4.841049

considered for which required the Navier method. The effects of FG material graduation,
nonlocality effect, slenderness ratio and thermal load on the non-dimensional natural frequencies
of the FG nanobeam will be figured out. FG nanobeam is composed of steel (SUS304) and
alumina (Al,O3) where its properties are given in Table 1. The bottom surface of the beam is pure
Steel, whereas the top surface of the beam is pure Alumina. The beam geometry has the following
dimensions: L (length)=10000 nm, b (width)=1000 nm. A 5K increase in metal surface to
reference temperature To of FG nanobeam is considered, i.e., T,, — T, = 5K. The following

dimensionless relation is defined in order to calculate the non-dimensional natural frequencies

pcA

49
T (49)

o = w,L?

where I = bh3/12 is the moment of inertia of the cross section of the nanobeam. For the
verification purpose, the non-dimensional natural frequency of simply supported FG nanobeam
with various nonlocal parameters and power-law exponents are compared with the results
presented by Eltaher et al. (2012) For Euler-Bernoulli FG nanobeams and Rahmani and Pedram
(2014) which has been obtained by analytical method for FG Timoshenko nanobeam. In these
works, the material properties are selected as: E,, = 210 GPa,E, = 390 GPa, p,, = 7800 kg/
m3,p. = 3900 kg/m3, v, = 0.3 and v, = 0.24.

The reliability of the presented method and procedure for FG nanobeam may be concluded
from Table 2; where the results are in an excellent agreement as values of non-dimensional
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Table 3 The variation of the first non-dimensional fundamental frequency for a FG nanobeam with various
power-law indexes and nonlocal parameters (L/h = 20)

AT =10K AT =30K AT = 60K
u Power-law index Power-law index Power-law index
0.2 0.5 1 5 0.2 0.5 1 5 0.2 0.5 1 5

UTR 7.792776.596895.765924.687757.421516.234355.411094.347636.804685.62434 4.8070 3.75680
0 LTR 7.795806.601045.769894.689537.618056.430255.602784.525507.333026.15462 5.3315 4.25646
NLTR7.797176.603345.772654.691407.622696.438025.612164.531897.344176.173295.354134.27204
UTR 7.417736.277245.484844.456967.026555.894845.110224.097376.371475.245254.46528 3.46369
1 LTR 7.420886.281545.488934.458747.233816.101605.312734.285566.932895.810205.025554.00010
NLTR7.422326.283955.491844.460717.238706.109795.612164.292306.944685.829985.049544.01667
UTR 7.089335.997245.238554.254636.678845.595544.84466 3.875995.985694.906254.15844 3.19838
2 LTR 7.092606.001695.242764.256416.896525.812915.057754.074366.580095.506084.754973.77267
NLTR7.094116.004215.245814.258486.901655.821515.068144.081456.592525.526954.780323.79023
UTR 6.798545.749225.020324.075266.369225.328674.60757 3.677915.638034.59936 3.879362.95488
3 LTR 6.801925.753815.024654.077056.597115.556464.831093.88635 6.2655 5.234464.512913.56854
NLTR6.803495.756445.027834.079206.602485.565454.84196 3.893786.278545.256404.539623.58711
UTR 6.538595.527424.825103.914726.090895.088414.39384 3.498935.321484.318533.622672.72856
4 LTR 6.542085.532164.829563.916526.328795.326454.627653.717365.982244.989494.29424 3.38349
NLTR6.543715.534904.832863.918766.334385.335834.639003.725145.995905.012504.322303.40307

frequency are consistent with presented analytical solution. It can be observed from Table 2 that
the results of nonlocal Reddy beam theory are smaller than those of nonlocal Euler beam theory.
This is due to the fact that Euler-Bernoulli beam model cannot capture shear deformation effect.

The variations of the first three non-dimensional frequencies of the simply supported FG
nanobeams for various values of power-law exponent (p = 0.2,0.5,1,5), nonlocal parameters
(u=0,1,2,3,4nm?) and temperature changes (AT = 10,30,60 K) for three types of thermal
loading at L/h = 20 are presented in Tables 3-5. It is seen from the results of these tables that in
all cases of thermal loading increasing nonlocal scale parameter leads to decreasing in the non-
dimensional frequencies at a constant power-law exponent. So it is worth noting that nonlocal
parameter has a remarkable effect on the natural frequencies of FG nanobeams. Also, it is observed
that, by fixing nonlocal parameter and increasing power-law exponent the non-dimensional
frequencies reduces, especially for lower values of power-law exponent. In addition, it is
concluded that the values of non-dimensional frequencies temperature in the case of nonlinear
temperature change are bigger than those of uniform and linear temperature change at a constant
power-law exponent and slenderness ratio.

The dimensionless frequencies of FG nanobeam versus the power-law exponent under uniform,
linear and non-linear temperature rise through-the-thickness at L /h = 20 are depicted in Figs. 2-4,
respectively. In these figures, regardless of the thermal loading types, the dimensionless natural
frequency decreases suddenly as the power-law exponent increases from 0 to 2, then decreases
monotonically as the power-law exponent increases from 2 to 10. It can be observed from the
results of the figures that by increasing the nonlocal parameter the first dimensionless frequency
reduce for every power-law exponent and temperature change, which indicates the notability of the
nonlocal effect.



Thermal-induced nonlocal vibration characteristics of heterogeneous beams 107

Table 4 The variation of the second non-dimensional fundamental frequency for a FG nanobeam with
various power-law indexes and nonlocal parameters (L/h = 20)

AT =10K AT =30K AT = 60K
u Power-law index Power-law index Power-law index
0.2 0.5 1 5 0.2 0.5 1 5 0.2 0.5 1 5

UTR 31.318126.576623.277118.979430.961426.233222.944718.665030.396625.686022.412318.1579
0 LTR 31.322126.582523.283418.984031.151326.421823.128718.834630.881526.165422.879918.5923
NLTR31.323526.584723.286118.985831.155826.429323.137718.840730.892126.182922.900918.6065
UTR 26.459122.445919.653516.017226.034222.035219.254815.638625.358321.377818.613215.0249
1 LTR 26.463422.452119.659916.021326.259422.258819.472815.839625.937321.951219.173215.5467
NLTR26.465022.454819.663116.023526.264822.267719.483515.846925.949921.972019.198215.5637
UTR 23.306819.765217.301314.093322.822219.295616.844413.658522.046918.539416.104512.9483
2 LTR 23.311419.771717.307814.097223.078619.550217.092713.887622.710519.197616.7484 13.5500
NLTR23.313319.774817.311514.099723.084719.560317.104913.895922.724819.221416.777113.5695
UTR 21.048517.844115.615012.713420.509817.321115.105412.227519.642716.473114.273911.4265
3 LTR 21.053417.850915.621812.717220.7946 17.604 15.381412.482520.384617.210414.996412.1038
NLTR21.055417.854315.625812.719920.801317.615315.395012.491720.400517.236915.0284 12.1257
UTR 19.327116.379214.328811.660418.738315.806813.770311.127017.784514.871612.851310.2385
4 LTR 19.332216.386414.335811.664119.0495 16.116 14.072311.406218.600615.684213.649110.9892
NLTR19.334416.390114.340211.667119.056916.128414.087111.4163 18.618 15.713413.684311.0132

Table 5 The variation of the third non-dimensional fundamental frequency for a FG nanobeam with various
power-law indexes and nonlocal parameters (L/h = 20)
AT = 10K AT = 30K AT = 60K
U Power-law index Power-law index Power-law index
0.2 0.5 1 5 0.2 0.5 1 5 0.2 0.5 1 5
UTR 69.333758.856151.557542.017668.981758.522551.238241.718868.425557.989550.723741.2323
0 LTR 69.339458.865051.567742.026869.173358.713451.425041.891968.908358.466151.188141.6637
NLTR69.340858.867351.570442.028769.177858.720951.434141.898068.918858.4835 51.209 41.6779
UTR 50.341242.719637.410930.473449.848242.246036.953030.040049.068541.491936.219929.3410
1 LTR 50.347142.728337.420330.480750.111442.507437.208230.275949.738842.154236.865929.9424
NLTR 50.349 42.731537.424130.483250.117742.517837.220730.284449.753342.178436.894929.9621
UTR 41.420135.137330.761625.044540.816234.554330.195724.506439.857133.622629.286823.6357
2 LTR 41.426435.146430.771125.050941.136634.872330.506024.793340.679134.436030.081224.3773
NLTR41.428735.150230.775725.054041.144234.885030.521224.803640.696934.465630.116824.4015
UTR 35.969930.503526.696821.724035.270929.826726.038321.096134.154628.738824.974120.0727
3 LTR 35.976630.513126.706521.729935.640930.193926.396621.427635.110229.686025.900820.9404
NLTR35.979330.517526.711721.733535.649630.208626.414221.4396 35.130829.720425.942120.9685
UTR 32.196627.294323.880719.422431.412526.533423.139318.713930.152325.302121.931817.5483
4 LTR 32.203827.304423.890719.428131.827026.945123.541119.086031.230526.372822.981218.5343
NLTR32.206727.309323.896619.432131.836926.961523.560919.099431.253726.411423.027718.5661
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Fig. 2 The variation of the first dimensionless frequency of the FG nanobeam under uniform temperature
change with power-law exponent and temperature rises for different nonlocal parameters (L/h = 20)
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Fig. 3 The variation of the first dimensionless frequency of the FG nanobeam under linear temperature
change with power-law exponent and temperature rises for different nonlocal parameters (L/h = 20)
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Fig. 5 Variations of the first dimensionless natural frequency of the FG nanobeam with respect to uniform
temperature change for different values of power-law exponent and nonlocal parameters ( L/h = 20)
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Fig. 6 Variations of the first dimensionless natural frequency of the FG nanobeam with respect to linear
temperature change for different values of power-law exponent and nonlocal parameters ( L/h = 25)



2nd Dimensionless Frequency
[ e o T = T 7™ T ¥ R - -
= w (=] w (=] w = w

(=R )]

i ul @
=] =] =]

2nd Dimensionless Frequency
[ w
= [s=]

Thermal-induced nonlocal vibration characteristics of heterogeneous beams

113

————— p:O 50 - D:U
—_— p=0.2 Lo 545 —— )= -~
-— = n=] i E . 02 ”’ -
. p "I/ _ 340 = == p=]1 ‘,’
—--p=5 o 3 35 — . ap=5 A
\\‘ /'/ .- H . p ," L~ -
NN Ve w30 s, s
NN 2 . e
N ‘\\ e’ = 25 NN ///
. Y , by
\\ \ ’," gzﬂ N N \‘\ 4
\ \ I._‘{,/'J §15 \'-\. \\‘ .ﬂr
\ \)}'\ ){“ '," B 10 NN _‘x '.r'
RN l‘ v E R V]
VY '\' S \ RAVAY
Y >f lfi
50 100 150 200 250 300 50 100 150 200 250 300
AT[K] AT[K]
@ mu=0 by u=1
SE—— 60 meemee p=(
— — p=02 & — — p=02
£ 50 P P
— = p=1 L % —_— =—p=1 e _
—:.=p=5 "p" - E4U = .+ =p=5 "f“/
P L~ -
T 2 S
- T - 9] . e .
P = 30 o~
" - =] ~ "// _-/
. )’; . = ~ J/.-/
N P =} A F .
N - 020 NN P
\ 4 E NN A8
BN SN
'\ AN N v F
N7 RN 7
RS a X/y'l
] L 0 ‘s H
50 100 150 200 250 300 0 50 100 150 200 250 300
AT[K] AT[K]
© u= (d) u=
-----.D:D
& — — p=0.2
5 50 — —p=1 -
g" P 5 »"’ -
o _— D= L
240 sl
72} - -
71 'd/ .
< 30 A
S P
= .~ R
520 (N A
= " -
[a) N
=10 ™~ \ 7
E %Y
© N
0 1t
0 50 100 150 200 250 300
AT[K]
) p=4

Fig. 7 Variations of the first dimensionless natural frequency of the FG nanobeam with respect to non-linear
temperature change for different values of power-law exponent and nonlocal parameters (L/h = 50)

Also, it must be noted that the dimensionless natural frequency of the FG nanobeam under non-
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linear temperature rise is greater than that of the FG nanobeam under linear temperature rise and
the latter is greater than that of the FG nanobeam under uniform temperature rise. Figs. 5-7
illustrate the variation of first dimensionless natural frequency with changing of the power-law
exponent for different nonlocal parameter at slenderness ratio L/h = 50 of FG nanobeam under
uniform, linear and non-linear temperature change, respectively.

Also the variation of second dimensionless natural frequency with temperature rise for different
power-law exponents and nonlocal parameters at slenderness ratio L/h = 50 in the case of
uniform, linear and non-linear temperature change, are demonstrated in Figs. 8-10, respectively.
Also, the variation of third dimensionless natural frequency with temperature rise with above
mentioned conditions is presented in Figs. 11-13. It is seen that before a prescribed temperature,
i.e., the critical buckling temperature, as temperature increases the first dimensionless frequency
reduces. This is associated to the reduction in total stiffness of the beam, since geometrical
stiffness of FG nanobeam diminishes as temperature rises. Near the critical buckling temperature,
dimensionless frequency trends to zero. It is observed that temperature dependency of the material
constituents leads to more accurate conclusions, whereas with supposing temperature independent
material properties, critical buckling temperature point is exaggerated. Moreover, in the pre-
buckling region, with the temperature dependent assumption, predicted frequencies are smaller
than those frequencies obtained with the assumption of temperature independent material. This is
due to the less Young’s modulus of the material constituents in the case of temperature dependent
material. Also, it should be stated that, by increasing the nonlocal parameter the critical
temperature point shifts to the left.

Figs. 14-16 show the variations of the first dimensionless natural frequency of the S-S FG
nanobeam under uniform, linear and non-linear temperature change with respect to temperature
change, respectively for different values of nonlocal parameters and power-law indexes (L/h =
50). It should be noted that compressive axial forces as resultants of thermal stresses arising from
the temperature rise in beams with micro/nano scales, can lead to buckling the beams if its value
passes the critical value. By imposing a high external pressure to the FG nanobeam structure, the
high stresses induced in the structure will influence its integrity and the structure is talented and
disposed to failure. Therefore, it is observed from these figures that dimensionless frequencies of
the FG nanobeam approaches to zero around a prescribed temperature which is the critical
buckling temperature. Before the critical buckling point, as temperature rises the dimensionless
frequency reduces, but after that point, as temperature growths the dimensionless frequency
increases. Moreover, in the pre-buckling domain, by increasing the nonlocal parameter, the
dimensionless natural frequency diminishes at a constant power-law exponent, while in the post-
buckling domain, as the nonlocal parameter increases the dimensionless frequency raises. Another
notable observation is that, the critical point is postponed with the assumption of the smaller
power-law indexes, related to the fact that the lower power-law indexes result in the increase of
stiffness of the beam.

The variations of the first dimensionless natural frequency of the S-S FG nanobeam under
uniform, linear and non-linear temperature rise with respect to temperature change for different
values of slenderness ratios (L/h = 40,50, 60) and nonlocal parameters at p = 0.2 is presented in
Figs. 17-19, respectively. It is revealed that for S-S FG nanobeams in the pre-buckling domain,
increasing slenderness ratio leads to decrease in natural frequency. But in the post-buckling
domain increase of slenderness ratio leads to increment in natural frequency. Also, it is seen that
when nonlocal parameter increases the critical buckling point continuously moves to the left at a
fixed material power-law index.
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Fig. 8 Variations of the second dimensionless natural frequency of the FG nanobeam with respect to uniform
temperature change for different values of power-law exponents and nonlocal parameters (L/h = 50)



116

I
(=T N =

[=]

=R N N W W
(%4} (%2}

2nd Dimensionless Frequencg
=

(=¥,

Farzad Ebrahimi and Mohammad Reza Barati

50
245 .
Tl o g40 Lt
el 835 T
- .\“ "'-. /./ El: - '/,- e . -
- A - @230 T e T
~ . Ll ) N S T
. ¥ ~ -~ o -
S~ - ~ - “ “-‘ ‘:f/ E 25 ~ “ ‘\\ {'J"/ ‘;‘
~ “ “ Rl EZO ke . \“ - -
~ s 0 o “~ N F | memm——- p=0
~ N A /‘)E. ST b= 15 ™~ ~ “\ f o =0.2
N A R Y Ao SN =-=- p=0.
N /ﬁ _’11.'," —_— —p:l - A ._/(.\"" —_ p:]_
MWy S s | & At ——ps
-k i i 0 ll' { . f
100 200 300 400 500 0 100 200 300 400 500
AT[K] AT[K]
(@ u= by u=1
60
-~ Fa
“' =
. 3 50 .
- - = -
- =2 .
AT - = T
1"'I 7 - - - LL'40 “r“ -
P - — A - .- R
Fea. ‘;'.'/"_//- & L -
. RS ":‘30 ""-, L= .-
S, S =) . < DT
RN £ - Pt
~ 0 N A p— p=0 8§20 ~. ™, P - p=0
~ . -7 S .
™~ N A ,/?.. == p=0.2 g NN 4-,"/ == p=0.2
N /}\.,'. ——.p=1 < 10 NN '\‘v{'{l —_—p=1
\\ AR NS p
N ——ps | & WA — —pss
o 0 by
0 100 200 300 400 500 0 100 200 300 400 500
AT[K] AT[K]
€ u=2 d p=3
60
)
2
50 -
3 "-
o e
2 7 -
=40 T
2 e
5] e e -
=30 e T
=] P -
E N el T
-~ P
520 N -"\“ , ’// | ema——— p:ﬂ
B0 YU e
S0 NV ——p-1
& \?--.l..’ —--—p=5
0 100 200 300 400 500
ATIK]
() u=+4

Fig. 9 Variations of the second dimensionless natural frequency of the FG nanobeam with respect to linear
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Fig. 10 Variations of the second dimensionless natural frequency of the FG nanobeam with respect to non-
linear temperature change for different values of power-law exponents and nonlocal parameters (L/h = 50)
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Fig. 12 Variations of the third dimensionless natural frequency of the FG nanobeam with respect to linear
temperature change for different values of gradient indexes and nonlocal parameters (L/h = 50)
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Fig. 16 Variations of the first dimensionless natural frequency of the FG nanobeam with respect to non-
linear temperature change for different values of nonlocal parameters and power-law exponents (L/h = 50)
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6. Conclusions

The thermal vibration analysis of third-order shear deformable simply-supported FG
nanobeams is presented and effects of three types of thermal loading namely, uniform, linear and
nonlinear temperature rise on vibration behavior of FG nanobeams are investigated. Material
properties of FG nanobeam are assumed to change continuously along the thickness according to
the power-law form and are assumed to be temperature-dependent. By using the Hamilton’s
principle the governing equations of motion are derived and Navier’s type solution method is used
to solve the equations. The obtained results based are compared with those predicted by the
previous works to verify the accuracy of the present model. Selected numerical results are
presented to indicate the effects of the power-law index, nonlocal parameter, slenderness ratio and
thermal load on the vibration characteristics of FG nanobeams. It is observed that the fundamental
frequency decreases with the increase in temperature and trends to zero at the critical temperature
point. Diminution of frequency with thermal load before the critical point is attributed to the
weakening effect of thermally induced compressive stress on the beam stiffness. Moreover, after
passing the critical buckling temperature, the fundamental frequency increases with the increment
of temperature. Also, it is concluded that under all types of temperature rises, as the power-law
exponent growths the natural frequencies diminish, whereas, a reverse trend is observed in the
post-buckling domain. In addition it is revealed that for the FG nanobeams subjected to nonlinear
temperature changes through the thickness, the obtained frequencies are higher than that for the
FG nanobeams subjected to the uniform and linear temperature changes.
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