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Abstract.  Thermo-mechanical buckling problem of functionally graded (FG) nanoplates supported by 
Pasternak elastic foundation subjected to linearly/non-linearly varying loadings is analyzed via the 
nonlocal elasticity theory. Two opposite edges of the nanoplate are subjected to the linear and nonlinear 
varying normal stresses. Elastic properties of nanoplate change in spatial coordinate based on a power-
law form. Eringen’s nonlocal elasticity theory is exploited to describe the size dependency of 
nanoplate. The equations of motion for an embedded FG nanoplate are derived by using Hamilton 
principle and Eringen’s nonlocal elasticity theory. Navier’s method is presented to explore the 
influences of elastic foundation parameters, various thermal environments, small scale parameter, 
material composition and the plate geometrical parameters on buckling characteristics of the FG 
nanoplate. According to the numerical results, it is revealed that the proposed modeling can provide 
accurate results of the FG nanoplates as compared some cases in the literature. Numerical examples 
show that the buckling characteristics of the FG nanoplate are related to the material composition, 
temperature distribution, elastic foundation parameters, nonlocality effects and the different loading 
conditions. 
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1. Introduction 
 

Nanoplates offer unprecedented opportunities for incorporating physics-based concepts for 

controlling the physical and chemical properties to develop novel devices and sensors because 

nanoplates have unique electrical, magnetic, thermal and mechanical properties. The structures at 

nanoscale such as nanobeams, nanoplates and nanotubes can be identified as the consequences of 

molecular manipulation that are recognized as the main parts of various nanosystems and 

nanodevices (Ansari et al. 2015). In this subject search’s first is needed to dealing with this issue 

takes controlling the edge of nanoplates to eliminating electron scattering, then characterizing the 

spectral properties (metal nanoplates), next controlling assembly of nanoplates, and optimizing 

sub-monolayer deposition and Optimizing layer-by-layer deposition include Meta-materials 
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(electronic), and finally energy absorbing materials (Mechanical) and magnetic properties. 

Nanoplates can be fabricated in such way to exploit the mechanical and electronic properties of 

hybrid structures (metal-metal, metal-semiconductor and metal-oxide), Layer-by-Layer deposition 

with soft materials for enhanced mechanical properties and are used in uncooled infrared sensors, 

photovoltaic, meta-materials, biosensors and receptor-free detection. 

FG materials are advanced composites which have continuously varying material composition 

and properties through certain dimension of the structure to achieve the desired goals. As the fiber-

reinforced composites have mismatch material properties across an interface of two discrete 

material bonded together, there could be the severe thermal stress concentration phenomena at the 

interface of the fiber-reinforced composites. However, by gradually varying the material properties 

of the functionally graded materials (FGMs), this problem can be avoided or reduced. Therefore, 

FGMs with a mixture of the ceramic and metal are applied to the thermal barrier structures for the 

space shuttle, combustion chamber and nuclear planets etc. (Ebrahimi et al. 2009, Ebrahimi and 

Rastgoo 2009, 2011, Aghelinejad et al. 2011). Some of researchers in recent years have analyzed 

mechanical behaviors of FGM nanoplates based on various plate shear deformation plate theories. 

(Ebrahimi and Barati 2016a, b, c, d, e, Ebrahimi et al. 2016a, Ebrahimi and Dabbagh 2016, 

Ebrahimi and Hosseini 2016a, b). 

Classical plate theory and first order shear deformation plate theory are reformulated based on 

nonlocal elasticity theory by Pradhan and Phadikar (2011). In this work the equation of the motion 

are extracted based on Eringen’s nonlocal theory. Analysis of nano-structure’s mechanical 

behaviors is one of recent interesting research topics. (Ebrahimi and Barati 2016f, g, h, i, j, k, l, m, 

n, Ebrahimi and Barati 2017). Cheng and Chen (2015) presents a theoretical study of the 

resonance frequency and buckling load for nanoplates with high-order surface stress model. In 

another work, Wang et al. (2011) extracted the governing equations for the nanoscale plates with 

consideration of both surface effects and non-local elasticity theory. Thermal post buckling and 

vibration response of the FG plate are investigated by Park and Kim (2006). Sandwich plates is 

one of the most famous mechanical structures and recently a large number of researchers have 

analyzed the mechanical behavior of FGM sandwich plate’s as (Tounsi et al. 2016). Numerical 

solution to linear bending behavior of the circular plates is obtained by the method of harmonic 

differential quadrature by Civalek et al. (2004). Farajpour et al. (2011) studied nano-scale buckling 

behavior of the rectangular plates under axial pressure due to non-uniformity in the thickness. 

More advanced research including buckling of plates in the different scales have been proposed by 

other researchers. The buckling response of orthotropic graphene sheets subjected to various 

linearly varying normal in-plane forces studied by Farajpour et al. (2012). The analytical solutions 

of natural frequencies in FGM nanoplate for different boundary conditions are presented by Zare 

et al. (2015). Thermal buckling and free vibration analysis of FG nanobeams subjected to 

temperature distribution have been exactly investigated by Ebrahimi and Salari (2015a, b, c) and 

Ebrahimi et al. (2015 a, b). Ebrahimi and Barati (2016o, p, q) investigated buckling behavior of 

smart piezoelectrically actuated higher-order size-dependent graded nanoscale beams and plates in 

thermal environment. 

A computational method based on refined plate theory involving the effect of thickness 

stretching in conjunction is proposed for the size-dependent bending, free vibration and buckling 

analysis of FGM nanoplates are developed by Nguyan et al. (2015). Thermomechanical bending 

response of functionally graded plates resting on Winkler-Pasternak elastic foundations is 

described by Bouderba et al. (2013). Thermal buckling of FGM nanoplates is studied by Nami et 

al. (2015) via nonlocal third order shear deformation theory to show the effects of considering the 
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higher order plate theory on the accuracy of the analysis. Application of the trigonometric four 

variable plate theory for free vibration analysis of laminated rectangular plate supporting a 

localized patch mass is reported by Draiche et al. (2014).  

In this manuscript, thermal buckling of FGM nanoplates subjected to various linear and non-

linear varying normal in-plane forces and resting on Pasternak foundation is investigated for the 

first time. Nonlocal elasticity theory and the Hamilton’s principle are utilized to extract the 

governing equations and the Navier’s method is applied to solve them. The presented shows a 

good agreement with the results available in literate. The small size effect on the buckling loads of 

functionally graded rectangular nanoplates are presented through considering various parameters 

such as FG-index, the length of nanoplates, numerical loading factor, nonlocal parameter, aspect 

ratio and the mode numbers. 

 

 

2. Formulation 
 
2.1 Nonlocal theory 
 

The constitutive equation of classical elasticity is an algebraic relationship between the stress 

and strain tensors while that of Eringen’s nonlocal elasticity involves spatial integrals which 

represent weighted averages of the contributions of strain tensors of all points in the body to the 

stress tensor at the given point (Eringen 1983). Though it is difficult mathematically to obtain the 

solution of nonlocal elasticity problems due to the spatial integrals in constitutive equations, these 

integro-partial constitutive differential equations can be converted to equivalent differential 

constitutive equations under certain conditions.  

The theory of nonlocal elasticity, developed by Eringen and Edelen (1972) states that the 

nonlocal stress-tensor components ζij at any point x in a body can be expressed as 

  ( ) , ( ) ( )ij ijx x x t x d x  


      (1) 

where tij(x’) are the components of the classical local stress tensor at point x, which are related to 

the components of the linear strain tensor εkl by the conventional constitutive relations for a 

Hookean material, i.e. 

klijklij Ct 
 

(2) 

The meaning of Eq. (1) is that the nonlocal stress at point x is the weighted average of the local 

stress of all points in the neighborhood of x, the size of which is related to the nonlocal Kernel 
),(  xx   . Here xx   is the Euclidean distance and η is a constant given by 

l

ae0
 

(3) 

which represents the ratio between a characteristic internal length, a (such as lattice parameter, C-

C bond length and granular distance) and a characteristic external one, l (e.g., crack length, 

wavelength) through an adjusting constant, e0, dependent on each material. The magnitude of e0 is 

determined experimentally or approximated by matching the dispersion curves of plane waves 

with those of atomic lattice dynamics. According to (Eringen and Edelen 1972) for a class of 
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physically admissible kernel ( , )x x   it is possible to represent the integral constitutive 

relations given by Eq. (1) in an equivalent differential form as 

klkl tae  ))(1( 2

0  
(4) 

In which 2  is the Laplacian operator. Thus, the scale length e0a takes into account the size 

effect on the response of nanostructures. For an elastic material in the one dimensional case, the 

nonlocal constitutive relations may be simplified as (Miller and Shenoy 2000) 

2

2

xx
xx xxE

x


  


 

  

(5) 

Where ζ and ε are the nonlocal stress and strain respectively, μ=(e0a)
2
 is the nonlocal parameter 

and E is the elasticity modulus (Ebrahimi et al. 2016). 

 

2.2 Functionally graded nanoplate 
 

As depicted in Fig. 1, an FGM nanoplates of length 𝑙𝑥, width 𝑙𝑦 and thickness h that is made of 

a mixture of ceramics and metals is considered. It is assumed that the materials at bottom surface 

(𝑍 = −𝑕 2)⁄  and top surface (𝑍 = 𝑕 2)⁄  of the nanoplate are metals and ceramics, respectively. 

The local effective material properties of an FGM nanoplates can be calculated using 

homogenization method that is based on the Mori-Tanaka scheme. According to the Mori-Tanaka 

homogenization technique, the effective material properties of the FGM nanoplates such as 

Young’s modulus(𝐸), Poisson’s ratio(𝜈), mass density (𝜌)and thermal extension coefficient (𝛼) 
can be determined as follows (Mori and Tanaka 1973) 

𝐸(𝑧) = 𝐸𝑐𝑉𝑐(𝑧) + 𝐸𝑚𝑉𝑚 (6a) 

𝜌(𝑧) = 𝜌𝑐𝑉𝑐(𝑧) + 𝜌𝑚𝑉𝑚 (6b) 

𝛼(𝑧) = 𝛼𝑐𝑉𝑐(𝑧) + 𝛼𝑚𝑉𝑚 (6c) 

𝜈(𝑧) = 𝜈𝑐𝑉𝑐(𝑧) + 𝜈𝑚𝑉𝑚 (6d) 

Here, the subscripts m and c refer to metal and ceramic phases. The volume fraction of the 

ceramic and metal phases can be defined by the power-law function as 

𝑉𝑓(𝑧) = (
1

2
+
𝑧

𝑕
)
𝑘

 (7) 

Where k represent the power-law index .Additionally ,the neutral axis of FGM nanoplates 

where the end supports are located on ,can be determined by the following relation 

𝑧0 =
∫ 𝑧𝐸(𝑧)𝑑𝑧
(ℎ 2⁄ )

−(ℎ 2⁄ )

∫ 𝐸(𝑧)𝑑𝑧
(ℎ 2⁄ )

−(ℎ 2⁄ )

 (8) 
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Fig. 1 Schematic view of functionally graded nanoplates 

 

 

2.3 Governing equation 
 

u, v and w, are displacements component of an arbitrary point in the mid-plane along the x, y 

and z directions, respectively. According to the classical theory of plate (CPT), the displacement 

field can be presented as 

𝑈 = 𝑢(𝑥, 𝑦) − 𝑧
𝜕𝑊

𝜕𝑥
   ,     𝑉 = 𝑣(𝑥, 𝑦) − 𝑧

𝜕𝑊

𝜕𝑦
  ,    𝑊 = 𝑤(𝑥, 𝑦) (9) 

U, V and W, are the displacement components of an arbitrary point (x, y, z) at a distance z from 

the middle of the plane thickness in the x, y and z directions, respectively. The strain-displacement 

relationships are presented following strain field. These equations are independent from 

constitutive equations. The tensorial strain field can be written as 

𝜀𝑥𝑥 =
𝜕𝑢

𝜕𝑥
− 𝑧

𝜕2𝑊

𝜕𝑥2
,   𝜀𝑦𝑦 =

𝜕𝑣

𝜕𝑦
− 𝑧

𝜕2𝑊

𝜕𝑦2
,   𝜀𝑥𝑦 =

1

2
(
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
) − 𝑧

𝜕2𝑊

𝜕𝑥𝜕𝑦
 (10) 

It is important that the transverse shear deformation is negligible in the classical theory of 

plates. Force and moment of nonlocal elasticity are used in the obtained formulation can be 

presented as 

{𝑁𝑥𝑥 , 𝑁𝑦𝑦, 𝑁𝑥𝑦}
𝑇
= ∫ {𝜍𝑥𝑥, 𝜍𝑦𝑦, 𝜍𝑥𝑦}

𝑇
𝑑𝑧

(ℎ 2⁄ )

−(ℎ 2⁄ )

 

{𝑀𝑥𝑥,𝑀𝑦𝑦, 𝑀𝑥𝑦}
𝑇
= ∫ {𝜍𝑥𝑥, 𝜍𝑦𝑦, 𝜍𝑥𝑦}

𝑇
𝑧𝑑𝑧

(ℎ 2⁄ )

−(ℎ 2⁄ )

 

(11) 

The strain energy of the nanoplates in the presence of surface stress on the basis of the 
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continuum surface elasticity theory can be introduced as 

𝑈 =
1

2
∫ ∫ 𝜍𝑖𝑗𝜀𝑖𝑗𝑑𝑧𝑑𝐴

(ℎ 2⁄ )

−(ℎ 2⁄ )𝐴

 (12) 

The work done by the external force can be represented as follows 

𝑊𝑒𝑥𝑡 = ∫ 𝑞𝑤𝑑𝑧
−(ℎ 2⁄ )

−(ℎ 2⁄ )

 (13) 

Now, by using Hamilton’s principle 

∫ (𝛿𝑈 − 𝛿𝑊𝑒𝑥𝑡)
𝑡2

𝑡1

𝑑𝑡 = 0 (14) 

And taking the variation of w and integrating by parts as follows 

𝛿𝑈 = ∫ 𝜍𝑥𝑥𝛿𝜀𝑥𝑥𝑑𝑣𝑉
+ ∫ 𝜍𝑦𝑦𝛿𝜀𝑦𝑦𝑑𝑣𝑉

+ ∫ 𝜍𝑥𝑦𝛿𝜀𝑥𝑦𝑑𝑣𝑉
 (15) 

And for external work can be revealed 

𝛿𝑊𝑒𝑥𝑡 = ∫𝑞𝛿𝑤𝑑𝐴
𝐴

 (16) 

Where q is the transverse force per unit area. Thermal loading and Pasternak foundation can be 

considered as external forces. So, external forces can be rewritten for thermal loading as 

𝑊𝑒𝑥𝑡
𝑇 = ∫ *𝑁𝑇𝑥 (

𝜕𝑊

𝜕𝑥
)
2

+𝑁𝑇𝑦 (
𝜕𝑊

𝜕𝑦
)
2

+
𝐴

𝑑𝐴  𝛿𝑊𝑒𝑥𝑡
𝑇

= 𝑁𝑇𝑥
𝜕𝑤

𝜕𝑥
𝛿[𝑤]0

 −∫𝑁𝑇𝑥
𝐴

𝜕2𝑤

𝜕𝑥2
𝛿𝑤𝑑𝐴 + 𝑁𝑇𝑦

𝜕𝑤

𝜕𝑦
𝛿[𝑤]0

 −∫𝑁𝑇𝑦
𝐴

𝜕2𝑤

𝜕𝑦2
𝛿𝑤𝑑𝐴 

(17) 

In which, the distribution of thermal loading factor along the X and Y direction including 𝑁𝑇𝑥 

and 𝑁𝑇𝑦 can be shown as (Ansari et al. 2015) 

𝑁𝑇𝑥 = ∫ 𝜍𝑥𝑥
𝑇 𝑑𝑧

(ℎ 2⁄ )

−(ℎ 2⁄ )

 , 𝑁𝑇𝑦 = ∫ 𝜍𝑦𝑦
𝑇 𝑑𝑧

(ℎ 2⁄ )

−(ℎ 2⁄ )

 (18) 

where 𝜍𝑥𝑥
𝑇 and 𝜍𝑦𝑦

𝑇  are defined as follows 

𝜍𝑥𝑥,𝑦𝑦
𝑇 = −

𝐸𝛼( −  0)

1 − 𝜈
 (20) 

 0 is the initial uniform temperature of a stress free state that it is assumed as 300°K. Also, 

external forces can be rewritten for Pasternak foundation as 

𝑊𝑒𝑥𝑡
 = ∫ *  (

𝜕𝑊

𝜕𝑥
)
2

+   (
𝜕𝑊

𝜕𝑦
)
2

+
𝐴

𝑑𝐴   𝛿𝑊𝑒𝑥𝑡
 

=   
𝜕𝑤

𝜕𝑥
𝛿[𝑤]0

 −∫  
𝐴

𝜕2𝑤

𝜕𝑥2
𝛿𝑤𝑑𝐴 +   

𝜕𝑤

𝜕𝑦
𝛿[𝑤]0

 −∫  
𝐴

𝜕2𝑤

𝜕𝑦2
𝛿𝑤𝑑𝐴 

(21) 
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The motion equation and the boundary conditions will be obtained by setting the coefficients of 

δw equal to zero as, motion equation obtained from the above relationships are as follows 

𝜕(𝑁𝑥𝑥)

𝜕𝑥
+
𝜕(𝑁𝑥𝑦)

𝜕𝑦
= 0 (22a) 

𝜕(𝑁𝑥𝑦)

𝜕𝑥
+
𝜕(𝑁𝑦𝑦)

𝜕𝑦
= 0 (22b) 

∂2(Mxx)

∂x2
+ 2

∂2(Mxy)

∂x∂y
+

∂2(Myy)

∂y2
+ q +

∂

∂x
(Nxx

∂w

∂x
+ Nxy

∂w

∂y
) +

∂

∂y
(Nyy

∂w

∂y
+ Nxy

∂w

∂x
) + (KG +

NTx)
∂2w

∂x2
+ (KG + NTy)

∂2w

∂y2
= 0 

(22c) 

To obtain the equation of motion should be nonlocal effect must give effect to the above 

equation. 

According to the generalized Hook’s law 

[

𝜍𝑥𝑥
𝜍𝑦𝑦
𝜍𝑥𝑦

] = [𝑄] [

𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑥𝑦

] (23) 

Where [𝜍] and [𝜀] are stress and strain matrix, and [𝑄] represent fourth order elasticity matrix 

as follows 

[𝑄] =

[
 
 
 
 
 
 
𝐸(𝑧)

1 − 𝜈2
𝐸(𝑧)𝜈

1 − 𝜈2
0

𝐸(𝑧)𝜈

1 − 𝜈2
𝐸(𝑧)

1 − 𝜈2
0

0 0
𝐸(𝑧)

2(1 + 𝜈)]
 
 
 
 
 
 

 (24) 

By definition that we had in the previous section article, Should we change the above equation 

as follows 

*

𝑁𝑥𝑥
𝑁𝑦𝑦
𝑁𝑥𝑦

+ = [𝐶]

[
 
 
 
 
 
 

𝜕𝑢

𝜕𝑥
𝜕𝑣

𝜕𝑦
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥]
 
 
 
 
 
 

 (25) 

*

𝑀𝑥𝑥

𝑀𝑦𝑦

𝑀𝑥𝑦

+ = [𝐷]

[
 
 
 
 
 
 
𝜕2𝑊

𝜕𝑥2

𝜕2𝑊

𝜕𝑦2

2
𝜕2𝑊

𝜕𝑥𝜕𝑦]
 
 
 
 
 
 

 (26) 
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The matrix of [𝐶]and [𝐷]’s component in the above equations are defined as follows 

𝐶𝑖𝑗 = ∫ 𝑄𝑖𝑗𝑑𝑧
(ℎ 2⁄ )

−(ℎ 2⁄ )

 (27) 

𝐷𝑖𝑗 = −∫ 𝑄𝑖𝑗𝑧𝑑𝑧
(ℎ 2⁄ )

−(ℎ 2⁄ )

 (28) 

Eringen’s equations as follows spreads 

        𝑁𝑥𝑥 − 𝜇 (
𝜕2𝑁𝑥𝑥
𝜕𝑥2

+
𝜕2𝑁𝑥𝑥
𝜕𝑦2

) = 𝐶11
𝜕𝑢

𝜕𝑥
+ 𝐶12

𝜕𝑣

𝜕𝑦
 (29a) 

         𝑁𝑦𝑦 − 𝜇 (
𝜕2𝑁𝑦𝑦

𝜕𝑥2
+
𝜕2𝑁𝑦𝑦

𝜕𝑦2
) = 𝐶21

𝜕𝑢

𝜕𝑥
+ 𝐶22

𝜕𝑣

𝜕𝑦
 (29b) 

𝑁𝑥𝑦 − 𝜇 (
𝜕2𝑁𝑥𝑦

𝜕𝑥2
+
𝜕2𝑁𝑥𝑦

𝜕𝑦2
) = 𝐶33 (

𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
) (29c) 

𝑀𝑥𝑥 − 𝜇 (
𝜕2𝑀𝑥𝑥

𝜕𝑥2
+
𝜕2𝑀𝑥𝑥

𝜕𝑦2
) = −𝐷11

𝜕2𝑊

𝜕𝑥2
+ 𝐷12

𝜕2𝑊

𝜕𝑦2
 (29d) 

𝑀𝑦𝑦 − 𝜇 (
𝜕2𝑀𝑦𝑦

𝜕𝑥2
+
𝜕2𝑀𝑦𝑦

𝜕𝑦2
) = −𝐷21

𝜕2𝑊

𝜕𝑥2
+ 𝐷22

𝜕2𝑊

𝜕𝑦2
 (29e) 

𝑀𝑥𝑦 − 𝜇 (
𝜕2𝑀𝑥𝑦

𝜕𝑥2
+
𝜕2𝑀𝑥𝑦

𝜕𝑦2
) = −2𝐷33

𝜕2𝑊

𝜕𝑥𝜕𝑦
 (29f) 

By inserting motion equation in the nonlocal equation, the governing equation of the nonlocal 

theory of plate for buckling in terms of w can be obtained as follows 

D11
∂4w

∂x4
+ 2(D12 + D33)

∂4w

∂x2 ∂y2
+ D22

∂4w

∂y4
+ (μ∇2-1) (Nxx

∂2W

∂x2
+ 2Nxy

∂2W

∂x∂y
+ Nyy

∂2W

∂y2
) +

(KG + NTx)
∂2w

∂x2
+ (KG + NTy)

∂2w

∂y2
= 0 

(30) 

Now, we assume that the plate under the following linearly and non-linearly varying normal 

loads 

𝑁𝑥𝑥 = −𝑃0 (1 − 𝜒(
𝑦

𝑙𝑦
)

1𝑜𝑟2

) , 𝑁𝑦𝑦 = 0 , 𝑁𝑥𝑦 = 0 , 𝑞 = 0 (31) 

𝜒 Specifies the amount of numerical loading factor, If y is of the first order loading factor is in 

linearly phase and if y is of the second order loading factor is in non-linearly condition. P0 is the 

compressive force per unit length at y=0. This in-plane force distribution is seen at the two 

nanoplates opposite edges (x=0, x=𝑙𝑥). 𝜒’s change, shows different form of in-plane loadings. If 

𝜒=0, then the situation of uniform compressive force is investigated. If 𝜒=1, the force decrease  
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𝜒 = 2 𝜒 = 1.5 𝜒 = 1 𝜒 = 0.5 𝜒 = 0 𝜒 = 1 𝜒 = 2 

Linear load factor Nonlinear load factor 

Fig. 2 Different load factor 

 

 

from -P0 at y=0, to zero at y=ly and if 𝜒=2, we’ll see pure bending. This type of modeling allows 

the full range of loads from pure compression to pure bending considered only on the basis of unit 

modeling. These different situations of loadings condition are shown in Fig. 2. Substituting 𝑁𝑥𝑥 

defined variable into equation of motion yields the below fourth-order PDE of the nonlocal theory 

of the plate for buckling of functionally graded nanoplates 

𝐷11
𝜕4𝑤

𝜕𝑥4
+ 2(𝐷12 + 𝐷33)

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+ 𝐷22

𝜕4𝑤

𝜕𝑦4
+ (  +𝑁𝑇𝑥)

𝜕2𝑤

𝜕𝑥2
+ (  +𝑁𝑇𝑦)

𝜕2𝑤

𝜕𝑦2
−

𝑃0 (𝜇 [(1 − 𝜒
𝑦

𝑙𝑦
)
𝜕4𝑤

𝜕𝑥4
+ (1 − 𝜒

𝑦

𝑙𝑦
)

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
] − (1 − 𝜒

𝑦

𝑙𝑦
)
𝜕2𝑤

𝜕𝑥2
) = 0 

(31) 

For create non-dimensional state of above equation, define the following parameters 

𝑊 =
𝑤

𝑙𝑥
 , 𝜉 =

𝑥

𝑙𝑥
, 𝜂 =

𝑦

𝑙𝑦
, 𝜓 =

𝐷12+𝐷33

𝐷11
, 𝜆 =

𝐷22

𝐷11
, 𝛾 =

𝜇

𝑙𝑥
, 𝛽 =

𝑙𝑥

𝑙𝑦
, (32) 

 

 

3. Solution procedure 
 

In order to predict solution of Eq. (32) analytical approach can be applied for simply supported 

boundary condition. In this paper, governing equation is solved by using the Navier’s approach. 

 

3.1 Navier’s method 
 

For the simply supported boundary condition, according to (Aksencer and Aydogdu 2011) it 

can be shown that the shape function can be written in following statement (double Fourier series). 

This approach is a simple method to find displacement and stress changing partial equation to 

numerical equation by inserting following shape function to governing equation. As being an 

analytical approach, Navier’s method is more accurate than the numerical ones like differential 

transform method or differentiae quadrature method. Here the idea is to express the applied load in 

terms of Fourier components and then finding the solution for a sinusoidal load (a single Fourier 
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component), and finally superimposing the Fourier components to get the solution for an arbitrary 

load as follows 

𝑤(𝑥, 𝑦, 𝑡) = ∑ ∑𝑊𝑚𝑛𝑠𝑖𝑛 (
𝑚𝜋𝑥

𝑙𝑥
) 𝑠𝑖𝑛 (

𝑚𝜋𝑦

𝑙𝑦
)𝑒𝑖𝜔𝑡

∞

𝑛=1

∞

𝑚=1

 (30) 

Because the subject matter is buckling article, time-dependent terms are deleted. And m and n 

are the half wave numbers. For this purpose, incorporating Eq. (30) into Eq. (28), will have 

 

𝐷11 (
𝑚𝜋

𝑙𝑥
)
4

+ 2(𝐷12 + 𝐷33) (
𝑚𝜋

𝑙𝑥
)
2

(
𝑛𝜋

𝑙𝑦
)

2

+ 𝐷22 (
𝑛𝜋

𝑙𝑦
)

4

+ (  + 𝑁𝑇𝑥) (
𝑚𝜋

𝑙𝑥
)
2

+ (  + 𝑁𝑇𝑦) (
𝑛𝜋

𝑙𝑦
)

2

− 𝑃0 (𝜇 *((1 − 𝜒
𝑦

𝑙𝑦
) (

𝑚𝜋

𝑙𝑥
)
4

) + ((1 − 𝜒
𝑦

𝑙𝑦
) (

𝑚𝜋

𝑙𝑥
)
2

(
𝑛𝜋

𝑙𝑦
)

2

)

− ((1 − 𝜒
𝑦

𝑙𝑦
) (

𝑛𝜋

𝑙𝑥
)
2

)+) = 0 

(31) 

That P0 shows as follows 

P0 = (D11 (
mπ

lx
)
4
+ 2(D12 + D33) (

mπ

lx
)
2
(
nπ

ly
)
2

+ D22 (
nπ

ly
)
4

+ (KG + NTx) (
mπ

lx
)
2
+ (KG +

NTy) (
nπ

ly
)
2

)/(𝜇 [((1 − 𝜒
𝑦

𝑙𝑦
) (

𝑚𝜋

𝑙𝑥
)
4
) + ((1 − 𝜒

𝑦

𝑙𝑦
) (

𝑚𝜋

𝑙𝑥
)
2
(
𝑛𝜋

𝑙𝑦
)
2

)] − ((1 − 𝜒
𝑦

𝑙𝑦
) (

𝑛𝜋

𝑙𝑥
)
2
)) 

(32) 

It is assumed that simply supported boundary conditions are in all directions but for clamped-

clamped boundary condition following equation and condition must be applied to the governing 

equations instead of Eq. (30) (Sobhy 2015) 

𝑤(𝑥, 𝑦, 𝑡) = ∑ ∑𝑊𝑚𝑛𝐹(𝑥)𝑠𝑖𝑛 (
𝑚𝜋𝑦

𝑙𝑦
)

∞

𝑛=1

∞

𝑚=1

 (33) 

𝐹(𝑥) =    (𝜆𝑚𝑥) −    (𝜆𝑚𝑥) −  (   (𝜆𝑚𝑥) −     (𝜆𝑚𝑥))  (34) 

 =
   (𝜆𝑚 ) −     (𝜆𝑚 )

   (𝜆𝑚 ) −     (𝜆𝑚 ) 
 (35) 

𝜆𝑚 =
(𝑚 + 0.5)𝜋

 
 (36) 

 

 

4. Results and discussion 
 

According to the previous studies in buckling of size dependent plates we will define the  
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Fig. 3 Change of buckling load ratio with the nonlocal parameter for different load factors (𝑙𝑥 = 10 𝑛𝑚) 

 

 

following non-dimensional parameter 

𝐵𝑢𝑐𝑘𝑙𝑖𝑛𝑔 𝑙𝑜 𝑑 𝑓 𝑐𝑡𝑜𝑟 =
𝑛𝑜𝑛𝑙𝑜𝑐 𝑙 𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 𝑙𝑜 𝑑

𝑙𝑜𝑐 𝑙 𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 𝑙𝑜 𝑑 
 (37) 

Above parameter is the name of the famous buckling load ratio and it has been used in many 

articles (Pradhan and Murmu 2009, Pradhan and Murmu 2010). The present results are compared 

with the results presented by Pradhan and Murmu (2010) for the buckling response of square 

single-layered grapheme sheet. The comparison results can be seen in Fig. 3 which shows a good 

agreement and verifies the presented approach. The FG nanoplate is supposed to be made of 

aluminum (E=70 GPa) and alumina (E=380 GPa) and subjected a uniformity distributed normal 

load from 𝑥 = 0 to 𝑥 = 𝑙𝑥. In this case, the numerical loading factor is equal to zero at (𝜒 = 0). 
The plate is rectangular with simply supported boundary condition along four edges and made of  

Effectiveness of the different loading conditions on nanoplate’s buckling characteristics and the 

changes of the non-dimensional buckling load with respect to the nonlocal parameter (𝜇) for 

various linear loading factors are shown in Fig. 4. This figure shows the buckling load increases by 

increase in the value of the loading factor from 0 to 2, especially for the local case. The effects of 

various loading factor in buckling increases for lower value of nonlocal parameter. For more 

description, the nonlocal parameter effect on the buckling load is more important in the pure 

bending (𝜒 = 2). However, the difference between local and nonlocal buckling load increases by 

increase in value the load factor. 

The nonlocal parameter (𝜇) effect on non-dimensional buckling loads for Simply Supported 

boundary condition in various nonlinear loading factor shown in Fig. 5. This figure illustrates, the 

buckling increases by increase in value of loading factor from 1 to 2. The effects of various 

loading factor in buckling increases by decrease in value of nonlocal parameter. The amount of 

buckling load in the nonlinear in-plane loads have a large difference with linear in-plane loads. 

When the nanoplates is subjected to in-plane nonlinear loading, plate’s stability disappears. 

The effect of various nonlocal parameter on non-dimensional buckling load in different linear 

and nonlinear loading factor can be seen in Table 1. In this table, the amount of nonlocal parameter 

is changed from 0 to 4. According to the table, the non-dimensional buckling loads calculated 

based on the nonlocal theory, are lesser than the non-dimensional buckling loads calculated based 
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on the local theory in various load factors and in all cases. In addition, non-dimensional buckling 

decreased by increase in value of nonlocal parameter, and also it causes the stiffness of structure 

decreases in fixed side length. The amount of non-dimensional buckling of functionally graded 

nanoplates when 𝜒 𝑖𝑠 2 is more than other states. In addition, the amount of buckling increases 

when loading factor increased from 0 to 2.  

To illustrate the effect of aspect ratio (𝛽) on non-dimensional buckling load of nanoplates, the 

variation of non-dimensional buckling load with aspect ratio in various linear and nonlinear load 

factors are presented in Table 2. According to these table, it can be concluded that, the aspect ratio 

effects are lost after a special length in all cases and for various load factor. This is predictable 

because the effect of nonlocal parameter decreases by increase in structure’s size. Furthermore, the 

gap between the amounts in different loading factor piecemeal reduces for higher dimension of 

nanoplates. Anyway, it is realized that, the gap between pure bending with other states doesn’t 

disappear. The amount of non-dimensional buckling load decreased for higher value of nanoplate’s 

side length that is subjected to in-plane loading. 

Fig. 6 shows the effect of Pasternak foundation (KG) on dimensional buckling load in various 

linear loading factor. This figure shows, the buckling decreases when the nanoplates embedded on 

Pasternak foundation, especially for pure bending (𝜒 = 2). The effects of Pasternak foundation on 

dimensional buckling load increases for higher value of linear load factors. For more information, 

the difference between buckling load with foundation and without foundation increases by 

increase in value of loading factor. Fig. 7 shows the effect of aspect ratio (β) on the dimensional 

buckling load ratio of simply supported nanoplates in different linear load factors. According 

 

 

  
Fig. 4 The effect of different nonlocal parameter 

on the buckling load in various linear loading 

factor (β=0.5, lx=10 nm, k=1, KG=5&T=200°C) 

Fig. 5 The effect of different nonlocal parameter 

on the buckling load in various nonlinear loading 

factor(β=0.5, lx=10 nm, k=1, KG=5&T=200°C) 

 

Table 1 Change of non-dimensional buckling with nonlocal parameter for different load factors 

(β=0.5, lx=10 nm, k=1, KG=5&T=200°C) 

𝜇 
Linear loading factor  𝜒 Nonlinear loading factor  𝜒 

0 0.5 1 1.5 2 1 2 

0 0.9912 1.1013 1.2390 1.4160 1.6520 98.586 102.739 

1 0.8823 0.9804 1.1029 1.2605 1.4706 50.471 66.9562 

2 0.6637 0.7374 0.8296 0.9481 1.1061 12.5543 16.739 

4 0.3333 0.3703 0.4166 0.4761 0.5555 3.1385 4.1847 
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Fig. 6 The effect of Pasternak foundation on the 

dimensional buckling load in different linear load 

factor (β=1, lx=10 nm, k=1, KG=5&T=200°C) 

Fig. 7 The effect of different aspect ratio on the 

dimensional buckling load in different linear load 

factor (μ=1, lx=10 nm, k=1, KG=5&T=200°C) 

 
Table 3 Change of dimensional buckling in different linear and nonlinear loading factor and temperature 

(β=1, lx=10 nm, k=1, KG=5&T=200°C) 

Temperature 
Linear load factor𝜒 Nonlinear load factor𝜒 

0 0.5 1 1.5 2 1 2 

100  2.0739 2.5924 3.4565 5.1848 10.3697 37.0018 68.8923 

200  1.3245 1.6556 2.2075 3.3113 6.6227 23.6316 44.6375 

250  0.9498 1.1873 1.583 2.2374 4.7492 16.9465 32.01 

273  0.7774 0.9718 1.2958 1.9437 3.8874 13.8713 26.2014 

300  0.5751 0.7189 0.9585 1.4378 2.8757 10.2614 19.3826 

 
Table 4 Change of dimensional buckling load ratio in different load ratio and FG index (μ=1, lx=10 nm, k=1, 

KG=5&T=200°C) 

FG Index 
Linear load factor 𝜒 Nonlinear load factors 𝜒 

0 0.5 1 1.5 2 1 2 

0 2.6065 2.8961 3.2582 3.7236 4.3442 148.341 197.789 

2 0.8002 0.8892 1.0003 1.1432 1.3338 45.5445 60.7261 

4 0.7562 0.8402 0.9452 1.0803 1.2603 43.0373 57.383 

6 0.7410 0.8234 0.9263 1.0586 1.2351 42.1742 56.2332 

10 0.7287 0.8097 0.9109 1.0410 1.2145 41.4734 55.2978 

 

 

to the figure, dimensional bucking loading decrease by increase in aspect ratio. It is predictable 

because increase in length of plate that subjected to the in-plane loading causes increased 

structural stability. The effects of aspect ratio on dimensional buckling load increases for higher 

value of linear loading factors. 

Table 3 shows the effect of temperature (T) and various loading factors (𝜒) whether linear or 

nonlinear on dimensional buckling of FG nanoplates. The results shows that the buckling load 

decreases by increase in plate’s temperature. This behavior is visible for all of cases and also, the 

plate’s buckling increases for higher value of the load factors whether linear or nonlinear. The  
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Fig. 8 The effect of Pasternak foundation on the 

dimensional buckling load in different linear 

load factor and clamped-clamped boundary 

condition (β=1, lx=10 nm, k=1, KG=5&T=200°C) 

Fig. 9 The effect of Pasternak foundation on the 

dimensional buckling load in different nonlinear 

load factor and clamped-clamped boundary 

condition (β=1, lx=10 nm, k=1, KG=5&T=200°C) 

 

  
Fig. 10 The effect of different aspect ratio on the 

dimensional buckling load in different linear 

load factor and clamped-clamped boundary 

condition (μ=1, lx=10 nm, k=1, KG=5&T=200°C) 

Fig. 11 The effect of different aspect ratio on the 

dimensional buckling load in different nonlinear 

load factor and clamped-clamped boundary 

condition (μ=1, lx=10 nm, k=1, KG=5&T=200°C) 

 

 

important note in this table is the difference in value of buckling between pure bending cases with 

other cases. 

Table 4 shows the effect of FG index and various linear and nonlinear loading factor on 

buckling of plate. Dimensional bucking loading ratio in the FGM plate is higher than pure metallic 

plate. Fundamental frequency and bucking loading increase significantly for higher value of k. 

These behavior are occurs on the plates because pure metallic plate has lower stiffness than FGM 

plate. Similarly, Figs. 8-11 shows these details for nonlinear different loading factors. 

 

 

5. Conclusions 
 

A general view of the article contains a lot of content, including the importance of temperature 

raises, Pasternak foundation and size dependent effect on the buckling response of functionally 

graded nanoplates that subjected to linear and nonlinear in-plane load based on elasticity nonlocal 

theory. The governing equations are solved by using Navier’s method. The results are compared 

with the differential quadrature method (DQM) and shows good agreement with them. Simply 

supported boundary condition is considered for the FGM plate. According to the results it can be 
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seen that, Pasternak foundation causes decrease in buckling for various loading condition. The 

buckling load ratio decreases for higher value of nanoplate’s temperature. Responses of nonlocal 

buckling are lesser than local states for various loading condition in all cases. In addition, the 

buckling load ratio decreases for higher value of nonlocal parameter. The non-dimensional 

buckling increases by increase in value of FG index. For the special state, when loading condition 

make pure in-plane bending, the effect of nonlocal is most importantly than other states. Anyway, 

at the huge plates the difference in the small scale effect is negligible, however there is difference 

between bending state and another states even for large dimension. It can be seen that, buckling 

load ratio decreases by increase in aspect ratio. Further, the effect of small scale effect increases 

for higher value of mode number. By increase in the FG index at both of linear and nonlinear 

loading factor, the amount of plates buckling increases by increase in value of nonlocal parameter 

or aspect ratio, the amount of plates buckling reduced whether in linear load factor or nonlinear 

load factor. 
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