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Abstract.  In this work we introduce a higher-order hyperbolic shear deformation model for bending and 

frees vibration analysis of functionally graded beams. In this theory and by making a further supposition, the 

axial displacement accounts for a refined hyperbolic distribution, and the transverse shear stress satisfies the 

traction-free boundary conditions on the beam boundary surfaces, so no need of any shear correction factors 

(SCFs). The material properties are continuously varied through the beam thickness by the power-law 

distribution of the volume fraction of the constituents. Based on the present refined hyperbolic shear 

deformation beam model, the governing equations of motion are obtained from the Hamilton’s principle. 

Analytical solutions for simply-supported beams are developed to solve the problem. To verify the precision 

and validity of the present theory some numerical results are compared with the existing ones in the literature 

and a good agreement is showed. 
 

Keywords:  deflection; dynamic analysis; functionally graded material; hyperbolic shear deformation 

theory; refined theory 

 
 
1. Introduction 
 

Functionally graded materials (FGMs) are the novel class of composite materials that have 

continuous mutation in material properties from one surface to a further along the thickness 

direction. This genius concept of FGMs was primary initiated in 1984 by a group of material 

scientists while preparing a space-plane plan, in Japan (Koizumi 1997). The primary constituents 

for these materials are metal with ceramic or from a combination of materials. The FGM is thus 

appropriate for various applications, such as thermal coatings of barrier for ceramic engines, gas 

turbines, nuclear fusions, optical thin layers, biomaterial electronics, and in many other fields. 

Consequently, studies and computational (numerical) techniques are devoted to analyze the 

static and dynamic behaviors of FGM beams and plates are also in huge demand in research 

sectors day-by-day. However, the behavior of FG beams can be predicted using either, the classical 

beam theory (CBT), first-order shear deformation beam theory (FSBT), third-order shear 
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deformation beam theory (TSBT), higher-order shear deformation beam theory (HSBT) and three-

dimensional (3D) elasticity theory.  

However, it is well known that due to the impotency of classical beam theory or Euler-

Bernoulli beam theory (EBT) to consider the effect of the transverse shear deformations as well as 

shear correction factor dependency of Timoshenko beam theory (TBT), a numeral of higher-order 

theories are provided and applied in analysis of FG structures. Sallai et al. (2009) analyzed the 

bending responses of a sigmoid FG thick beam by using different higher order beam theories. 

Sankar (2001) provided an exact solution for bending analysis of FG beams subjected to transverse 

loads based on Euler-Bernoulli beam theory. Zhong and Yu (2007) used a 3D elasticity theory to 

predict the bending responses of cantilever FG beams under concentrated and uniformly 

distributed loads. The third-order shear deformation theory (TSDT) in form of finite element 

method are employed by Kadoli et al. (2008) to study the bending of FG beams by considering 

different boundary conditions (BCs) at the edges. Li (2008) analyzed the static and dynamic 

behaviors of FG beams by using a new unified approach, the rotary inertia and shear deformation 

have been included. Li et al. (2010) proposed analytical solutions for static and dynamic analysis 

of FG beams using TSBT. Benatta et al. (2009) derived an analytical solution to the bending 

analysis of a symmetric FG beam by including warping of the cross-section and shear deformation 

effect. Şimşek (2010a) used different higher order beam theories to study the free vibration of an 

FG beam. Then in another one, Şimşek (2010b) conducted an investigation on the dynamic 

deflections and the stresses of an FG simply-supported beam subjected to a moving mass by using 

Euler–Bernoulli, Timoshenko and the parabolic shear deformation beam theory. Thai and Vo 

(2012) used various shear deformation beam theories for studying the bending and vibration 

responses of FG beams. Simsek and Yurtcu (2013) developed an analytical solution for static 

bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam 

theory. Bouremana et al. (2013) developed a new first shear deformation beam theory model based 

on neutral surface position for FG beams. Hadji (2014) investigated the static and free vibration of 

FGM beam by using a higher order shear deformation theory. Recently, Nguyen et al. (2013) 

proposed a new first order shear deformation beam theory for studying the static bending and free 

vibration of axially loaded FG beams in which, an improved transverse shear stiffness has been 

introduced without using shear correction factor. Ould et al. (2013) derived an efficient shear 

deformation beam theory based on neutral surface position for bending and free vibration of 

functionally graded beams. The effects of shear and normal deformations may become more 

considerable for moderately thick beams and plates. Hence, various novel plate theories are 

recommended accounting for both transverse shear and normal deformations and satisfy the zero 

traction boundary conditions on the surfaces of the plate (Hebalii et al. 2014, Belabed et al. 2014, 

Bousahla et al. 2014, Hamidi et al. 2015, Bennoun et al. 2016). Meradjah et al. (2015) constructed 

a novel shear deformation beam model including the stretching effect for studying the flexural and 

free vibration responses of functionally graded beams. Vo et al. (2015) developed a finite element 

model to study the dynamic vibration and buckling of FG sandwich beams by the newly quasi-3D 

theory in which both shear deformation and thickness stretching effects are incorporated. Bourada 

et al. (2015) also presented a new simple shear and normal deformations theory for functionally 

graded beams without using shear correction factors. The wave propagation of an FG porous plate 

based on various simple higher-order shear deformation theories has been investigated by Ait 

Yahia et al. (2015). Free vibration and buckling analysis of functionally graded (FG) sandwich 

beams under various boundary conditions using higher-order shear and normal deformation theory 

was examined by Bennai et al. (2015). Mahi et al. (2015) established a novel hyperbolic shear 
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deformation theory to study the bending and free vibration responses of isotropic, functionally 

graded, sandwich and laminated composite plates. More recently, a new three unknowns model as 

the case of the classical plate theory (CPT) was elaborated by Tounsi et al. (2016) and Houari et al. 

(2016) for static, buckling and vibration analysis of both functionally graded and sandwich plates. 

Some plate theories are used also to explore the behavior of nanostructures as is described in Refs 

(Bounouara et al. 2016, Belkorissat et al. 2015).   

In this study, static bending and vibration behaviors of compositionally graded beams are 

analyzed based on a novel simple higher order refined beam model which captures the shear 

deformation effects using a shear strain function without the need of any shear correction factor. 

The governing equations of motion in the framework of the present refined hyperbolic beam 

model are derived through Hamilton’s principle and resolved applying an analytical solution for 

simply-supported boundary conditions. The material properties are graded through the beam’s 

depth by the power-law model. Numerical examples are supplied to demonstrate the impacts of 

power-law exponent, length of the FG beam, thickness to length ratios on the bending and free 

vibration of functionally graded beams. 

 

 
2. Mathematical formulation 

 
We consider a functionally graded beam having length L and rectangular cross section b× h, 

with b represents the width and h the thickness which its coordinates is depicted in Fig. 1. The 

beam is made of elastic and isotropic material with material properties varying smoothly in the z 

thickness direction. 

 
2.1 Material properties 

 
The effective material properties of the non-homogeneous beam such as Young’s modulus Ef , 

shear modulus Gf and mass density ρf are supposed to vary continuously in the thickness direction 

according to a power function of the volume fractions of the constituents. 

According to the Voigt rule of mixture, the effective material properties, Pf, can be expressed as 

(Simsek and Yurtcu 2013, Bouremana et al. 2013, Ould Larbi et al. 2013, Ebrahimi and barati 

2016) like 

f c c m mP PV P V   (1) 

Where Pm, Pc, Vm and Vc are the material properties and the volume fractions of the metal and 

the ceramic constituents related by 

1c mV V   (2) 

The volume fraction of the ceramic constituent of the FG beam is supposed to be given by 

1

2

k

c

z
V

h

 
  
 

 (3) 

k is a variable parameter that dictates material variation profile through the thickness and z is 

the distance from the mid-plane of the FG beam. The FG beam becomes a fully ceramic beam  
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Fig. 1 Geometry and coordinate of a FG beam 

 

 

When p is set to be zero, whereas infinite p indicates a fully metallic beam. Hence, from Eqs. 

(1) and (2), the effective material properties of the FG beam such as Young’s modulus (E), mass 

density (ρ) are given as, 

   
1

2

k

c m m

z
E z E E E

h

 
    

 
 (3) 

   
1

2

k

c m m

z
z

h
   

 
    

   

(4) 

 

2.2 Kinematic relations and strains 
 

On the basis on the proposed refined theory, the displacement field of the present beam model 

can be written in a simpler form as follow (Thai et al. 2014, Nguyen 2014) 

   
( , )

, , , ( )
w x t

u x z t u x t z f z
x x

 
  

 
 (5a) 

   0, , ,w x z t w x t

 

(5b) 

It is noted that the displacement field of the recent refined existing FG beam theories (Bourada 

et al 2015, Meradja et al. 2015, Ould et al. 2013) are obtained by splitting the transverse 

displacement into bending and shear parts. Therefore, by making another supposition to existing 

ones, the displacement field and the governing equations of motion resulting in this study will be 

completely diverse with those cited above. 

f(z) is the shape function which controls the shearing stress distribution across the thickness of 

the FG beam and is chosen according to (Nareen and Shimpi 2014) as 

  sinh
z z

f z
h h

 
 

   
 

 (6) 

The strains related with the displacements in Eq. (5) are written in following compact form 
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  sb

xx zfz   0
 and   0 zgxz   (7) 

Where 

x

u
x




 00 , 

2

2

x

wb




  , 

2

2

x

s









 

x





 0  ,    zfzg '1  , and  

 
dz

zdf
zf '  

(8) 

Supposing that the material of FG beam obeys Hooke’s law, the constitutive relations can be 

given as 

 11x xQ z   and  55xz xzQ z   (9) 

Where 

   11Q z E z  and  
 

 55
2 1

E z
Q z





 (10) 

 
2.3 Equations of motion 
 
The equations of motion are derived by using Hamilton’s principle. The principle can be stated 

in an analytical form as (Reddy 2002) 

  0
0


T

dtKVU  (11) 

Where δU is the variation of the strain energy; δV represents the potential energy; and the 

variation of the kinetic energy is given by δK. The variation of the strain energy of the beam can 

expressed by the following form 

   

L

A

xzxzxx dAdxU
0



 

2 2

0 0

2 2

0

L
d u d w d d

N M P Q dx
dx dx dx dx

    
    

 
  

(12) 

Where N, M, P and Q represent the stress resultants and they are expressed as 

   , , 1, , x

A

N M P z f dA 
 

and 
A

xzdAgQ   (13) 

The variation of work done by externally transverse loads q can be given as 

0

0

L

V q w dx    (14) 

17



 

 

 

 

 

 

Ismail Bensaid, Abdelmadjid Cheikh, Ahmed Mangouchi
 
and Bachir Kerboua 

The variation of the kinetic energy can be expressed as 

 0 0

0

L

A

K u u w w dAdx     
 

  0 0 0 0
0 0 0 0 0 1 0 0 2

?

L
d w dw dw d w

I u u w w I u u I
dx dx dx dx

 
  

    
        

   


 

0 0
1 0 0 2 2

dw d wd d d d d d
J u u K J dx

dx dx dx dx dx dx dx dx

     


    
         

     

 

(15) 

Where dot-superscript sign defines the differentiation with sense to the time variable t; ρ is the 

mass density; and (I0 , I2, J2, K2) are the mass inertias expressed as 

   2 2

0 1 1 2 2 2, , , , , 1, , , , ,
A

I I J I J K z f z zf f dA   
(16) 

Substituting the expressions for δU, δV, and δK from Eqs. (12), (14), and (15) into Eq. (11) and 

integrating by parts, and collecting the coefficients of δu0, δw0 and δφ, the following equations 

of motion of the FG beam are obtained 

0
0 0 0 1 1:

dwdN d
u I u I J

dx dx dx


     (17a) 

22 2

0 0
0 0 0 1 2 22 2 2

:
du d wd M d

w q I w I I J
dx dx dx dx


     

 
(17b) 

2 22 2

0 0
0 0 1 2 22 2 2

:
du d wd P dQ d

I w J J K
dx dx dx dx dx


     

 
(17c) 

Eqs. (17a)-(17c) can be expressed in terms of displacements (u0, w0, and φ) by using Eqs. (5), 

(7), (9) and (13) as follows 

3 3 3

0 0 0
0 1 12 2 3s

d u d w dwd d
A B B I u I J

dx dx dx dx dx

 
    

 

3 3 24 2

0 0 0
0 0 1 2 23 3 4 2 2s

d u d w d wd du d
B D D q I w I I J

dx dx dx dx dx dx

 
      

 

3 4 24 2 2

0 0 0
0 0 1 2 23 4 4 2 2 2s s s s

d u d w d wd d du d
B D H A I w J J K

dx dx dx dx dx dx dx

  
        

(18a) 

Where A, B, etc., are the beam stiffness, defined by  

   
/2

2 2

11

/2

, , , , , 1, , , , , ,

h

s s s

h

A B D B D H Q z z f z f f dz


   (19a) 

/2

2

55

/2

,

h

s

h

A Q g dz


 
 

(19b) 
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3. Analytical solution 
 

The equations of motion cited above are analytically resolved for bending and free vibration 

problems. The Navier solution procedure is employed to determine the analytical solutions for a 

simply supported FG beam. The variables u0, w0, φ can be written by assuming the following 

variations 

 

 

 

0

0

1

cos

sin ,

sin

i t

n

i t

n

m
i t

n

U x eu

w W x e

x e











  





  
    

   
   
    

  (20) 

Where Un, Wn, and Φn are arbitrary parameters to be determined, ω is the eigenfrequency 

associated with m
th
 eigenmode, and λ=mπ/L. The transverse load q is also expanded in Fourier 

series as 

   
1

sinm

m

q x Q x




  (21) 

Where Qm is the load amplitude calculated from 

   
0

2
sin ,

L

mQ q x x dx
L

   (22) 

The coefficients Qm are given below for some typical loads. For the case of a sinusoidally 

distributed load, we have 

m1  and Q1=q0 (23) 

And for the case of uniform distributed load, we have 

04
, ( 1,3,5....)m

q
Q m

m
   (24) 

Substituting the expansions of u0, w, φ, and q from Eqs. (20) and (21) into the equations of 

motion Eq. (18), the analytical solutions can be obtained from the following equations 

11 12 13 11 12 13

2

12 22 23 12 22 23

13 23 33 13 23 33

0

,

0

n

m

s s s m m m U

s s s m m m W Q

s s s m m m





        
       

        
               

 (25) 

Where 

2 3 3 4 4 4 2

11 12 13 22 23 33

2 2

11 0 12 1 13 1 22 0 2 23 0 2

2

33 0 2

, , , , ,

, , , , ,

s s s ss A s B s B s D s D s H A

m I m I m J m I I m I J

m I K

      

   



        

        

 

 (26) 
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Table 1 Comparison of nondimensional static deflections and stresses of FG beams under uniform 

load

 
k Model 

L/h=5 L/h=20 

w  u  x  xz  w  u  x  xz  

0 

Li et al. (2010) 3.1657 0.9402 3.8020 0.7500 2.8962 0.2306 15.0130 0.7500 

Thai and Vo 2012
 

3.1654 0.9397 3.8017 0.7312 2.8962 0.2306 15.0129 0.7429 

Ould et al. (2013) 3.1651 0.9406 3.8043 0.7489 2.8962 0.2305 15.0136 0.7625 

Present 3.1323 0.9214 3.7511 0.7546 2.8934 0.2302 15.0000 0.7672 

0.5 

Li et al. (2010) 4.8292 1.6603 4.9925 0.7676 4.4645 0.4087 19.7005 0.7676 

Thai and Vo 2012
 

4.8285 1.6595 4.9920 0.7484 4.4644 0.4087 19.7003 0.7599 

Ould et al. (2013) 4.8282 1.6608 4.9956 0.7676 4.4644 0.4087 19.7013 0.7795 

Present 4.7888 1.6267 4.9033 0.7717 4.4609 0.4081 19.6781 0.7840 

1 

Li et al. (2010) 6.2599 2.3045 5.8837 0.7500 5.8049 0.5686 23.2054 0.7500 

Thai and Vo 2012
 

6.2594 2.3036 5.8831 0.7312 5.8049 0.5685 23.2052 0.7429 

Ould et al. (2013) 6.2590 2.3052 5.8875 0.7489 5.8049 0.5685 23.2063 0.7625 

Present 6.2036 2.2728 5.7977 0.7546 5.8001 0.5680 23.1834 0.7672 

2 

Li et al. (2010) 8.0602 3.1134 6.8812 0.6787 7.4415 0.7691 27.0989 0.6787 

Thai and Vo 2012
 

8.0675 3.1127 6.8819 0.6685 7.4420 0.7691 27.0989 0.6802 

Ould et al. (2013) 8.0683 3.1146 6.8878 0.6870 7.4421 0.7691 27.1005 0.7005 

Present 7.9581 3.0747 6.7699 0.6930 7.4335 0.7684 27.0705 0.7057 

5 

Li et al. (2010) 9.7802 3.7089 8.1030 0.5790 8.8151 0.9133 31.8112 0.5790 

Thai and Vo 2012
 

9.8271 3.7097 8.1095 0.5883 8.8181 0.9134 31.8127 0.5998 

Ould et al. (2013) 9.8345 3.7128 8.1187 0.6084 8.8186 0.9134 31.8151 0.6218 

Present 9.5482 3.6507 7.9457 0.6153 8.7981 0.9124 31.7712 0.6281 

10 

Li et al. (2010) 10.8979 3.8860 9.7063 0.6436 9.6879 0.9536 38.1372 0.6436 

Thai and Vo 2012
 

10.9375 3.8859 9.7111 0.6445 9.6905 0.9536 38.1383 0.6572 

Ould et al. (2013) 10.9413 3.8898 9.7203 0.6640 9.6907 0.9537 38.1408 0.6788 

Present 10.5487 3.8338 9.5781 0.6706 9.6673 0.9525 38.0824 0.6847 

• Ceramic (Pc: Alumina, Al2O3): Ec=380 GPa; v=0.3; ρc=3960 kg/m
3
 

• Metal (Pm: Aluminium, Al): Em=70 GPa; v=0.3; ρm=2707 kg/m
3
 

 
 
4. Results and discussion 
 

Here, some numerical examples are presented and discussed to verify the accuracy of the 

present theory in predicting the bending and free vibration responses of simply supported FG 

beams. The FG beam is taken to be made of aluminum and alumina Al/Al2O3 with the following 

material properties: 

 

4.1 Results for static analysis 
 

For the validation of our model in the case of bending analysis, we consider an FG beam  
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Fig. 2 Variation of the longitudinal displacement u  through-the-thickness of a FG beam 
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Fig. 3 The variation of the axial stress x across-the-thickness of a FG beam (L=2 h) 

 

 

subjected to a uniform load. For convenience, the following dimensionless forms are used 

 
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x xzx xz

m
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w w u u
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The results obtained of our model are displayed in Table 1, and for various nondimensional 

displacements and stresses of FG beams under uniform load q0 for different values gradient index 

k and slenderness ratio L/h. One can observe that our results are in good correlations with the 

provided results by the existing efficient shear deformation beam theories (Li et al. 2010, Thai and 

Vo 2012, Ould et al. 2013). 

21



 

 

 

 

 

 

Ismail Bensaid, Abdelmadjid Cheikh, Ahmed Mangouchi
 
and Bachir Kerboua 

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8
-0,5

-0,4

-0,3

-0,2

-0,1

0,0

0,1

0,2

0,3

0,4

0,5

1
0.5

k=0

 

 

z/
h

 


XZ

 Present (RHSDT)

 HBT (Thai and Vo (2012))

 
Fig. 4 The variation of the transverse shear stress xz across-the-thickness of a FG beam (L=2 h) 
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Fig. 5 Variation of the transverse displacement w  versus non-dimensional length of a FG beam (L=5 

h) bending stiffness of the FG beam 
 

 

Figs. 2-4 demonstrate the variation of the longitudinal displacement u , longitudinal stresses 

x  and transverse shear stress xz through the depth of the FG thick beam (L=2h), for the case of 

uniform load. A comparison with the analytical solutions given by Thai and Vo (2012) is also 

depicted in these figures using different values of the gradient index k. It is observed that there is a 

good concordance between the actual higher-order hyperbolic beam model and those of Thai and 

Vo (2012). It can also observed from these Figs. 2-4 that the rise of the power law exponent k leads 

to an increase of the axial displacement u , longitudinal stresses 
x  and transverse shear stress 

xz . This is due to the fact that an increase in the volume fraction of metal will decrease the Fig. 5 

presents the evolution of the dimensionless transversal displacement w  versus nondimensional 

length for various values of the volume fraction exponent k. It is shown also that the present 

refined beam model offers very closes results to Reddy (TBT). Furthermore, the results show that 

the rise of the power law exponent k leads to an increase of transversal displacement w .  

 

4.2 Free vibration analysis 
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Table 2 Variation of dimensionless frequency   with various gradient indices k for FG beam 

L/h Model 
k 

0 0.5 1 2 5 10 

5 

Simsek (2010) 5.1527 4.4111 3.9904 3.6264 3.4012 3.2816 

Thai and Vo (2012) 5.1527 4.4107 3.9904 3.6265 3.4014 3.2817 

Present model 5.1527 4.4109 3.9904 3.6264 3.4013 3.2856 

10 

Simsek (2010) 5.4603 4.6516 4.2050 3.8361 3.6485 3.5389 

Thai and Vo (2012) 5.4603 4.6516 4.2050 3.8361 3.6485 3.5390 

Present model 5.4603 4.6616 4.2050 3.8361 3.6484 3.5391 
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Fig. 6 Influence of the power law index k on the dimensionless frequency of FG beam with various 

span-to-depth ratio L/h 

 
 

For the evaluate of the present refined hyperbolic shear deformation beam model in the case of 

free vibration, dimensionless fundamental frequencies w obtained by the present theory are 

compared with those obtained by Thai and Vo (2012) and Simsek (2010) of FG beams for different 

values of power law index k and slenderness ratio L/h and the results are tabulated in Table 2. It 

can be observed that the results are in good correlations with the results obtained by Thai and Vo 

(2012), Simsek (2010).  

The non-dimensional frequency of FG beam as a function of gradient index k and for different 

values of slendness ratio L/h using both the present theory and HBT (Thai and Vo 2012) is plotted 

in Fig. 6 and a close agreement between the present theory and HBT is shown. It is also seen that 

the frequency values decrease with increasing the power law index k. The full ceramic beams 

(k=0) lead to a highest frequency. However, the lowest frequency values are obtained for full metal 

beams (k→∞). The reason is an increasing in the value of the power indexes lead to grow the 

percentage of metal phase which make the FG beam more flexible, and thus a reduction in the 

fundamental frequency values. 

 

 

5. Conclusions 
 

In the present research work, static deflection and vibration analysis of functionally graded 
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(FG) beams are proposed according to a higher-order hyperbolic shear deformation beam model; 

in which the transverse shear stress vary hyperbolically through the thickness satisfying shear 

stress free surface conditions on the top and bottom surfaces of the beam without the need any 

shear correction factors. The governing differential equations of motion and the boundary 

conditions of FG beam are formulated through Hamilton’s principle, and resolved analytically by 

Navier-type model for simply-simply boundary condition. According to the obtained results, it is 

found that the proposed model can provide very accurate results compared o the other solution 

results. The impacts of the power-law index and span-to-depth ratio on the deflection, stresses, and 

natural frequencies as well as load-frequency are explored. 
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