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Abstract.  Analytical investigations were performed of a longitudinal crack representing a cylindrical 

surface in circular shafts loaded in torsion with taking into account the non-linear material behavior. 

Both functionally graded and multilayered shafts were analyzed. It was assumed that the material is 

functionally graded in radial direction. The mechanical behavior of shafts was modeled by using non-

linear constitutive relations between the shear stresses and shear strains. The fracture was studied in 

terms of the strain energy release rate. Within the framework of small strain approach, the strain energy 

release rate was derived in a function of the torsion moments in the cross-sections ahead and behind the 

crack front. The analytical approach developed was applied to study the fracture in a clamped circular 

shaft. In order to verify the solution derived, the strain energy release rate was determined also by 

considering the shaft complimentary strain energy. The effects were evaluated of material properties, 

crack location and material non-linearity on the fracture behavior. The results obtained can be applied 

for optimization of the shafts structure with respect to the fracture performance. It was shown that the 

approach developed in the present paper is very useful for studying the longitudinal fracture in circular 

shafts in torsion with considering the material non-linearity.  
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1. Introduction 
 

Recently, the application of functionally graded materials in structures that are subjected to 

non-uniform service requirements has increased rapidly (Gasik 2010, Nemat-Allal et al. 2011, 

Bohidar et al. 2014, Abdelhak et al. 2015, Daouadji and Adim 2016, Daouadji et al. 2016). This is 

due mainly to the fact that functionally graded materials allow for spatial optimization of 

composition and properties in one or more directions during manufacturing. In this way, novel 

materials that have remarkable advantages over the traditional structural materials can be 

manufactured. Bending of functionally graded plates and beams has been analyzed recently by Ait 

Yahia et al. 2015, Belabed et al. 2014, Bellifa et al. 2016, Bennoun et al. 2016, Bouderba et al. 

2013, Bourada et al. 2015, Bourada et al. 2016, Bousahla et al. 2014, Hadji et al. 2016, Hamidi et 

al. 2015, Mahi et al. 2015). The study of fracture behavior of functionally graded materials plays 
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an important role in the design of structures composed by these novel materials (Pei and Asaro 

1997, Tilbrook et al. 2005, Carpinteri and Pugno 2006, Ivanov and Draganov 2014, Ivanov et al. 

2016, Upadhyay and Simha 2007, Zhang et al. 2013).  

Studies of fracture in functionally graded materials by applying the methods of linear-elastic 

fracture mechanics have been reviewed by Tilbrook et al. (2005). Analyses of stress intensity 

factors have been presented. Cracks oriented parallel and perpendicular to the gradient direction 

have been considered. Fatigue fracture behavior under cyclic loading has also been studied.  

Cracks in functionally graded linear-elastic materials have been investigated by Carpinteri and 

Pugno (2006). Fracture behavior of functionally graded plate in tension and beam under three-

point bending has been analyzed. Stress intensity factors have been evaluated. A method for 

predicting the strength of structures composed by functionally graded materials has been 

developed.  

Equivalent homogeneous beams of variable depth have been suggested for evaluation of the 

stress intensity factor in cracked functionally graded linear-elastic beams under three-point 

bending (Upadhyay and Simha 2007). The compliance method has been applied. It has been found 

that the equivalent beam with cubic variation in height captures the compliance characteristics of 

functionally graded beams. It has been shown that the method developed is particularly suitable 

for analysis of cracked beams loaded by concentrated forces. 

Multilayered materials have many useful properties, such as light weight and high strength 

which facilitate an extensive use of these materials in various engineering applications including 

load bearing structures. Interface fracture between layers is the primary concern with multilayered 

structures. Initiation and growth of interface cracks can reduce significantly the stiffness and 

strength of multilayered materials. Therefore, the interface fracture continues to attract the interest 

of researchers (Jiao et al. 1998, Yeung et al. 2000, Guadette et al. 2001, Markov and Dinev 2005, 

Tuan and Wei 2009, Szekrenyes 2010, Szekrenyes and Vicente 2012, Her and Su 2015).   

Interface cracks have been studied in linear-elastic multilayered beams under four-point 

bending (Tuan and Wei 2009). Fracture behavior has been analyzed in terms of strain energy 

release rate by using the conventional beam theory. The beams investigated can have an arbitrary 

number of layers and cracks can be located at any interface.  

Interfacial fracture has been analyzed in multilayered beam structures by applying the methods 

of linear-elastic fracture mechanics (Her and Su 2015). An analytical solution has been derived for 

strain energy release rate in a function of material properties and layer thicknesses by using the 

crack tip cross-sectional bending moment.    

The literature review indicates that fracture in functionally graded and multilayered structures 

has been studied usually assuming linear-elastic material behavior. However, a realistic appraisal 

of the potential for crack growth should include the effects of material non-linearity. Therefore, the 

main purpose of present paper was to develop the general analysis of a longitudinal crack 

representing a cylindrical surface in functionally graded and multilayered circular shafts in torsion 

with considering the non-linear behavior of material (the present paper was motivated also by the 

fact that calculation of structural members in torsion takes an important place in the design of 

machines and engineering equipments). The fracture was analyzed in terms of strain energy release 

rate by using the torsion moments in cross-sections ahead and behind the crack front. The 

influence of crack location and material properties on the non-linear fracture was evaluated. It 

should be mentioned that the present paper deals with analytical solutions, since they are very 

suitable for parametric investigations in contrast to the finite element method which suffers from 

relatively limited abilities in parametric studies. 
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Elastic-plastic fracture of functionally graded circular shafts in torsion 

 

 
Fig. 1 Non-linear stress-strain curve with strain energy density, u0, and complimentary strain energy 

density, 
*

0u  

 

 
Fig. 2 Portion of a circular shaft with the crack front (1-crack front position before the increase of 

crack, 2-crack front position after the increase of crack). The longitudinal crack represents a cylindrical 

surface of radius r 

 

 

2. Elastic-plastic fracture analysis  
 

The present paper deals with elastic-plastic analysis of a longitudinal crack in circular shafts 

loaded in torsion. The longitudinal crack represents a cylindrical surface (the crack front is a circle 

of radius r). Thus, the internal crack arm is a solid shaft with circular cross-section of radius r. The 

external crack arm is a shaft with ring-shaped cross-section with internal radius r and external 

radius R. The loading consists of concentrated and/or distributed torsion moments applied on the 

shaft. The internal crack arm can also be loaded in torsion (for instance, by a torsion moment 

applied on the free end of internal crack arm).  

It was assumed that the mechanical response of shaft considered can be modeled by a non-

linear stress-strain curve (Fig. 1). The non-linear stress-strain relation was written in the general 

form 

)(  , (1) 
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Fig. 3 Distribution of shear stresses in shaft cross-section p1p2 (refer to Fig. 2) before the increase of crack 

 

 
Fig. 4 Distribution of shear stresses in shaft cross-section p1p2 (refer to Fig. 2) after the increase of crack 
 

 

Where τ is the shear stress, γ is the shear strain.  

First, a circular shaft made by functionally graded material was considered (it was assumed that 

the material is functionally graded in radial direction). A shaft portion with the crack front is 

shown schematically in Fig. 2. The cross-sectional torsion moment ahead of the crack front is T. A 

crack increase by length Δa would lead to change of the shear stresses distribution in the shaft 

cross-section, p1p2, (Fig. 2). Thus the distribution shown in Fig. 3 changes to that reported in Fig. 

4.  

The main goal of present study was to develop the general analysis of crack problem shown in 

Fig. 2 with taking into account the material non-linearity. The analysis was performed in terms of 

the strain energy release rate. In principle, the fracture analysis developed in the present paper can 

be applied for non-linear elastic materials.  

Besides, the analysis is applicable also for elastic-plastic materials, if the external load 

magnitude increases only, i.e., if the shaft undergoes active deformation (Chakrabarty 2006). Also, 

the present study is based on the small strain assumption (it should be noted that this assumption 

has been frequently used in fracture analyses of functionally graded and multilayered materials 

(Pei and Asaro 1997, Carpinteri and Pugno 2006, Upadhyay and Simha 2007, Hsuesh et al. 2009, 

Her and Su 2015). The strain energy release rate is defined as  

a

ext

A

UW
G




 , (2) 

Where the change of external work, ΔWext, was expressed as  

UUWext  * . (3) 
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Elastic-plastic fracture of functionally graded circular shafts in torsion 

Here, ΔU
*
 and ΔU are the changes of complimentary strain energy and strain energy, 

respectively. By substitution of Eq. (2) in Eq. (3), we obtained 

aA

U
G






*

, (4) 

Where  

***

ab UUU  . (5) 

Here, 
*

bU  and 
*

aU  are the complimentary strain energies before and after the increase of crack, 

respectively. The crack area increase, ΔAa, was written as  

arAa  2 . (6) 

Thus, Eq. (4) was rewritten as  

ar

UU
G ba






2

**

. (7) 

The complimentary strain energy before the crack increase was defined as 


)(

*

0

*

V

b dVuU , 
(8) 

Where (Fig. 2) 

112 adrrdV   , Rr  10 . (9) 

The complimentary strain energy density, 
*

0u , in Eq. (8) is equal to area OQS that supplement 

area OPQ enclosed by the stress-strain curve to a rectangle (Fig. 1). Therefore, the complimentary 

strain energy density was found as 






0

*

0 )( du . (10) 

It should be specified that the material properties in the non-linear stress-strain relation, τ(γ), 

are functions of the radius, r1, where 0≤ r1≤ R, since the material of shaft is functionally graded in 

radial direction.  

After integration in Eq. (10), γ should be replaced with  

R
r c 1  (11) 

In order to facilitate the solution of integral Eq. (8). In Eq. (11), γc is the shear strain at the 

periphery of circular shaft cross-section. Relation Eq. (11) follows from the fact that according to 

the classical beam theory for torsion of circular shafts, the shear strains are distributed linearly 

along the radius of cross-section.   

The strain γc in Eq. (11) should be found by considering the following equilibrium Equation 
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

R

drrT
0

1

2

12  . (12) 

The integral in Eq. (12) should be solved for a particular stress-strain relation and then γc can be 

determined from the algebraic equation obtained.  

In view of Eq. (9), the complimentary strain energy Eq. (8) was written as 

11

0

*

0

* 2 drruaU

R

b   , (13) 

Where 
*

0u  is a function of r1 via Eq. (11).  

Eq. (13) can be used to determine the complimentary strain energy, 
*

1aU , in the internal crack 

arm after the crack increase. For this purpose, R and T should be replaced by r and T1, respectively 

(Fig. 4) in Eqs. (11), (12), and (13). Thus, the complimentary strain energy was written as  

11

0

*

0

*

11
2 drruaU

r

aa   , (14) 

Where the complimentary strain energy density, 
*

0 1au , is a function of r, r1, and T1 (after solution 

of Eq. (10), γ should be replaced by γ=r1 γc/r, where γc is determined from Eq. (12) after replacing 

of R and T with r and T1, respectively).  

In order to calculate the complimentary strain energy in the external crack arm, *

2aU , Eq. (13) 

was modified as 

11

*

0

*

22
2 drruaU

R

r

aa   , (15) 

Where γc that participates in the complimentary strain energy density, 
*

0 2au , was obtained from 

the equilibrium equation 



R

r

drrT 1

2

12 2  . (16) 

Here, the torsion moment, T2, in the external crack arm behind the crack front was expressed by 

T and T1 as  

12 TTT  . (17) 

After integration in Eq. (16) for a particular stress-strain relation, the equation obtained can be 

solved with respect to γc.  

The complimentary strain energy after the crack increase, 𝑈𝑎
∗, was found by summation of Eqs. 

(14) and (15), i.e., 
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Elastic-plastic fracture of functionally graded circular shafts in torsion 

 
Fig. 5 Multilayered circular shaft portion with the crack front (1-crack front position before the 

increase of crack, 2-crack front position after the increase of crack). The longitudinal crack represents a 

cylindrical surface of radius r  
 

 

 ***

21 aaa UUU   11

0

*

0 1
2 drrua

r

a 11

*

0 2
2 drrua

R

r

a . (18) 

The final solution was found after substitution of Eq. (13) and Eq. (18) in Eq. (5), i.e., 

r
G

1
 




 11

0

*

0 1
drru

r

a  11

*

0 2
drru

R

r

a 



 11

0

*

0 drru

R

. (19) 

Eq. (19) indicates that the strain energy release rate can be determined with taking into account 

the material non-linearity by using the torsion moments in the shaft cross-sections behind and 

ahead of the crack front only (the complimentary strain energy densities in Eq. (19) are functions 

of the cross-sectional torsion moments behind and ahead of the crack front).  

It is obvious that Eq. (19) can also be applied to calculate the non-linear G in homogeneous 

shafts, i.e., shafts made by material that is not functionally graded. The only peculiarity is in 

solution of integrals, since the material properties are not functions of r1.  

Non-linear fracture was analyzed also assuming that the shaft is made by multilayered 

materials as illustrated in Fig. 5. A longitudinal (interface) crack representing a cylindrical surface 

is located arbitrary between radial layers. The mechanical response of each layer is characterized 

by a non-linear stress-strain curve. The non-linear stress-strain relations were written as 

)( ii  , ni ...,,2,1 , (20) 

Where n is the layers number. The material constants in Eq. (20) may be different in each layer. 

Besides, different stress-strain relations may be used for each layer.  

The strain energy release rate can be calculated by Eq. (5).  

The complimentary strain energy before crack increase was written as  







)(

*

0

1

*

iV

ii

ni

i

b dVuU , (21) 

Where dVi can by found by Eq. (7) at rli≤r1≤rli+1 (refer to Fig. 5).  

The complimentary strain energy density in each layer was obtained as 
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




0

*

0 )( du ii , ni ...,,2,1 . (22) 

The strain γc (refer to Eq. (11)) should be determined by considering the following equilibrium 

equation of the multilayered shaft 







1

1

2

1

1

2
li

li

r

r

i

ni

i

drrT  . (23) 

After solution of the integrals in Eq. (23), γc can be determined from the algebraic equation 

obtained. Then, after solution of integrals Eq. (22), γ should be replaced by Eq. (11). In this way, 

the strain energy density in each layer is obtained in function of r1 to facilitate integration of Eq. 

(21).    

In view of Eq. (9), the complimentary strain energy Eq. (21) was written as 

11

*

0

1

*
1

2 drruaU
li

li

r

r

i

ni

i

b 




  . (24) 

In order to determine the complimentary strain energy, 
*

1aU , in the internal crack arm after the 

increase of crack, Eq. (24) was modified in the following way 

11

*

0

1

*
1

1

1

1
2 drruaU

li

li

r

r

ia

ni

i

a 




  , (25) 

Where n1 is the layers number in the internal crack arm. The complimentary strain energy 

density, 
*

0 1iau , can obtained in a function of r, r1, and T1. For this purpose, R, T, and n should be 

replaced by r, T1, and n1, respectively in Eqs. (11), (22), and (23).  

The complimentary strain energy in the external crack arm, 
*

2aU , was obtained by modifying Eq. 

(25) in the following way 

11

*

0

1

*
1

2

2

2
2 drruaU

li

li

r

r

ia

ni

i

a 




  , (26) 

Where n2 is the layers number in the external crack arm. The strain γc that participates in the 

complimentary strain energy density, 
*

0 2iau , was obtained from the equilibrium equation of external 

crack arm cross-section Eq. (16). For this purpose, Eq. (16) was modified as  








1
2

1

2

1

1

2 2

li

li

r

r

ni

i

drrT  , (27) 

Where T2 was obtained by Eq. (15).  

Finally, Eqs. (24), (25), and (26) were substituted in Eq. (5) 
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Elastic-plastic fracture of functionally graded circular shafts in torsion 

 
Fig. 6 Clamped circular shaft with longitudinal crack of length a 

 

 

r
G

1
 









11

*

0

1

1

1

1

drru
li

li

r

r

ia

ni

i






11

*

0

1

1

2

2

drru
li

li

r

r

ia

ni

i









11

*

0

1

1

drru
li

li

r

r

i

ni

i

. (28) 

In this way, the non-linear fracture analysis of multilayered shafts loaded in torsion can be 

carried-out by using torsion moments in cross-sections behind and ahead of the crack front.    

It should be mentioned that Eq. (28) can also be applied for non-linear analyses of the strain 

energy release rate in multilayered shafts made by functionally graded materials (material 

properties are functionally graded in radial direction). Besides, the type of gradation can be 

different in each layer. The only peculiarity is in solution of integrals, since the material properties 

are functions of r1.  

 

 

3. Elastic-plastic investigation of fracture in a clamped shaft  
 

The general non-linear fracture analyses of circular shafts in torsion developed in section 2 of 

the present paper were applied to investigate the strain energy release rate in the shaft shown in 

Fig. 6. There is a longitudinal crack of length a in the shaft. The radius of the internal crack arm is 

r. The shaft is clamped at its right-hand end. The loading consists of a torsion moment, T, applied 

at the free end of the internal crack arm. Therefore, the external crack arm is stress free.  

First, the fracture was analyzed assuming that the shaft is homogeneous. Also, it was assumed 

that the mechanical behavior of shaft can be modeled by using a power law stress-strain relation 

(Petrov 2014) 

sn

sH   , (29) 

Where Hs and ns are material properties. 

The complimentary strain energy density was obtained by substitution of Eq. (29) in Eq. (10) 

and solving the integral 

1

1
*

0





s

n

ss

n

Hn
u

s
. (30) 

The strain γc was determined from Eq. (12). For this purpose, Eqs. (11) and (29) were 

substituted in Eq. (12) and the integral was solved 
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3

2 3




s

n

cs

n

HR
T

s
. (31) 

From Eq. (31), we obtained 

sn

s

s
c

HR

nT
1

32

)3(







 



 . (32) 

Eqs. (11) and (32) were substituted in Eq. (30), i.e., 

 

1

2

3

1
1

3

1

*

0

























 





s

n

n

s

s
ss

n

HR

nT

R

r
Hn

u

s

s



. 

(33) 

Eq. (33) expresses the complimentary strain energy density in the cross-section ahead of the 

crack front.  

Radius, R, was replaced with r in Eq. (33) in order to determine the complimentary strain 

energy density in the internal crack arm  

 

1

2

3

1
1

3

1

*

0 1 
























 





s

n

n

s

s
ss

a
n

Hr

nT

r

r
Hn

u

s

s



. 

(34) 

In Eq. (34), it was taken into account that the torsion moment in the internal crack arm is T 

(Fig. 6).         

The complimentary strain energy in the external crack arm is zero, since the latter is free of 

stresses (Fig. 6) 

0*

0 2
au . (35) 

Finally, Eqs. (33), (34) and (35) were substituted in Eq. (19) and the integrals were solved. It 

was obtained  

r
G

1


 

 3)1(

2

31 3

1
1

3


























 











 



ss

n

n

n

s

s
ss

nn

r
Hr

nT

r
Hn s

s

s



 

 





































 







3)1(

2

31 3

1
1

3

ss

n

n

n

s

s
ss

nn

R
HR

nT

R
Hn s

s

s



. 
(36) 

Obviously, at ns=1, the power law stress-strain relation Eq. (29) transforms into the Hooke’s 

law (assuming that the shear modulus is Hs). This means that at ns=1 Eq. (36) should transform in 
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the formula for strain energy release rate in linear-elastic shaft. Indeed, by substitution of ns=1 in 

Eq. (36), we found 

4

44

52

2

2 RH

rR

r

T
G

s





. (37) 

Which coincides with the formula for strain energy release rate derived by Rizov and 

Mladensky (2012) for linear-elastic homogeneous shaft.   

In order to verify the non-linear solution Eq. (36), the strain energy release rate was determined 

also by considering the shaft complimentary strain energy. For this purpose, an elementary 

increase of the crack area, dAa, was assumed leading to the following expression of strain energy 

release rate 

a

ext

dA

dUdW
G


 , (38) 

Where dWext and dU are the changes of external work and strain energy, respectively. The 

change of external work was expressed as 

dUdUdWext  *
, (39) 

Where dU* is the change of complimentary strain energy. By combining of Eqs. (38) and (39), 

we derived 

adA

dU
G

*

 , (40) 

Where  

rdadAa 2 . (41) 

Here, da is an elementary crack increase. The complimentary strain energy density was 

integrated in the shaft volume in order to obtain the complimentary strain energy 

 

R

a

r

dralruadrruU
0

11

*

011

*

0

0

* )(22
1

 . (42) 

By combining of Eqs. (33), (34), (40), (41) and (42), we derived a formula that is exact match 

of Eq. (36). This fact is a verification of Eq. (36). Obviously, for the shaft configuration shown in 

Fig. 6, the strain energy release rate can be calculated relatively simply by using Eq. (40). 

However, for more complicated materials and loading conditions, Eq. (19) has decisive advantages 

over Eq. (40). For instance, one can calculate the strain energy release rate by Eq. (19) without 

analyzing the whole shaft (it is enough to analyze the stress state in the cross-sections ahead and 

behind the crack front only).      

The fracture was analyzed also assuming that the material of shaft is functionally graded in 

radial direction. The mechanical behavior was modeled again by Eq. (29). The material property, 

Hs, was assumed to vary linearly as 

1
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Where Hs0 and Hs1 are the values in the centre and at the periphery of the shaft cross-section.  

The strain γc was determined from the equilibrium Eq. (12), which was written as 
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After performing the integration in Eq. (44) and solving the equation, γc was obtained as 
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It should be noted that at Hs0=Hs1=Hs, Eq. (45) transforms in Eq. (32).  

The complimentary strain energy density was obtained by substitution of Eqs. (11), (43) and 

(45) in Eq. (30) 
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(46) 

Obviously, at Hs0=Hs1=Hs, Eq. (46) transforms in Eq. (33).   

Eq. (46) was used also to determine 
*

0 1au . For this purpose, R was replaced with r   
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(47) 

Where Hs1I is the value of Hs at the boundary between the internal and external crack arm. By 

using Eq. (43), Hs1I was written as 
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It was mentioned above that the strain energy density in the external crack arm is zero.  

The strain energy release rate was obtained by substitution of Eqs. (33), (44) and (47) in Eq. 

(19) and solving the integrals. The result is 
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Fig. 7 Clamped bi-layer circular shaft with longitudinal crack of length a 

 

 

It should be mentioned that at Hs0=Hs1=Hs, Eq. (49) transforms in Eq. (36).  

Eq. (49) was verified by calculating of G with the help of Eq. (45). By substitution of Eqs. (41), 

(42), (46) and (47) in Eq. (45), we derived an expression that is exact match of Eq. (49). This fact 

verifies Eq. (49).  

Non-linear fracture analysis was performed also for the bi-layer shaft shown in Fig. 7. There is 

a longitudinal crack of length, a, between the layers.  

The internal layer 1 is a solid shaft with circular cross-section of radius r. It was assumed that 

the mechanical response of the internal layer can be modeled by stress-strain relation Eq. (29). 

The mechanical behavior of the external layer 2 was modeled by using the following power-

law stress-strain relation 

qn

sQ   , (50) 

Where Qs and nq are material properties.  

The two layers were homogeneous. Besides, perfect adhesion was assumed between the layers 

in the un-cracked shaft portion.      

The complimentary strain energy densities in the layers ahead and behind the crack front were 

needed in order to determine the strain energy release rate by Eq. (28). It should be noted that for 

the bi-layer shaft, n1=1, n2=1, n3=2 (refer to Eq. (28)).   

The strain γc at the periphery of the shaft cross-section ahead of the crack front was obtained 

from the equilibrium Eq. (23). For this purpose, Eq. (23) was rewritten as 
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After substitution of Eq. (11) in Eq. (51) and solving the integrals, it was obtained 
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Eq. (52) should be solved with respect to γc by using the MatLab computer program. 

The complimentary strain energy density in the internal layer 1 (Fig. 7) was obtained by 

substitution of Eq. (11) in Eq. (30) 
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Eq. (53) was used also to determine the complimentary strain energy density in the external 

layer 2 in the un-cracked shaft portion (ahead of the crack front). For this purpose, ns and Hs were 

replaced with nq and Qs, respectively 
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(54) 

The strain energy density in the internal crack arm behind the crack front, u0a11, was found by 

Eq. (34).   

After substitution of Eqs. (34), (35), (53) and (54) in Eq. (19) and solving the integrals, the 

strain energy release rate was written as 
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(55) 

Where γc was determined from Eq. (52).  

It is clear that at ns=1 and nq=1, the stress-strain relations Eqs. (29) and (49) transform in the 

Hooke’s law (assuming that Hs and Qs are the shear moduli of internal and external layer, 

respectively). Indeed, by substitution of ns=1 and nq=1 in Eq. (55), we obtained 
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Which coincides with the formula for strain energy release rate in the linear-elastic bi-layer 

shaft (Rizov and Mladensky 2012).  

The strain energy release rate in the bi-layer shaft shown in Fig. 7 was determined also by Eq. 

(40) in order to verify Eq. (55). For this purpose, the complimentary strain energy was written as 
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By substitution of Eqs. (34), (41), (53), (54) and (57) in Eq. (40), we derived a formula that is 

exact match of Eq. (55). This fact is verification of Eq. (55).  

The non-linear fracture in the bi-layer shaft (Fig. 7) was studied also assuming that the material 

is functionally graded in radial direction. The mechanical behavior of the internal and external 

layer was modeled by stress-strain relations Eqs. (29) and (50), respectively.  

For the material in the internal layer, it was assumed that Hs (refer to Eq. (29)) varies non-

linearly along the shaft cross-section radius 
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 
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Where Hs0 and Hs1 are the values of Hs in the centre and in the boundary between the two 

layers, respectively, m is a non-dimensional parameter.     

In the external layer, it was assumed that Qs (refer to Eq. (60)) varies linearly in radial direction 
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Where Qs0 and Qs1 are the values of Qs in the boundary between the two layers and at the 

periphery of shaft, respectively.  

The strain, γc, at the periphery of shaft cross-section was determined from the equilibrium Eq. 

(21). After substitution of Eqs. (11), (29), (50), (58) and (59) in Eq. (23), it was found  
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(60) 

It should be noted that at Hs0=Hs1=Hs and Qs0=Qs1=Qs, Eq. (60) transforms in Eq. (52).  

Eq. (60) should be solved with respect to γc by using the MatLab computer program.      

Eq. (53) was applied to determine the complimentary strain energy density, 
*

01u , in the internal 

layer 1. For this purpose, Eq. (58) was substituted in Eq. (53) 
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Eq. (59) was substituted in Eq. (53) to obtain the complimentary strain energy density, 
*

02u , in 

the external layer 2 
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The strain energy density in the internal crack arm behind the crack front, 
*

10 1au , was obtained 

in the following way. In order to determine the strain at the periphery of the internal crack arm, 

cI , Eqs. (29) and (52) were substituted in the equilibrium Eq. (12), R was replaced with r and the 

integral was solved 
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Fig. 8 The strain energy release rate in non-dimensional form plotted against r/R ratio at Hs1/Hs0=0.5, 1 

and 2 for the functionally graded shaft shown in Fig. 6 
 

 

From Eq. (63), it was found 
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Eq. (61) was used to determine 
*

10 1au . For this purpose, R and γc were replaced with r and γcI, 

respectively 
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(65) 

After substitution of Eqs. (35), (61), (62) and (65) in Eq. (28) and solving the integrals, the 

strain energy release rate was written as 
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Fig. 9 The strain energy release rate in non-dimensional form plotted against Hs1/Hs0 ratio at m=1, 2 

and 3 for the functionally graded bi-layer shaft shown in Fig. 7 
 

 

Where γc should be determined from Eq. (60). It should be noted that at Hs0=Hs1=Hs and 

Qs0=Qs1=Qs, Eq. (66) transforms in Eq. (55). 

In order to verify Eq. (64), the strain energy release rate was determined by Eq. (40). By 

substitution Eqs. (41), (57), (61), (62) and (65) in Eq. (40), we obtained a formula that is exact 

match of Eq. (66). This fact is a verification of Eq. (66).   

 

 

4. Parametric investigations 
 

Parametric investigations were carried-out of elastic-plastic fracture in the clamped circular 

shafts shown in Fig. 6 and Fig. 7. In these investigations, the crack location along the shaft cross-

section was characterized by r/R ratio.  

First, the influence was analyzed of material properties and crack location on the non-linear 

fracture behavior of functionally graded circular shaft shown in Fig. 6. For this purpose, the strain 

energy release rate was calculated by using Eq. (49). In these calculations, it was assumed that 

T=10 Nm and R=0.02 m. The strain energy release rate calculated was presented in non-

dimensional form by using the formula GN=G/(Hs0R). The results of calculations are illustrated in 

Fig. 8, where the strain energy release rate is plotted against r/R ratio at Hs1/Hs0=0.5, 1 and 2. The 

diagrams in Fig. 8 indicate that the strain energy release rate decreases with increasing r/R ratio. 

This finding was attributed to increase of the stiffness of internal crack arm (the external crack arm 

is free of stresses). Also, one can observe that increase of Hs1/Hs0 ratio leads to decrease of the 

strain energy release rate (this is due to increase of the shaft stiffness).  

For the functionally graded bi-layered circular shaft (Fig. 7), the strain energy release rate was 

calculated by Eq. (66) and plotted in non-dimensional form as a function of Hs1/Hs0 ratio at m=1, 2 

and 3 in Fig. 9 (the material properties Hs1, Hs0 and m are defined in Eq. (58)). It was assumed also 

that r/R=0.5, Qs0/Hs0=0.6 and Qs1/Qs0=1.2. It can be observed (Fig. 9) that in the functionally 

graded bi-layered circular shaft the strain energy release rate decreases with increasing Hs1/Hs0 

ratio (this was explained with increase of the shaft stiffness). The curves in Fig. 9 indicate also that  
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Fig. 10 The strain energy release rate in non-dimensional form plotted against Qs0/Hs0 ratio for the 

functionally graded bi-layer shaft (1-linear-elastic material behavior, 2-non-linear material behavior)  
 

 

the strain energy release rate decreases with increase of m at Hs1/Hs0<1. The increase of m leads to 

increase of the strain energy release rate, when Hs1/Hs0>1.  

The influence of Qs0/Hs0 ratio on the non-linear fracture behavior of functionally graded bi-

layered circular shaft (Fig. 7) was analyzed too. For this purpose, the strain energy release rate was 

calculated by Eq. (66) and plotted against Qs0/Hs0 ratio in Fig. 10 (the calculations were performed 

assuming that r/R=0.5, Hs1/Hs0=0.9, m=2 and Qs1/Qs0=1.3. The results shown in Fig. 10 indicate 

that the strain energy release rate decreases with the increasing Qs0/Hs0 ratio. Also, the influence 

was analyzed of material non-linearity on the fracture behavior.  

For this purpose, calculations were carried-out of the strain energy release rate assuming linear-

elastic material behavior of the shaft (the linear-elastic solution was obtained by substitution of 

ns=nq=1 in Eq. (66)). The results of these calculations were plotted against Qs0/Hs0 ratio as shown 

in Fig. 10. It can be observed that the material non-linearity leads to increase of the strain energy 

release rate (Fig. 10). This finding indicates that the non-linear material behavior has to be taken 

into account in fracture mechanics based safety design of functionally graded and multilayered 

shafts in torsion.              

 

 

5. Conclusions 
 

Longitudinal fracture behavior of circular shafts in torsion was modeled analytically. The basic 

purpose was to develop a fracture analysis with considering the material non-linearity. The general 

expression was derived of strain energy release rate in a function of the torsion moments in the 

cross-sections ahead and behind the crack front. The mechanical response of shafts was described 

by non-linear relations between the shear stresses and shear strains. Fracture in functionally graded 

and multilayered shafts was analyzed. The analytical approach developed was applied to study the 

fracture behavior of a clamped circular shaft in torsion. In order to verify the non-linear solution 

derived, the strain energy release rate was determined also by considering the shaft complimentary 

strain energy. Different material gradients in radial direction were used in the fracture analysis. 

The influence of material properties, crack location and material non-linearity on the fracture 

behavior was investigated. The basic advantage of the analytical approach developed in the present 

paper is that the strain energy release rate can be calculated (with considering the material non-

316



 

 

 

 

 

 

Elastic-plastic fracture of functionally graded circular shafts in torsion 

linearity) by using the torsion moments in the cross-sections ahead and behind the crack front only. 

The analytical solution derived is very convenient for parametric investigations. The present study 

contributes for the understanding of longitudinal fracture in functionally graded multilayered 

circular shafts that exhibit material non-linearity.    
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