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Abstract.  In this article, static deflection and buckling of functionally graded (FG) nanoscale beams made 

of porous material are carried out based on the nonlocal Timoshenko beam model which captures the small 

scale influences. The exact position of neutral axis is fixed, to eliminate the stretching and bending coupling 

due to the unsymmetrical material change along the FG nanobeams thickness. The material properties of FG 

beam are graded through the thickness on the basis of the power-law form, which is modified to approximate 

the material properties with two models of porosity phases. By employing Hamilton’s principle, the nonlocal 

governing equations of FG nanobeams are obtained and solved analytically for simply-supported boundary 

conditions via the Navier-type procedure. Numerical results for deflection and buckling of FG nanoscale 

beams are presented and validated with those existing in the literature. The influences of small scale 

parameter, power law index, porosity distribution and slenderness ratio on the static and stability responses 

of the FG nanobeams are all explored. 
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1. Introduction 
 

Today, the use of miniaturized structures such as nanorods, carbon nanotubes, nanorings, etc., 

are known as high technology in various engineering fields of nanotechnology (Wang et al. 2007, 

Dresselhaus et al. 2004, Hong and Myung 2007). It is demonstrated that size effect gains 

importance on mechanical properties by using both experimental and atomistic simulation, when 

the dimensions of these structures become very small at order micro and nanoscale. It is well- 

know that traditional continuum mechanics (local theories) which assume that the stress at a point 

depends only on the strain at the same point, fail to take the size effect showed in nanostructures 

due to the need of additional length scale parameter. To fill this gap, the nonlocal elasticity theory 

pioneered by Eringen (1972, 1983), which is one of size-dependent continuum theories, assumes 

that the stress at a point depends on strains at all points in the continuum (Reddy and Pang 2008, 

                                                      
Corresponding author, Ph.D., E-mail: bensaidismail@yahoo.fr 



 

 

 

 

 

 

Ismail Bensaid
 
and Ahmed Guenanou 

Heireche et al. 2008a, b, Benzair et al. 2008, Amara et al. 2010, Thai 2012a, Tounsi et al. 2013a, 

b, c, Adda Bedia et al. 2015, Besseghier et al. 2015, Hadj Elmerabet et al. 2017, Ebrahimi and 

Daman 2017). The use of nonlocal elasticity of Eringen to study various types of structures at 

micro and nanoscale has received much attention nowadays, for example, in the case of static 

investigation of nanostructures (Peddieson et al. 2003, Reddy 2007, Tounsi et al. 2013d, Aissani et 

al. 2015, Kheroubi and Tounsi 2016), buckling (Adali 2008, Murmu and Pradhan 2009, Murmu 

and Adhikari 2011, Pradhan and Reddy 2011, Ansari et al. 2011, Berrabah et al. 2013, Ould 

Youcef et al. 2015, Krenich et al. 2017), and dynamic (Aydogdu 2009, Aghbabaei and Reddy 

2009, Şimşek 2010, Şimşek 2011, Şimşek 2012, Thai et al. 2012b, Benguediab et al. 2014, 

Bessaim et al. 2015). 

Functionally graded materials (FGMs) are a new sorts of advanced composite materials in 

which the volume fractions of two or more material constituents such as a combination of ceramic-

metal vary smoothly and continuously as a function of spatial arrangement through the thickness 

directions Koizumi (1997), which will lead to a reduction in thermal stresses and stress 

concentration at intersection with free surfaces found in traditional composite materials. Also FG 

materials present some particular characteristics such as ability to control deformation, multi 

functionality, corrosion resistance, dynamic reaction, minimization or eliminate stress 

concentrations, smoothing the transition of thermal stress and resistance to oxidation. In view of 

these superiority, FGMs have attracted wide attention recently in various engineering applications, 

in which many number of investigations were reported in the scientific literatures (El Meiche et al. 

2011, Bourada et al. 2012, Tounsi et al. 2013e, Bouderba et al. 2013, Yaghoobi and Torabi 2013, 

Ould Larbi et al. 2013, Belabed et al. 2014, Chakraverty and Pradhan 2014, Liang et al. 2014, Zidi 

et al. 2014, Khalfi et al. 2014, Fekrar et al. 2014, Ait Amar Meziane et al. 2014, Hebali et al. 

2014, Hamidi et al. 2015, Ait Yahia et al. 2015, Ait Atmane et al. 2015, Ziane et al. 2015, 

Bouchafa et al. 2015, Bourada et al. 2015, Tounsi et al. 2016, Houari et al. 2016, Benbakhti et al. 

2016, Hebali et al. 2016, Chikh et al. 2016, Bensaid et al. 2017). 

With the rapid progress of technology, functionally graded (FG) beams and plates are now 

greatly exploited in micro/nanoelectromechanical systems (MEMS/NEMS), i.e., the components 

in the form of shape memory alloy, sensors, thin films with a global thickness in micro- or nano-

scale, etc. and which have many advantages over the isotropic nanoscale structures, like cited 

earlier. To applying accurately this kinds of new materials in micro/nano structures, their behaviors 

(static, buckling, vibration) have attracted the attention of several researcher in the literature. To 

this end, Eltaher et al. (2012) employed the finite element method (FEM) to study free vibration of 

thin FG nanobeam based on the nonlocal Euler–Bernoulli beam hypothesis. Simsek and Yurtcu 

(2013) developed an analytical solution to explore the static and stability of simply-supported 

Timoshenko FG nanobeams by using the nonlocal elasticity theory. The bending and stability 

behavior of FG size-dependent nanobeams were studied by Larbi Chaht et al. (2015), and taking in 

the consideration the thickness stretching effect. Zemri et al. (2015) contributed to a refined 

nonlocal shear deformation theory beam theory for investigating mechanical behavior of FG 

nanobeams. The free vibration properties of nanoplate resting on elastic foundation were studied 

by Belkorissat et al. (2015), by developing a new nonlocal hyperbolic refined plate model needless 

of any shear correction factors (SCFs). More recently, Bounouara et al. (2016) extended the 

zeroth-order shear deformation theory developed by Shimpi for the first time, to study the 

vibration behaviors of FG nanoplates embedded in an elastic medium based on nonlocal elasticity 

theory of Eringen. Ebrahimi and Salari (2015a) have studied by developing an analytical solution 

the thermal buckling and free vibration of FG Timoshenko nanobeam based on the nonlocal 
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elasticity theory. Free vibration analysis of FG thick nanobeam in hygro-thermal surrounding has 

been investigated by Ebrahimi and Barati (2016), using a unified formulation. Ahouel et al. (2016) 

contributaed to the mechanical behavior of functionally graded trigonometric shear deformable 

nanobeams including neutral surface position concept. More recently Bouafia et al. (2017) 

developed a novel nonlocal quasi-3D theory for bending and free flexural vibration characteristics 

of functionally graded nanobeams. Thermo-mechanical vibration of rotating axially non-

homogeneous nonlocal Timoshenko beam has been presented by Azimi et al. (2017a), using 

differential quadrature method (DQM). Again, Azimi et al. (2017b), studied the vibration of 

rotating functionally graded Timoshenko nanobeams subjected to a nonlinear thermal distribution. 

In a recent study by Shafiei et al. (2016), the nonlinear thermal buckling of axially functionally 

graded micro and nanobeams has been studied based on the nonlocal elasticity and the modified 

couple stress theories, respectively, and employing generalized differential quadrature method 

(GDQM). 

In FGM manufacture, micro voids or porosities can happen regularly within the materials 

during the process of sintering, due to high difference in solidification between the material 

constituents Zhu et al. (2001), the porosity is in contrast to the harmful high performance 

composite material. The impact of this failure has been the subject of much attention, as evidenced 

by the large number of studies on this subject. To this end, it is important to take into consideration 

the porosity impact when designing and analyzing FGM structures. Wattanasakulpong and 

Chaikittiratana (2015) used the collocation method to examine the porosity effect on vibration of 

FGM beams. The effects of thickness stretching and porosity on mechanical behavior of FGM 

beams resting on elastic foundations were examined by Ait Atmane et al. (2015). Ebrahimi et al. 

(2016) explored analytically the thermal vibration response of FGM beams by taking into account 

the impact of porosities. Mouaici et al. (2016) studied the influence of porosity on vibrational 

characteristics of non-homogeneous plates using hyperbolic shear deformation theory. Recently 

Ebrahimi and Jafari (2017) provided a four-variable refined shear-deformation beam theory for 

thermo mechanical vibration analysis of temperature-dependent FGM beams with porosities. 

So, based on the above literature survey, there is no reported work examined the effect of 

different porosity model on static and stability of FG nanobeams. The problem of imperfection in 

nano FG structures is not well-investigated up to now and there is a requirement for further 

investigations.  

This paper investigates the static deflection and buckling of porous FG nanobeam based on the 

nonlocal Timoshenko beam theory, which can capture the small scale effect. Two types of porosity 

distributions, namely, even and uneven along the thickness directions are considered. The material 

properties of the FG nanobeam are assumed to be graded continuously in the thickness direction 

according to the modified power-law model. The exact position of physical neutral surface is 

determined, in order to eliminate stretching-bending coupling due to the unsymmetrical material 

variation along the thickness. The governing equations of motion are derived by Hamilton’s 

principle and solved analytically by Navier-type procedure for simply-supported boundary 

conditions. Numerical examples are provided to prove the impacts of nonlocal parameter, power 

law-index, porosity coefficient, and thickness to length ratios on the bending and buckling of FG 

nanobeams.  
 

 

2. Theory and formulation 
  

2.1 Power-law functionally graded beams having porosities 
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Fig. 1 Geometry, position of middle surface and neutral surface of functionally graded nanobeam 

 

 

Consider a uniform FG nanobeam of thickness h, length L, and width b made by mixing of two 

distinct materials (metal and ceramic) is studied here (Fig. 1). The coordinate x is along the 

longitudinal direction and z is along the thickness direction. For such beams, the neutral surface 

may not coincide with its geometric mid-surface (Ould Larbi et al. 2013, Yaghoobi and Feraidoon 

2010) which leads to bending-extension coupling due to the unsymmetrical material variation 

along the thickness. By considering the exact position of neutral axis, this coupling can be 

eliminated. 

To capture exact position of neutral axis, two different datum planes are considered for the 

measurement of z, namely, zms and zns measured from the middle surface, and the neutral surface of 

the beam, respectively (Fig. 1). Satisfying the first moment with respect to Young’s modulus being 

zero, the exact position of neutral axis is determined as follows (Ould Larbi et al. 2013, Bousahla 

et al. 2014, Fekrar et al. 2014, Bourada et al. 2015) 

  
/2

/2

0

h

ms ms ms

h

E z z c dz


   (1) 

In which, the position of neutral surface can be obtained as 

 

 

/2

/2

/2

/2

h

ms ms ms

h

h

ms ms ms

h

E z z dz

c

E z z dz










 (2) 

The volume-fraction of ceramic Vc is expressed based on zms and zc coordinates (Fig. 1) as 

1 1

2 2

k k

ms c
c

z z c
V

h h

   
      
   

 (3) 

where k represents the material distribution parameter which takes the value greater or equal to 

zero and c is the distance of neutral surface from the mid-surface (Fig. 1). Material non 

homogeneous properties of a functionally graded material beam may be obtained by means of the 

Voigt rule of mixture (Eltaher et al. 2012, Bourada et al. 2012, Larbi Chaht et al. 2015, Tounsi et  
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porosity
b b

hh

even porosities uneven porosities  
Fig. 2 through thickness FGM beam with evenly and unevenly distributed porosities 

 

 

al. 2013a, Bouderba et al. 2013, Hebali et al. 2014, Zidi et al. 2014, Bakora and Tounsi 2015, 

Hamidi et al. 2015, Mahi et al. 2015, Akbaş 2015, Bennoun et al. 2016, Salima et al. 2016). Thus, 

using Eq. (3), the material inhomogeneous properties of FG nanobeam P, such as Young’s 

modulus (E), Poisson’s ratio (v), the shear modulus (G), and the mass density (ρ), can be described 

by 

   
1

2

k

c
c t b b

z c
P z P P P

h

 
    

 
 (4) 

Here Pt and Pb are the corresponding material property at the top and bottom surfaces of the FG 

nanobeam.  

Consider an imperfect FG beam with two kinds of porosities that distributed identical in two 

phases of ceramic and metal due to defect during production. The modified rule of mixture 

proposed by Wattanasakulpong and Ungbhakorn (2014) is used as 

2 2
b m t cP P V P V

    
      

   
 (5) 

where α denotes the volume fraction of porosities 1 , for perfect FGM α is set to zero, Vc 

(Previously defined) and Vm are the volume fraction of ceramic and metal, respectively, and the 

compositions represent in relation to 

1c mV V   (6) 

Combining Eqs. (5)-(6), the effective material properties of FG beam with even porosities 

(FGM-I) can be expressed in the following form 

     
1

2 2

k

c
c t b b t b

z c
P z P P P P P

h

 
      

 
 (7) 

It is noted that the FGM-I has porosity phases with even repartition of volume fraction through 

the cross section. While, the FGM-II has porosity phases spreading frequently around the middle 

zone of the cross-section and the amount of porosity seems to be linearly decreases to zero at the 
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top and bottom of the cross-section. Fig. 2 exhibits an examples of cross section areas of FGM-I 

and-II with porosities phases. For second type, uneven distribution of porosities (defined as FGM-

II), the effective material properties are replaced by following form 

     
21

1
2 2

k

cc
c t b b t b

z cz c
P z P P P P P

h h

   
        

   
 (8) 

 

2.2 Kinematics 
 

Based on the Timoshenko beam theory, the displacement field at any point of the beam can be 

written as (Azimi et al. 2017a, b) 

     , , , ,xu x z t u x t z x t   (9) 

   , , ,zu x z t w x t
 

(10) 

where t is time, u and w are the axial and the transverse displacement of any point on the neutral 

axis; φ is the total bending rotation of the cross-sections at any point on the neutral axis. The 

nonzero strains of the Timoshenko beam theory are obtained as 

xx

u
z

x x




 
 
 

 (11) 

xz

w

x
 


 
  

(12) 

where εxx and γxz are the normal strain and shear strain, respectively.  

The governing equations and the boundary conditions will be derived by using the Hamilton’s 

principle Reddy (2000) 

 
0

0

T

U V dt    (13) 

where δU is the variation of the strain energy; δV represents the potential energy; and the variation 

of the kinetic energy is given by δK. The variation of the strain energy of the beam can expressed 

by the following form 

 
0

0

L

xx xx xz xz

A

L

U dAdx

d u d d w d
N M Q dx

dx dx dx dx

    

   

 

  
     

  

 



 

(14) 

Where (N), (M) and (Q) are the stress resultants, defined as 

   , 1, xx s xz

A A

N M z dA and Q k dA     
(15) 
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where ks is the shear correction factor. 

The variation of the potential energy by the applied loads can be written as 

0

L
dw d w

V q wdx P dx
dx dx


    (16) 

where (q) and ( P ) are the transverse and axial loads, respectively. 

Substituting the expressions for (δU) and (δV) from Eqs. (14) and (16) into Eq. (13) and 

integrating by parts, and collecting the coefficients of (δu), (δw), and (δφ), the following equations 

of motion of the proposed beam theory are obtained 

: 0
dN

u
dx

   (17) 

2

2
: 0
dQ d w

w q P
dx dx

   
 

(18) 

2

2
: 0
d M dQ

dx dx
  

 

(19) 

 

2.3 The nonlocal elasticity model 
 

Contrary to the classical (local) theory, in the nonlocal elasticity theory of Eringen (1972, 

1983), the stress at a reference point x is considered to be a functional of the strain field at every 

point in the body. For example, in the non-local elasticity, the uniaxial constitutive law is 

expressed as elasticity Eringen (1972, 1983).  

 
2

2

xx
xx c xx

d
E z

dx


     (20) 

 
2

2

xz
xz c xz

d
G z

dx


   

 
(21) 

μ = (e0a)
2
 is a nonlocal parameter revealing the nanoscale effect on the response of nanobeams, 

e0 is a constant appropriate to each material and a is an internal characteristic length. In general, a 

conservative estimate of the nonlocal parameter is e0a <2.0 nm for a single wall carbon nanotube 

(Wang 2005, Heireche et al. 2008a, b, Tounsi et al. 2013b, c) 

Using Eqs. (20), (21), (11), (12) and (15), the force-strain and the moment–strain relations of 

the nonlocal FG Timoshenko beam theory can be obtained as 

2

2 xx xx

d N du d
N A B

dx dx dx


    (22) 

2

2 xx xx

d M du d
M B D

dx dx dx


  

 
(23) 
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2

2 s xz

d Q dw
Q k A

dx dx
 

 
   

   
(24) 

In which the cross-sectional rigidities are defined as follows 

    2, , 1, ,xx xx xx c c c

A

A B D E z z z dA   (25) 

 xz s c

A

A k G z dA 
 

(26) 

By substituting Eqs. (22), (24), (25) into Eqs. (17), (18), (19), the nonlocal equations of motion 

can be expressed in terms of displacements (u, w, φ) as follows 

2 2

2 2
0xx xx

d u d
A B

dx dx


   (27) 

2 2 2 4

2 2 2 4
0xz

d w d d q d w d w
A q P

dx dx dx dx dx


 

   
        

     
(28) 

2 2

2 2
0xx xx xz

d u d dw
B D A

dx dx dx




 
    

 
 

(29) 

The equations of motion of local beam theory can be obtained from Eqs above by setting the 

nonlocal parameter μ equal to zero. 

 

 

3. Closed-form solution of simply supported FG nanobeam 
 

Here, the above nonlocal governing equations of motion are solved analytically for bending and 

buckling problems. The Navier solution procedure is used to determine the analytical solutions for 

a simply supported FG nanobeam. The solution is assumed to be of the form 

1

cos( )

sin( )

sin( )

i t

n

i t

n

m i t

n

U x eu

w W x e

x e











  





  
  

   
   
   

  (30) 

where Un, Wn, and φn are arbitrary parameters to be determined, ω is the eigenfrequency associated 

with nth eigenmode, and α=nπ/L. The transverse load q is also expanded in the Fourier sine series 

as 

   





1

,sin
n

n xQxq       

L

n dxxxq
L

Q
0

sin
2

  (31) 
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Table 1 Dimensionless transverse deflections (𝑤̅) of the perfect FG nanobeam under uniform load 

Nonlocal parameter, e0a (nm) 

L/h k 0 0.5 1 1.5 2 

  REF
(a) 

Present REF
(a)

 Present REF
(a)

 Present REF
(a)

 Present REF
(a)

 Present 

10 

0 5.3383 5.3383 5.4659 5.4659 5.8487 5.8486 6.8467 6.4864 7.3798 7.3794 

0.3 3.2169 3.2155 3.2938 3.2923 3.5245 3.5229 3.9090 3.9071 4.4472 5.6438 

1 2.4194 2.4194 2.4772 2.4772 2.6508 2.6508 2.9401 2.9400 3.3451 3.3449 

3 1.9249 1.9249 1.9710 1.9710 2.1091 2.1090 2.3393 2.3392 2.6615 2.6614 

10 1.5799 1.5799 1.6176 1.6176 1.7310 1.7309 1.9190 1.9198 2.1843 2.1842 

30 

0 5.2227 5.2227 5.2366 5.2366 5.2784 5.2784 5.3480 5.3480 5.4455 5.4455 

0.3 3.1486 3.1472 3.1570 3.1556 3.1822 3.1807 3.2241 3.2227 3.2829 3.2814 

1 2.3732 2.3732 2.3795 2.3795 2.3985 2.3985 2.4301 2.4301 2.4744 2.4744 

3 1.8894 1.8894 1.8944 1.8944 1.9094 1.9095 1.9347 1.9347 1.9700 1.9700 

10 1.5489 1.5489 1.5530 1.5530 1.5654 1.5654 1.5860 1.5860 1.6149 1.6149 
(a)

Şimşek and Yurtçu (2013) 

 

 

The Fourier coefficients Qn related with some typical loads are given as follows 

1,0  nqQn   for sinusoidal load (32a) 

....5,3,1,
4 0  n
n

q
Qn


for uniform load

 
(32b) 

....3,2,1,
2

sin
2 0  n

n

L

q
Qn


 for point load Q0 at the midspan

 
(32c) 

Substituting the expansions of u, w, φ, and q from Eqs. (30) and (31) into Eqs. (27), (28), (29), 

the analytical solutions can be obtained from the following equations 

11 13

22 23

13 23 33

0 0

0 ,

0

n

n n

n

S S U

S S W Q

S S S

 



     
    

     
         

 (33) 

Where 

2 2 2 2

11 13 23 22 33

2 2

, , , , ,

, 1

xx xx xz xz xx xzS A S B S A S A S D A

P

    

    

       

  
 (34) 

 

 

4. Numerical results and discussion 
 

Through this section, the size-dependent static and stability responses of porous FG nanobeams  
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Table 2 Dimensionless critical buckling load (Ncr) of the perfect FG nanobeam 

Nonlocal parameter, e0a (nm) 

L/h k 0 0.5 1 1.5 2 

  REF
(a) 

Present REF
(a)

 Present REF
(a)

 Present REF
(a)

 Present REF
(a)

 Present 

10 

0 2.4056 2.4056 2.3477 2.3477 2.1895 2.1895 1.9686 1.9685 1.7247 1.7247 

0.3 3.9921 3.9938 3.8959 3.8977 3.6365 3.6351 3.2667 3.2681 2.8621 2.8634 

1 5.3084 5.3084 5.1805 5.1805 4.8315 4.8315 4.3437 4.3437 3.8059 3.8059 

3 6.6720 6.6720 6.5113 6.5113 6.0727 6.0727 5.4596 5.4596 4.7835 4.7835 

10 8.1289 8.1289 7.9379 7.9332 7.3987 7.3987 6.6518 6.6518 5.8281 5.8281 

30 

0 2.4603 2.4603 2.4536 2.4536 2.4336 2.4336 2.4011 2.4011 2.3570 2.3569 

0.3 4.0811 4.0829 4.0699 4.0718 4.0368 4.0386 3.9828 3.9846 3.9096 3.9113 

1 5.4146 5.4146 5.3998 5.3998 5.3559 5.3559 5.2843 5.2843 5.1871 5.1871 

3 6.8011 6.8011 6.7825 6.8725 6.7273 6.7273 6.6373 6.6373 6.5153 6.5153 

10 8.2962 8.2962 8.2735 8.2735 8.2062 8.2062 8.0964 8.0964 7.9476 7.9476 
(a)

 Şimşek and Yurtçu (2013) 

 
Table 3 the influence of porosity volume fraction, porosity distribution, power law index on the 

dimensionless transverse deflections (𝑤̅) of a FG porous nanobeam. (L/h=10, μ=1) 

FGM type α k=0 k=0.3 k=1 k=3 k=10 

FGM (I) 

0 5.8486 3.5229 2.6508 2.1090 1.7309 

0.1 7.7981 4.2290 3.0406 2.3323 1.8710 

0.2 11.69 5.3448 3.5829 2.6118 2.0362 

FGM (II) 

0 5.4886 5.5229 2.6508 2.1090 1.7309 

0.1 6.2492 3.6930 2.7495 2.1645 1.7650 

0.2 6.7108 3.8862 2.8582 2.2234 1.8005 

 
Table 4 the influence of porosity volume fraction, porosity distribution, power law index on the 

dimensionless critical buckling load (Ncr) of a FG porous nanobeam. (L/h=10, μ=1) 

FGM type α k=0 k=0.3 k=1 k=3 k=10 

FGM (I) 

0 2.1895 3.6151 4.8315 6.0727 7.3987 

0.1 1.6421 3.0281 4.2122 5.4914 6.8448 

0.2 1.0947 2.3961 3.5748 4.9039 6.2898 

FGM (II) 

0 2.1895 3.2334 4.0864 5.2076 6.8309 

0.1 2.0490 3.0968 3.9437 5.0443 6.6707 

0.2 1.9079 2.9637 3.8052 4.8806 6.5089 

 
 

are explored based nonlocal Timoshenko beam model. Computations have been implemented for 

the following material and beam properties: E1=1 TPa, E2=0.25 TPa, v1=v2=0.3. The shear 

correction factor is taken as ks=5/6 for Timoshenko beam theory (Larbi Chaht et al. 2014). For 

convenience, the following dimensionless amounts are used in presenting the numerical results in 

graphical and tabular forms 
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1

4

0

100
E I

w w
q L

    for uniform load (35) 

2

1

cr

PL
P

E I


 

(36) 

The correctness of presented deflection and buckling results are checked with those of first 

order beam theory obtained by (Şimşek and Yurtçu 2013) for a perfect FG beam and the obtained 

results are tabulated in Tables 1 and 2 in the following discussions. 

In Table 1 the nondimensional maximum deflections w of the simply supported FG nanobeams 

are examined for various values of the gradient index (k=0, 0.3, 1, 10), nonlocal parameters (μ=0, 

0.5, 1, 1.5, 2 (nm)
2
) and two different values of slenderness ratios (L/h=10, 30) based on analytical 

Navier solution method. It is mentioned that when e0a vanish corresponds to local beam theory. It 

can be concluded that the results of the present beam theory based on physical neutral surface 

position are in excellent agreement with those predicted by TBT (Şimşek and Yurtçu 2013) for all 

values of thickness ratio L/h, power law index k and nonlocal parameter e0a and thus validates the 

proposed model. A variation of the material distribution parameter k leads to a significant change 

in the maximum deflection. One can also notice that an increase in the nonlocal parameter gives 

rise to an increase in the maximum deflection, which highlights the significance of the nonlocal 

effect.  

Variations of the nondimensional critical buckling loads for various values of thickness ratio 

L/h, gradient indexes k and nonlocal parameter e0a are presented in Table 2 for perfect FG 

nanobeam. As can be noted also, that the obtained results are in good concordance with the results 

provided in the literature those of Şimşek and Yurtçu (2013) again. The critical buckling load 

decreases as the nonlocal parameter rises. This emphasizes the significance of the nonlocal effect 

on the buckling response of beams, because the nonlocal parameter softens the nanobeam. By 

varying the material distribution parameter k leads to a reduction in the buckling load, because 

decreasing in ceramics phase constituent, and hence, stiffness of the beam.  

In the following, the impact of porosity model named even and uneven, referred to (FGPM-I 

and FGPM-II), porosity volume fraction, power-law exponent the non-dimensional deflection and 

buckling of the porous FG nanobeam will be investigated. 

Variations of the nondimensional maximum deflections (𝑤̅) of the simply supported porous FG 

nanobeams based on neutral surface position, for different porosity parameters (α=0, 0.1, 0.2), 

power law index (k=0, 0.3, 1, 3, 10), and constant values of L/h=20, μ=1) are explored in Table 3. 

Two models of porosity distributions are chosen (even and uneven) FGM-I and FGM-II 

respectively. It should be noted that e0a vanishes corresponds to local beam theory. It can be 

observed from this table that by growing the power law index k leads to a significant change in the 

maximum deflection(𝑤̅), because an increase in the power law index leads to the increment in the 

flexibility of the FG nanobeams, rise in the metal phase. Also from this table it is mentioned that 

increasing porosity parameter increases maximum deflections(𝑤̅), due to the increase in internal 

pores in the FG nanobeams. In the last, it is showed that FGM-I model estimates higher values for 

deflections of porous FG nanobeam compared to FGP-II model. 

Table 3 displays the variations of critical buckling load (Ncr) of the porous Timoshenko FG 

nanobeams based on neutral surface position, for various porosity parameters (α=0, 0.1, 0.2),  
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Fig. 3 Influence of the aspect ratio on dimensionless static deflection of FG (I) nanobeam  

for various porosity parameter (k=1, μ=1) 
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Fig. 4 Influence of the aspect ratio on dimensionless buckling load of FG (I) nanobeam  

for various porosity parameter (k=1, μ=1) 
 

 

power law index (k=0, 0.3, 1, 3, 10), and constant values of L/h=20, μ=1), depending on two 

models of porosity distributions (even and uneven) FGM-I and FGM-II respectively. It can be 

observed from this table that, an increase of the material distribution parameter k leads to a 

significant change in the buckling load; this is due to the flexibility impact in the FG nanobeam. 

The porosity parameter has a significant influence on the dimensionless critical buckling load 

(Ncr), due to the beneficial effect of internal pores in the FG nanobeams. It is showed that FGM-I 

model has more significant effect on buckling load (Ncr) compared to FGP-II model. 

Figs. 3 and 4 display the variations of static and buckling responses of FG porous nanobeam 

based on the neutral surface position versus aspect ratio for several fraction of porosity volume and 

fixed values of (k=1, μ=1). We can see from these curves that for different values of porosity  
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Fig. 5 Influence of the nonlocal parameter on dimensionless deflection of FG (I) nanobeam  

for various porosity parameter (k=1, L/h=10) 
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Fig. 6 Influence of the nonlocal parameter on dimensionless buckling load of FG (I) nanobeam  

for various porosity parameter (k=1, L/h=10) 
 

 

coefficient, as slenderness ratios increase, the deflection decreases and the non-dimensional 

buckling load increase, these influences are more significant for lower values of thickness ratio 

(L/h), and this effect is too small for long FG nanobeams. 

Influence of the nonlocal scale parameter on non-dimensional static deflection and buckling 

responses of porous FG nanobeam type FGM-I based on the neutral surface position for various 

values of porosity coefficient α is illustrated in Figs. 5 and 6, respectively at L/h=10, k=1. It is 

deduced that a rise in nonlocal parameter leads to an increment in transverse displacement and a 

decrement in the critical buckling load; the responses vary linearly in function of the nonlocal 

scale parameter. 
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Fig. 7 Effect of the power law index on dimensionless deflection of FG (I) nanobeam  

for various porosity parameter (L/h=10, μ=1) 
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Fig. 8 Effect of the power law index on dimensionless buckling load of FG (I) nanobeam  

for various porosity parameter (L/h=10, μ=1) 
 

 

Furthermore, the porosity parameter has a significant impact on the non-dimensional static 

deflection and buckling load of the porous FG nanobeam.  

The effect of the material distribution parameter (k) on the static deflection and buckling 

responses of porous FG nanobeam type (FGM-I) for different values of porosity coefficient is 

demonstrated in Figs. 7 and 8, respectively. It can be seen from these figures that both the 

dimensionless deflection (𝑤̅)  decreases whereas the dimensionless buckling load rises as the 

material distribution parameter increases. The raison is that an increase in the material distribution 

parameter yields to a degradation in the stiffness of the porous FG nanobeam. Besides, the porosity 

coefficient has significant influences on the both static deflection and critical buckling load. 
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5. Conclusions 
 

In this paper, Static bending and buckling of the FG porous nanoscale beam are investigated 

based on the nonlocal Timoshenko beam theory including neutral surface position. The governing 

equations of motions are derived by using the Hamilton’s principle, and solved analytically by 

Navier-type solution for simply-supported boundary conditions. The material properties of FG 

plate were supposed to be graded across the thickness direction according to the modified power-

law model. The simple formulation of the problem is developed based on the new reference 

physical surface. Accuracy of the results obtained is checked with those available in the literature 

and good agreements were observed. According to the numerical and graphical results, it is found 

that the dimensionless deflection and buckling responses for FGM porous beams are considerably 

affected by side-to-thickness ratios, nonlocal parameter, power law index and porosity parameter. 

It is also shown that even porosity distribution (FGM-I) gives higher deflection and lower buckling 

load compared with uneven porosity distribution (FGM-II). Therefore, the neutral surface position 

and porosity impacts should be considered in the analysis behavior of FG nanostructures. Finally, 

the formulation lends itself particularly well for behavioral analysis of FG nanostructures that 

contain two scale parameters for modeling the size-dependent more accurately (Li et al. 2016, 

Şimşek 2016). 
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