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Abstract.  Present disquisition proposes an analytical solution method for exploring the buckling 

characteristics of porous magneto-electro-elastic functionally graded (MEE-FG) plates with various 

boundary conditions for the first time. Magneto electro mechanical properties of FGM plate are 

supposed to change through the thickness direction of plate. The rule of power-law is modified to 

consider influence of porosity according to two types of distribution namely even and uneven. Pores 

possibly occur inside FGMs due the result of technical problems that lead to creation of micro-voids in 

these materials. The variation of pores along the thickness direction influences the mechanical and 

physical properties. Four-variable tangential-exponential refined theory is employed to derive the 

governing equations and boundary conditions of porous FGM plate under magneto-electrical field via 

Hamilton’s principle. An analytical solution procedure is exploited to achieve the non-dimensional 

buckling load of porous FG plate exposed to magneto-electrical field with various boundary condition. 

A parametric study is led to assess the efficacy of material graduation exponent, coefficient of porosity, 

porosity distribution, magnetic potential, electric voltage, boundary conditions, aspect ratio and side-to-

thickness ratio on the non-dimensional buckling load of the plate made of magneto electro elastic FG 

materials with porosities. It is concluded that these parameters play remarkable roles on the dynamic 

behavior of porous MEE-FG plates. The results for simpler states are confirmed with known data in the 

literature. Presented numerical results can serve as benchmarks for future analyses of MEE-FG plates 

with porosity phases.  
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1. Introduction 
 

Magneto-electro-elastic materials (MEEMs) as one of the special sorts of smart materials have 

received much attention in engineering structures during the recent years. In 1990s, in two-phase 

composites of piezoelectric and piezo-magnetic materials, a strong magneto-electrical coupling 

effect was discovered which has potential practical application in many fields (Harshe et al. 1993, 

Zeng et al. 2014) and reported that this coupling effect cannot be found in a single-phase material. 

Furthermore, MEE materials shows some fascinating properties such as the piezo-electric, 
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piezo-magnetic and magneto-electric influences in which the elastic deformations may be 

produced directly by mechanical loading or indirectly by an application of electric or magnetic 

field. The mechanical behaviors of magneto-electro-elastic structures have received notable 

attention by many researchers in the recent years. Among them, analytical solutions for studying 

magneto-electro-elastic responses of beams is presented by Jiang and Ding (2004). Chen et al. 

(2005) investigated vibrational responses of non-homogeneous isotropic MEE plates. Also, Liu 

and Chang (2010) provided closed solution for the vibration of an isotropic magneto-electro-

elastic plate. Most recently, based on three-dimensional elasticity theory and employing the state 

space approach, Xin and Hu (2015) presented semi-analytical evaluation of free vibration of 

arbitrary layered magneto-electro-elastic beams. 

Functionally graded materials (FGMs) as a new class of composite structures have drawn the 

attention of many researchers in the smart materials and structures by minimizing or removing 

stress concentrations at the interfaces of the traditional composite materials. The material 

properties of FGMs varies continuously in one or more directions (Ebrahimi et al. 2009, Ebrahimi 

and Rastgoo 2009, 2011, Aghelinejad et al. 2011). Recently, FGMs have received wide 

applications as structural components in modern industries such as mechanical, civil, nuclear 

reactors, and aerospace engineering. In the recent years, several researchers examined mechanical 

properties of structural elements made from magneto-electro-elastic functionally graded (MEE-

FG) materials. Some of researchers in recent years have analyzed mechanical behaviors of FGM 

nanoplates based on various plate shear deformation plate theories. (Ebrahimi and Barati 2016 a, b, 

c, d, e, Ebrahimi et al. 2016a, Ebrahimi and Dabbagh 2016, Ebrahimi and Hosseini 2016 a, b). 

Also analysis of nano-structure’s mechanical behaviors is one of recent interesting research topics. 

(Ebrahimi and Barati, 2016 f-n, Ebrahimi and Barati 2017). Thermal buckling and free vibration 

analysis of FG nanobeams subjected to temperature distribution have been exactly investigated by 

Ebrahimi and Salari (2015 a-c) and Ebrahimi et al. (2015 a, b). Ebrahimi and Barati (2016 o, p, q) 

investigated buckling behavior of smart piezoelectrically actuated higher-order size-dependent 

graded nanoscale beams and plates in thermal environment. Pan and Han (2005) provided exact 

solution for analysis of the rectangular plates composed of functionally graded, anisotropic, and 

linear magneto-electro-elastic materials. Furthermore, the plane stress problem of a MEE-FG beam 

were inspected by Huang, Ding et al. (2007) using an analytical method. Kattimani and Ray 

(2015) researched large amplitude vibration responses of MEE-FG plates. Static behavior of a 

circular MEE-FG plate is analyzed by Sladek, Sladek et al. (2015) by using a meshless method.  

With the rapid progression in technology of structural elements, structures with graded porosity 

can be introduced as one of the latest development in FGMs. The structures consider pores into 

microstructures by taking the local density into account. Researches focus on development in 

preparation methods of FGMs such as powder metallurgy, vapor deposition, self-propagation, 

centrifugal casting, and magnetic separation. These methods have their own ineffectiveness such 

as high costs and complexity of the technique. An efficient way to manufacture FGMs is sintering 

process in which due to difference in solidification of the material constituents, porosities or 

micro-voids through material can create (Zhu et al. 2001). An investigation has been carried out on 

porosities existing in FGMs fabricated by a multi-step sequential infiltration technique 

(Wattanasakulpong et al. 2012). According to this information about porosities in FGMs, it is 

necessary to study the porosity impact when designing and analyzing FGM structures. Porous FG 

structures have many interesting combinations of mechanical properties, such as high stiffness in 

conjunction with very law specific weight (Rezaei and Saidi 2016). A few investigations on the 

mechanical responses of porous FG structures are available in literature. Wattanasakulpong and  
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Fig. 1 Geometry of FGM plate under magneto-electrical field 
 

 

Ungbhakorn (2014) studied the linear and non-linear vibration of porous FGM beams with 

elastically restrained ends. In order to predict flexural vibration of porous FGM Timoshenko 

beams, Wattanasakulpong and Chaikittiratana (2015) employed Chebyshev collocation method. 

Moreover, Yahia et al. (2015) study the porosity effect on the wave propagation of FG plates by 

using various higher-order shear deformation theories. Ebrahimi et al. (2016) presented thermo-

mechanical vibration response of temperature-dependent porous FG beams subjected to various 

temperature risings. Recently, Mechab et al. (2016) developed a nonlocal elasticity model for free 

vibration of FG porous nanoplates resting on elastic foundations. Boutahar and Benamar (2016) 

presented a semi analytical method for non-linear vibration analysis of FGM porous annular plates 

resting on elastic foundations. Recently, it is well understood that classic plate theory (CPT) is not 

appropriate for thick beams and higher modes of vibration. This is because of CPT ignores the 

impact of the shear deformation. Hereupon, first order shear deformation theory (FSDT) is 

suggested to overcome the defects of CPT with supposition a shear correction factor in the 

thickness direction of beam. As regards FSDT isn’t able to evaluate the zero-shear stress on the top 

and bottom surfaces of the plate, there appeared a need to develop higher order theory (HOT). This 

theory doesn’t need any shear correction factors and predict transverse shear stresses properly. 

Many papers are published which utilize HOT to investigate mechanical response of FG structures 

(Larbi et al. 2013, Atmane et al. 2015, Nguyen et al. 2015, Vo et al. 2015). One of the main 

mechanical characteristics of FGM structures is the buckling response which play a notable role on 

the safety of engineering structures, and accordingly has received intense attention by several 

researchists (Ke et al. 2012, Şimşek and Yurtcu 2013). Therefore, With the wide application of 

magneto electro porous FG structures, understanding buckling of MEE-FG plate with porosities 

becomes an important task. 

From the literature mentioned above, it is apparent that no paper published in the title of 

buckling of MEE-FG porous plate. According to wide application of magneto electro elastic 

porous FG structures, understanding buckling behavior of MEE-FG plate with porosities becomes 

important issue. The main incentive of this paper is to develop an analytical solution for examining 

the buckling behavior of smart FG porous plate under magnetic and electric field with various 

boundary conditions based on refined plate theory. The modified power-law model is exploited to 

describe gradual variation of magneto electro mechanical material characteristics of porous MEE-

FG plate with two porosity distributions (even & uneven). Applying Hamilton’s principle, 

governing equations of higher order MEE-FG plate are obtained together based on four-variable 

refined shear deformation theory and they are solved applying an analytical solution method. 

Several numerical exercises are presented investigating the influences of porosity, type of porous 

distribution, external electric voltage, magnetic potential, material graduation index, Side-to-

thickness ratio, aspect ratio and boundary condition on the buckling behavior of MEE-FG porous 

plate. 
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Table 1 Magneto-electro-elastic coefficients of material properties (Ramirez et al. 2006) 

Properties 3BaTiO  2 4CoFe O  Properties 3BaTiO  2 4CoFe O  Properties 3BaTiO  2 4CoFe O  

11 22 (GPa)c c  166 286 15e  11.6 0 -3(kgm )  5800 3005 

c33

 
162 269.5 31 (N/Am)q  0 580.3 11 22 33d d d   0 0 

13 23c c  78 170.5 33q  0 699.7 33  10 157 

12c  77 173 15q  0 550 33e  18.6 0 

55c  43 45.3 9 2 -2 -1
11 (10 C m N )s   11.2 0.08 33s  12.6 0.093 

66c  44.5 56.5 6 2 2
11(10 C /2)Ns  

 5 -590 2
31( )e cm

 -4.4 0 

 

  
(a) even (b) uneven 

Fig. 2 Cross-section area of FGM plate with even and uneven porosities 

 
 
2. Theoretical formulations 

 
2.1 The material properties of porous magneto-electro-elastic FG plates 

 
Consider a magneto-electro-elastic functionally graded plate with two different porosity 

distribution and rectangular cross-section of width b and thickness h according to Fig. 1. MEE-FG 

plate is composed of BaTio3 and CoFe2O4 materials with the material properties presented in Table 

1 and exposed to a magnetic potential γ(χ,z,t) and electric potential Φ(χ,z,t). The effective material 

properties of MEE-FG plate change continuously in the thickness direction according to modified 

power-law distribution. The effective material properties (Pf)of porous FGM plate by using the 

modified rule of mixture can be expressed by Wattanasakulpong and Ungbhakorn (2014) 

( ) ( )
2 2

u u l lfP P V P V
 

    (1) 

In which α denotes the volume fraction of porosities, Pu, Vu and Vl are the material properties 

and volume fraction of top and bottom sides, respectively and are related by 

1u lV V   (2) 

Then the volume fraction of upper side (Vu) is defined as follows 

1
( )

2
u

Pz
V

h
   (3) 

Where (p≥0) is a non-negative parameter (power-law exponent or the volume fraction index) 

which determine the material distribution across the plate thickness. 
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   
1

( )
2 2

p

u l l u l

z
z

h
P P P PP P


   

 
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

 


 (4) 

The MEE-FG (II) plate has porosity phases spreading frequently nearby the middle zone of the 

cross-section and the amount of porosity seems to be linearly decrease to zero at the top and 

bottom of the cross-section. Fig. 2 demonstrates cross-section areas of FGM-I and-II with 

porosities phases. The effective material properties of MEE-FG (II) are replaced by following 

form.
 

   
1

( )
2

2
(1 )

2

p

u l l u l

z
z P P P P

h

z
P P

h


   

 
    
 

 (5) 

 
2.2 Inematic relations 
 
Based on new tangential-exponential refined shear deformation theory, the displacement field 

at any point of the plate can be expressed as 

   1 , , , (, ), b su x y z t u x y
w w

f z
x x

t z 
 


 

 (6) 

   2 , , , (, ), b su x y z t v x y
w w

f z
y y

t z 
 


 

 (7) 

3( , , , ) ( , , ) ( , , )b su x y z t w x y t w x y t   (8) 

Which u and v are displacement of mid-plane along x, y-axis and are the bending and shear 

components of transverse displacement of a point on the mid-plane of the plate and t is the time. 

f(z) denotes a shape function estimating the distribution of shear stress across the plate thickness. 

f(z) is considered to satisfy the stress-free boundary conditions on the top and bottom sides of the 

plate. So, it is not required to use any shear correction factor. The present theory has a function in 

the form Mantari et al. (2014) 

sec( )
2( ) ta , 0.03n( )

2

z

h
z

f z
h

rr



  (9) 

The electric potential and magnetic potential distributions across the thickness are 

approximated via a combination of a cosine and linear variation to satisfy Maxwell’s equation in 

the quasi-static approximation as follows (Ke and Wang 2014) 

2
( , , , ) cos ( ) ( , , )

z
x y z t z x y t V

h
      (10) 

2
( , , , ) cos ( ) ( , , )

z
x y z t z x y t

h
     

 
(11) 

Where ξ=π/h. Also, v and Ω are the external electric voltage and magnetic potential applied to 

the MEE-FG plate. Nonzero strains of the four-variable plate model are expressed by 
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Where 

0

0 , ,

2 2

2 2

2 2

2 2

2 2
2 2

0

w wb s
u

x xx

v w wb

b s
x x x

b s
y y y

b s
xy xy x

s

y y y

u v
w wb sy

y

x
x y x y

  

  

  

  
   
       
       
         

            
          
          

        
    

 
 
 

  
 

  

 
  

  
   

,

s
yz

s
x

ws

y

wsz
x








         
    

    
  














 
(13) 

According to Eq. (10), the relation between electric field (Eχ, Ey, Ez) and electric potential, (Φ) 

can be obtained as  

, ,{ , } { , } cos( ){ , }x y x yE E z
x y

 


 
   

 
 (14) 

,

2
sin( ) ,z z

v
E z

h
      

 

(15) 

Also, the relation between magnetic field ( , , )x y zH H H and magnetic potential (ϒ) can be 

expressed from Eq. (11) as 

, ,{ , } { , } cos( ){ , }x y x yH H z
x y

 


 
   

 
 (16) 

,

2
sin ( ( ))z zH z

h
  


    

 
(17) 

Through extended Hamilton’s principle, the equation of motion can be derived by 

0
( ) 0

t

S W dt     
(18) 

Here ∏s is strain energy, ∏W is work done by external forces. The following Euler-Lagrange 

equations are obtained bu utilizing the virtual work principle and setting the coefficints of δu, δv, 

δwb, δws, δϕ and δγ are equal to zero  

0
xyx

NN

x y


 

 
 (19) 

0
xy yN N

x y

 
 

   
(20) 

2 22
2

2 2
2 ( ) ( ) 0

b bb
xy y b E Hx

b s

M MM
N N N w w

x x y y

 
       
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(21) 
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(24) 

Which the variables introduced at the last expression are expressed by 

( , , ) (1, , ) , ( , , )b s

i i i i
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N M M z f dA i x y xy   (25) 

, ( , )i i
A

Q g dA i xz yz   
(26) 

For a linear MEE porous FG plate exposed to magneto-electro-mechanical loading, the coupled 

constitutive relations may be rewritten as 

ij ijkl kl mij m nij nC e E q H     (27) 

i ikl kl im m in nD e k E d H  
 

(28) 

i ikl kl im m in nB q d E H   
 

(29) 

Which ζij, Di,, Bi denotes the components of stress, electric displacement and magnetic 

induction, εkl, Em and Hn are the components of linear strain, electric field and magnetic field. 

Additionally, Cijkl, kim and χin are the components of elastic stiffness, dielectric permittivity and 

magnetic permittivity coefficients; Finally, emij, qnij and din are the piezoelectric, piezo-magnetic, 

and magneto-electric-elastic coefficients, respectively. By integrating Eqs. (27) -(29) over the area 

of MEE porous FG plate cross-section, the following relations for the force-strain and the 

moment-strain and other necessary relation of the refined FG plate can be obtained 
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Where 𝑐̃𝑖𝑗 , 𝑒̃𝑖𝑗, 𝑞̃𝑖𝑗, 𝑑̃𝑖𝑗 , 𝑘̃𝑖𝑗 
and 𝜒̃𝑖𝑗  are reduced constants for the FG plate under the plane 

stress state (Ke and Wang 2014) which are given as 
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(43) 

The governing equations of refined shear deformation MEE porous FG plate in terms of the 

displacement can be derived by substituting Eqs. (30) -(37), into Eqs. (19) -(24) as follows 
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In this study it assumed that the porous MEE-FG plate is under external electric voltage, 

magnetic potential and the shear loading is ignored. So  
 
𝜒 
   and  

 
𝜒 
,  
 
 
 are the normal 

forces induced by external electric voltageV and external magnetic potential Ω, respectively and 

are defined as 
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Table 2 The admissible functions 𝑋𝑚(𝑥) and 𝑌𝑛( ) (Sobhy 2013) 

Boundary conditions The functions 𝑋𝑚 and 𝑌𝑛 

 At x=0, a At y=0, b 𝑋𝑚(𝑥) 𝑌𝑛( ) 

SSSS 
𝑋𝑚( )  𝑋𝑚

′′( )    𝑌𝑛( )  𝑌𝑛
′′( )    𝑆𝑖𝑛(𝛼𝑥) 𝑆𝑖𝑛(𝛽 ) 

𝑋𝑚(𝑎)  𝑋𝑚
′′(𝑎)    𝑌𝑛(𝑏)  𝑌𝑛

′′(𝑏)      

CSSS 
𝑋𝑚( )  𝑋𝑚

′ ( )    𝑌𝑛( )  𝑌𝑛
′′( )    𝑆𝑖𝑛(𝛼𝑥)[𝐶𝑜𝑠(𝛼𝑥) − 1] 𝑆𝑖𝑛(𝛽 ) 

𝑋𝑚(𝑎)  𝑋𝑚
′′(𝑎)    𝑌𝑛(𝑏)  𝑌𝑛

′′(𝑏)      

CSCS 
𝑋𝑚( )  𝑋𝑚

′ ( )    𝑌𝑛( )  𝑌𝑛
′( )    𝑆𝑖𝑛(𝛼𝑥)[𝐶𝑜𝑠(𝛼𝑥) − 1] 𝑆𝑖𝑛(𝛽 )[𝐶𝑜𝑠(𝛽 ) − 1] 

𝑋𝑚(𝑎)  𝑋𝑚
′′(𝑎)    𝑌𝑛(𝑏)  𝑌𝑛

′′(𝑏)      

CCSS 
𝑋𝑚( )  𝑋𝑚

′ ( )    𝑌𝑛( )  𝑌𝑛
′′( )    𝑆𝑖𝑛2(αx) Sin(βy) 

Xm(a)  Xm
′ (a)    Yn(b)  Yn

′′(b)      

CCCC 
Xm( )  Xm

′ ( )    Yn( )  Yn
′ ( )    Sin2(αx) Sin2(βy) 

Xm(a)  Xm
′ (a)    Yn(b)  Yn

′ (b)      

CCFF 
Xm
′′ ( )  Xm

′′′( )    Yn( )  Yn
′ ( )    Cos2(αx)[Sin2(αx) + 1] Sin2(βy) 

Xm
′′ (a)  Xm

′′′(a)    Yn(b)  Yn
′ (b)      

 
 

Here, an exact solution of the governing equations for free vibration of a MEE porous FG plate 

with different boundary conditions is developed. To satisfy boundary conditions, the displacement 

quantities are presented in the following form 
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Where (Umn, Vmn, Wbmn, Wsmn, Φmn, γmn) are the unknown coefficients and the functions Xm and 

Yn are tabulated in detail in Table 2 for different boundary conditions (α=mπ/α, β=nπ/b). Inserting 

Eqs. (52)-(54) into Eqs. (44)-(49) respectively, leads to 
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Where 
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(63) 
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(64) 

By finding determinant of the coefficient matrix of the following equations and setting this 

multinomial to zero, we can find buckling load. 
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 (65) 

 

 

Table 3 Comparison of non-dimensional buckling load of FGM plates (a=b=10) 

FSDT (Mohammadi et al. 2010) TSDT (Thai and Choi 2012) Present ICPT 

SSSS 

p=0 18.6854 18.6861 18.7054 

p=1 18.8566 18.8572 18.8735 

p=2 18.8545 18.8021 18.8123 

CSCS 

p=0 33.3206 34.1195 34.4056 

p=1 33.9966 34.6939 34.978 

p=2 33.9881 34.5084 34.7691 
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Table 4 Variation of the dimensionless buckling load of MEE-FG (I)&(II) plate with different electric 

voltage and porosity volume fractions under various boundary conditions (
𝛼

ℎ
 1  , Ω   , 𝑃  2) 

FG-I 

V SSSS 
 

CSSS 
 

CCSS 

 
𝛼=0 𝛼=0.1 𝛼=0.2 

 
𝛼=0 𝛼=0.1 𝛼=0.2 

 
𝛼=0 𝛼=0.1 𝛼=0.2 

-500 0.92876 0.82967 0.72971 
 

1.43171 1.27873 1.12447 
 

1.72254 1.53851 1.35305 

-250 0.91233 0.81467 0.71618 
 

1.41529 1.26373 1.11095 
 

1.70611 1.52352 1.33953 

0 0.89590 0.79968 0.70266 
 

1.39886 1.24874 1.09742 
 

1.68969 1.50852 1.326 

250 0.87948 0.78468 0.689135 
 

1.38243 1.23374 1.0839 
 

1.67326 1.49353 1.31248 

500 0.86305 0.76969 0.67561 
 

1.36601 1.21875 1.07037 
 

1.65683 1.47853 1.29895 

 
CSCS 

 
CCCC 

 
CCFF 

V 𝛼=0 𝛼=0.1 𝛼=0.2 
 

𝛼=0 𝛼=0.1 𝛼=0.2 
 

𝛼=0 𝛼=0.1 𝛼=0.2 

-500 1.84664 1.64917 1.4501 
 

2.35487 2.10318 1.84961 
 

2.79939 2.5002 2.19885 

-250 1.83022 1.63418 1.43658 
 

2.33844 2.08819 1.83609 
 

2.78297 2.48521 2.18533 

0 1.81379 1.61918 1.42305 
 

2.32202 2.07319 1.82256 
 

2.76654 2.47021 2.1718 

250 1.79736 1.60419 1.40953 
 

2.30559 2.0582 1.80904 
 

2.75011 2.45522 2.15828 

500 1.78093 1.58919 1.396 
 

2.28916 2.0432 1.79551 
 

2.73368 2.44022 2.14475 

FG-II 

 
SSSS 

 
CSSS 

 
CCSS 

V 𝛼=0 𝛼=0.1 𝛼=0.2 
 

𝛼=0 𝛼=0.1 𝛼=0.2 
 

𝛼=0 𝛼=0.1 𝛼=0.2 

-500 0.928761 0.903227 0.877596  1.43171 1.39262 1.35339  1.72254 1.6756 1.62848 

-250 0.912334 0.8875 0.862577  1.41529 1.37689 1.33837  1.70611 1.65987 1.61346 

0 0.895907 0.871774 0.847558  1.39886 1.36117 1.32335  1.68969 1.64414 1.59844 

250 0.87948 0.856047 0.832539  1.38243 1.34544 1.30833  1.67326 1.62842 1.58343 

500 0.863052 0.840321 0.81752  1.36601 1.32971 1.29331  1.65683 1.61269 1.56841 

 
CSCS 

 
CCCC 

 
CCFF 

V 𝛼=0 𝛼=0.1 𝛼=0.2 
 

𝛼=0 𝛼=0.1 𝛼=0.2 
 

𝛼=0 𝛼=0.1 𝛼=0.2 

-500 1.84664 1.79636 1.7459  2.35487 2.29086 2.22663  2.79939 2.72337 2.64709 

-250 1.83022 1.78063 1.73088  2.33844 2.27514 2.21161  2.78297 2.70765 2.63207 

0 1.81379 1.76491 1.71586  2.32202 2.25941 2.19659  2.76654 2.69192 2.61705 

250 1.79736 1.74918 1.70084  2.30559 2.24368 2.18157  2.75011 2.67619 2.60203 

500 1.78093 1.73345 1.68582  2.28916 2.22796 2.16655  2.73368 2.66047 2.58701 

 

 
4. Numerical results and discussions 
 

In this section, numerical and graphical examples are presented to examine magneto-electro-

mechanical buckling behavior of MEE-FG plates with porosities employing a higher order refined 

plate theory. So, the influences of porosity volume fraction, FG material graduation, magnetic and 

electric fields, different types of porosity distributions, various boundary conditions, aspect ratio 

and side to thickness ratio on the dimensionless buckling load of the MEE porous FG plate will be 

provided. The correctness of the presented buckling results are compared with those of first and  

290



 

 

 

 

 

 

 Buckling behavior of smart MEE-FG porous plate… 

  
(a) even porosity (b) uneven porosity 

Fig. 3 The variation of the non-dimensional buckling load of SSSS MEE-FG plate with material 

graduation and porosity parameter for different porosity distribution (a/h=100, Ω=0, V=0) 

 

  
(a) SSSS (b) CSSS 

  
(c) CCSS (d) CSCS 

  
(e) CCCC (f) CCFF 

Fig. 4 The effect of magnetic potential on the non-dimensional buckling load of MEE-FG-I plate for 

various boundary conditions and porosity volume fractions (α/h=100, V=0, p=2)  
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(a) SSSS (b) CSSS 

  
(c) CCSS (d) CSCS 

  
(e) CCCC (f) CCFF 

Fig. 5 The effect of magnetic potential on the non-dimensional buckling load of MEE-FG-II plate for 

various boundary conditions and porosity volume fractions (α/h=100, V=0, p=2) 

 

 

third order plate theories presented respectively by Mohammadi et al. (2010) and Thai and Choi 

(2012) for a perfect FGM plate and the results are tabulated in Table 3. It is indicated that the 

present plate model and solution procedure can accurately predict buckling loads of FGM plates. 

The non-dimensional buckling load ( 𝑐𝑟) can be calculated by the relation in Eq. (66) as 

2
3

11

a
,b u

c

c

cr N D C h
D

N    (66) 

In Table 4, the effect of porosity volume fraction and electric voltage on the non-dimensional 

buckling load of the MEE-porous FG plates are listed for various boundary conditions (SSSS, 

CSSS, CCSS, CSCS, CCCC and CCFF), different porosity parameters (α=0.0.1,0.2), external  
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 Buckling behavior of smart MEE-FG porous plate… 

  
(a) Perfect FGM (b) Even porosity (α=0.2) 

 
(c) Uneven porosity (α=0.2) 

Fig. 6 Influence of side-to-thickness ratio on the non-dimensional buckling load of SSSS MEE-FGM 

square plate for perfect and imperfect (with different porosity distribution) and different magnetic 

potentials (p=2, V=0) 

 

 

electric voltage (V=-500, -250, 0, 250, 500) and two porosity distributions (even, uneven) at 

(a/h=100, Ω=0, P=0.2). Form the results of this tables, it is concluded that existence of porosity 

leads substantial reduction on the non-dimensional buckling load of MEE-FG (I)&(II) plate.  

Comparing results of even and uneven porosity distributions reveals that the porosity has more 

considerable impact on the non-dimensional buckling load of the MEE-FG (I) than MEE-FG (II) 

at every electric voltage. It is seen that external electric voltage has an important role on the 

buckling behavior of the structure, where the effect of them depends on the sign of electric 

voltage, in other words negative values of electric voltage leads to increase the non-dimensional 

buckling load of the smart FG porous plate while, positive values of electric voltage have reverse 

trend. Comparing the non-dimensional buckling load of smart FG plate for different boundary 

conditions expresses that the greatest non-dimensional buckling load is obtained for MEE-porous 

FG plate with CCFF boundary condition followed with other boundary conditions. 

In order to peruse the effect of the porosity volume fraction on the non-dimensional buckling 

load of the smart SSSS&CCCC MEE-FG(I)&(II) plate, the dimensionless buckling load (Ncr), 

versus the material graduation index (p) for different volume fractions of porosity (α=0, 0.1, 0.2) at 

a constant values of side-to-thickness ratio(a/h=100), magnetic potential (Ω=0) and electric 

voltage (V=0) is plotted in Fig. 3. It is received that growing of the power-law exponents is cause 

of reduction in the non-dimensional buckling load of both porosity distributions. The non-

dimensional buckling load decreases more intensity where the material graduation is in range from 

0 to 2 than that where the material graduation is in range betwixt 2 and 10. In fact, when p=0 plate  
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(a) Even porosity, SSSS (b) Even porosity, CCCC 

Fig. 7 Effect of aspect ratio on the non-dimensional buckling load of SSSS&CCCC MEE-FG (I)& (II) 

square plate for different porosity volume fraction (p=2, V=0, Ω=0) 

 

 

is made from fully CoFe2O4 and has the greatest buckling load. Increasing the material graduation 

exponent from 0 to 10 changes the composition of the MEE-FG plate from a fully CoFe2O4 plate 

to a plate with a combination of CoFe2O4 and BaTio3. So, by increasing the metal percentage and 

having the lower value of Young's modulus of BaTio3 with respect to CoFe2O4, the stiffness of 

system diminishes. Thus, buckling load reduce as the stiffness of a structure decrease.  

Also, it is found that the porosity effect on the buckling behavior of smart FG(I)&(II) plate is as 

follow: The dimensionless buckling load increases as the porosity parameter (α) decreases for 

every value of power-law indexes. Also, it is concluded that the influence of diverse porosity 

volume fractions on the buckling load of MEE-FG(I) is more tangible than that of the MEE-

FG(II). So it is clear that the porosity effect becomes outstanding for MEE-FG plate.  

The variations of non-dimensional frequency of MEE-FG(I)&(II) plates versus magnetic 

potential for various boundary conditions (SSSS, CSSS, CCSS, CSCS, CCCC, CCFF) and 

different values of porosity volume fractions (𝛼=0, 0.1, 𝛼=0.2), at (α/h=100, p=2, V=0) are plotted 

in Figs. 4 and 5, respectively. It is found that magnetic potential increasing impacts on the 

frequency of MEE porous plate when their values vary from negative to positive one at a fixed 

value of porosity volume fraction which highlights the notability of the sign of magnetic potential. 

Furthermore, according to these results the non-dimensional buckling load decreases as the 

porosity value increases for all values of magnetic potential. It is pointed that increasing of the 

external magnetic potential is cause of increment in buckling load when their values vary from 

negative to positive one at a fixed value of porosity volume fraction which highlights the notability 

of the magnitude and sign of magnetic potential.So it is very important to regard the magnetic field 

in the analysis of MEE-FG plate with porosity. Furthermore, according to these results the non-

dimensional buckling load decreases as the porosity value increases for all values of magnetic 

potential. To display the influence of side-to-thickness ratio on the non-dimensional buckling load 

of MEE-perfect and imperfect SSSS FG plate for various external magnetic (Ω=500, 250, 0, -250, 

-500), Fig. 6 presents the dimensionless buckling load results versus side-to-thickness ratio at 

constant value of power-law index (p=2), porosity parameter (α=0,0.2), and electric voltage (V=0). 

As can be seen, at first increment of side-thickness ratio leads to increasing of non-dimensional 

buckling load of MEE-FG(I) for all of the magnetic potentials. Then, with the increasing of a/h, it 

is seen that 0, 0, 0    provided higher, approximately constant and lower dimensional 

frequency, respectively.  
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In addition, it is observable that higher values of a/h have more significant influence on 

frequency response. Consequently, the difference between buckling load results according to 

negative and positive values of magnetic fields increases with the rise of side-to-thickness ratio.  

Fig. 7 show the effect of aspect ratio a/b on the non-dimensional buckling load of smart MEE-

FG(I) plate with two boundary conditions (SSSS&CCCC) and porosity parameters (α=0, 0.1, 0.2) 

at
 
(p=2, V=0, Ω=0). It is pointed that growing of the aspect ratio is cause of increment in the non-

dimensional buckling load of MEE-FG plate for both boundary conditions. It can be pointed that 

the impact of porosity volume fraction on the buckling behavior of MEE-FG plate is similar 

previous conclusions. 
 

 

5. Conclusions 
 

Based on four-variable higher order shear deformation theory, an analytical method solution is 

developed for buckling behavior of porous magneto-electro-elastic functionally graded plate with 

various boundary conditions. Refined shear deformation theory predicts shear deformation effect 

without any shear correction factors. Magneto electro mechanical characteristics of the smart 

porous MEE-FG plate are gradually variable in the thickness direction based on modified rule of 

mixture. The equations of motion and boundary conditions are derived by using Hamilton principle. 

An analytical solution method is used to solve governing partial differential equations for various 

boundary conditions. It has been shown that the buckling characteristics of porous MEE-FGM 

plate are significantly affected by various parameters. Numerical results show that: 

• By increasing the material graduation index value, the non-dimensional buckling load of 

porous MEE-FG plate are found to decrease. 

• For MEE-FGM plate with porosities, increasing the volume fraction of porosity first yields a 

decrease in dimensionless buckling load for both types of porosity distribution. 

• Increasing magnetic potential from negative to positive values yields increment of non-

dimensional buckling load of porous MEE-FGM plate. However, for the external electric voltage 

this behavior is opposite. 

• The non-dimensional buckling load of porous MEE-FGM plate with CCFF boundary 

conditions is greatest, followed by CCCC, CSCS, CCSS, CSSS and SSSS respectively. 

• Effect of side-to-thickness ratio (a/h) on buckling load with respect to magnetic potentials is 

more prominent at its higher values. As side-to-thickness ratio increases, the difference between 

buckling load results according to negative and positive values of magnetic fields increases.  

• With the increasing of aspect ratio, the non-dimensional buckling load of porous MEE-FG 

plate increase. 
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