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Abstract.  In this paper, an efficient and simple refined theory is presented for buckling analysis of 
functionally graded plates. The theory, which has strong similarity with classical plate theory in many 
aspects, accounts for a quadratic variation of the transverse shear strains across the thickness and 
satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using 
shear correction factors. The mechanical properties of functionally graded material are assumed to vary 
according to a power law distribution of the volume fraction of the constituents. Governing equations 
are derived from the principle of minimum total potential energy. The closed-form solutions of 
rectangular plates are obtained. Comparison studies are performed to verify the validity of present 
results. The effects of loading conditions and variations of power of functionally graded material, 
modulus ratio, aspect ratio, and thickness ratio on the critical buckling load of functionally graded 
plates are investigated and discussed. 
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1. Introduction 
 

The concept of functionally graded materials FGM were the first introduced in 1984 by a group 

of material scientists in Japan, as ultrahigh temperature resistant materials for aircraft, space 

vehicles and other engineering applications. Functionally graded materials are new composite 

materials in which the micro-structural details are spatially varied through non-uniform 

distribution of the reinforcement phase. This is achieved by using reinforcement with different 

properties, sizes and shapes, as well as by interchanging the role of reinforcement and matrix 

phase in a continuous manner. The result is a microstructure that produces continuous or smooth 

change on thermal and mechanical properties at the macroscopic or continuum level (Koizumi 

1993, Hirai and Chen 1999). Now, FGM are developed for general use as structural components in 

extremely high temperature environments. Therefore, it is important to study the wave propagation 

of functionally graded materials structures in terms of non-destructive evaluation and material 

characterization. Several studies have been performed to analyze the mechanical or the thermal 

responses of FG plates and shells. A comprehensive review is done by Tanigawa (1995). Reddy  
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(2000) has analyzed the static behavior of functionally graded rectangular plates based on his 
third-order shear deformation plate theory. Cheng and Batra (2000) have related the deflections of 
a simply supported FG polygonal plate given by the first-order shear deformation theory and third-
order shear deformation theory to that of an equivalent homogeneous Kirchhoff plate. The static 
response of FG plate has been investigated by Tounsi (2013) using a generalized shear deformation 
theory. In a recent study, Şimşek (2010) has studied the dynamic deflections and the stresses of an 
FG simply-supported beam subjected to a moving mass by using Euler-Bernoulli, Timoshenko and 
the parabolic shear deformation beam theory. Tounsi (2013) studied the free vibration of FG beams 
having different boundary conditions using the classical, the first-order and different higher-order 
shear deformation beam and plate theories. The functionally graded (FG) plates are commonly 
used in thermal environments; they can buckle under thermal and mechanical loads. Thus, the 
buckling analysis of such plates is essential to ensure an efficient and reliable design. Eslami and 
his co-workers (2006) have treated a series of problems relating to the linear buckling of simply 
supported rectangular FG plates, with and without imperfections, under mechanical and thermal 
loads. By using an analytical approach, they obtained closed-form expressions for buckling loads. 

The buckling analysis of the square ceramic-metal FG plates with circular holes at the center 
was presented by Zhao (2009). The effects of the volume fraction index, boundary conditions, hole 
geometry and hole size on the buckling behavior of FG plates were investigated. Matsunaga 
(2009) presented a higher order deformation theory for buckling of FG plates. By using the 
method of power series expansion of displacement components, a set of fundamental equations of 
rectangular FG plates was derived. Bouazza et al. (2010) investigated the thermo-elastic buckling 
of FG plates using first shear plate theory. Effects of changing plate characteristics, material 
composition and volume fraction of constituent materials on the critical temperature difference of 
FG plate with simply supported edges are also investigated. Zenkour et al. (2010) studied the 
thermal buckling response of FG plates using sinusoidal shear deformation plate theory. Although 
the higher-order shear deformation plate theories have been adopted for buckling analysis of FG 
plates (Najafizadeh 2008, Ait yahia 2015, Attia 2015,belabed 2014, Bellifa 2016, Bouderba 2016, 
Bourada 2015 and Bounouara 2016), they are not convenience to use due to the higher-order terms 
introduced into the theory. Therefore, Shimpi (2002) has developed a new refined plate theory that 
is simple to use. 

In this paper, the four-variable refined plate theory developed by Sobhy (2010), Ait Amar 
Meziane (2014), Bennoun, (2016), Bourada (2015), Hebali (2014), Abdelhak (2016), Cheikh 
(2016), Loufi (2016), Salima (2016), Ahmed (2016), Bousahla (2014), Hamidi (2015), Houari 
(2016), Mahi (2015), Tounsi (2016), Zidi (2014), Adim (2016) and Benferhat (2016) has been 
extended for the first time to the buckling behavior of FGM plates. An Eigen value problem is 
formulated for a simply supported FGM plates to analyze its thermal and mechanical buckling 
behaviors. Illustrative examples are given so as to demonstrate the efficacies of the theory. 
Comparison studies are performed to verify the validity of the present results. The effects of 
loading conditions and variations of power of function-ally graded material, modulus ratio, aspect 
ratio, and thickness ratio on the critical buckling load of FGM plates are investigated and 
discussed.  

 
 

2. Problem formulation 
 
Consider a rectangular plate of total thickness h as shown in Fig. 1. The plate is made of  
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- The transverse normal stress σz is negligible in comparison with in-plane stresses σx and σy. 
- The displacements U in x-direction and V in y-direction consist of extension, bending, and 

shear components 

sb uuuU  0
,   

sb vvvV  0
                    (3b) 

The bending components ub and vb are assumed to be similar to the displacements given by the 
classical plate theory. Therefore, the expression for ub and vb can be given as 

x

w
zu b
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
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y

w
zv b

b 


                      (3c) 

- The shear components us and vs give rise, in conjunction with ws, to the parabolic variations 
of shear strains γxz, γyz and hence to shear stresses τxz, τyz through the thickness of the plate in such 
a way that shear stresses τxz, τyz are zero at the top and bottom faces of the plate. Consequently, the 
expression for us and vs can be given as 

 
x

w
zfu s

s 


 ,    
y

w
zfv s

s 


                   (3d) 

 
2.2.2 Kinematics and constitutive equations 
Based on the assumptions made in the preceding section, the displacement field of present 

theory can be obtained using Eqs. (3a)-(3d) as 
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                (4a) 

where u0 and v0 are the mid-plane displacements of the plate in the x and y direction, respectively; 
wb and ws are the bending and shear components of transverse displacement, respectively, while 
f(z) represents shape functions determining the distribution of the transverse shear strains and 
stresses along the thickness and is given as : 

- Present model 1 SSDT: The function f(z) is an Sinusoidal shape function (Sinusoidal Shear 
Deformation Theory) 

h

z
zzf


sin)( 

                        
(4b) 

- Present model 2 ESDT: The function f(z) is an exponential shape function (Exponential Shear 
Deformation Theory) 
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z
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It should be noted that unlike the first-order shear deformation theory, this theory does not 
require shear correction factors. The kinematic relations can be obtained as follows 
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2.2.3 Constitutive relations 
Consider a FGM plate made of ceramic and metal, the material properties of FGM such as 

Young modulus E and coefficient of thermal expansion  are assumed to vary through the plate 
thickness with a power law distribution of the volume fraction of the two materials as 
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Where (Em, αm) and (Ec, αc) are the properties of the metal and ceramic, respectively; and p is 
the volume fraction exponent. The value of p equal to zero represents a fully ceramic plate, 
whereas infinite p indicates a fully metallic plate. The variation of the combination of ceramic and 
metal is linear for p=1. The variation of Poisson’s ratio m is generally small and it is assumed to be 
a constant for convenience. The linear constitutive relations of a FG plate can be written as 
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2.2.4 Governing equations 
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The strain energy of the plate can be written as 
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Substituting Eqs. (5) and (8) into Eq. (10) and integrating through the thickness of the plate, the 
strain energy of the plate can be rewritten as 
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Where Ni, Mi, Qj (i=x, y, xy, j=xz, yz) are the resultants forces, moments and shear forces, 
respectively, which are all defined by the following expressions 
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Substituting Eq. (8) into Eq. (12) and integrating through the thickness of the plate, the stress 
resultants are given as 
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Where ijA , ijB , etc., are the plate stiffness, defined by 
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The stress and moment resultants, T
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The work done by applied forces can be written as 
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Where Nx; Ny; Nxy are in-plane pre-buckling forces. 
The principle of minimum total potential energy is used herein to derive the governing 

equation. The principle can be stated in analytical form as (Tounsi 2013) 
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The stability equations of the plate may be derived by the adjacent equilibrium criterion. 
Assume that the equilibrium state of the FG plate under thermal loads is defined in terms of the 
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Where the superscript 1 refers to the state of stability and the superscript 0 refers to the state of 
equilibrium conditions. 

Substituting Eqs. (4) and (18) into Eq. (17) and integrating by parts and then equating the 

coefficients of 111
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0 ,,, sb wwvu  to zero, separately, the governing stability equations are obtained 

for the shear deformation plate theories as 
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Where the terms 0
xN  and 0

yN are the pre-buckling force resultants obtained as 
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Trigonometric solution for simply supported FGM plates 
Rectangular plates are generally classified in accordance with the type of support used. We are 

here concerned with the exact solution of Eqs. (19) for a simply supported FG plate. The following 
boundary conditions are imposed for the present four variable refined plate theory at the side edges 
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The following approximate solution is seen to satisfy both the differential equation and the 
boundary conditions 
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Where 1
mnU , 1

mnV , 1
bmnW  and 1

smnW  are arbitrary parameters to be determined, am /   

and bn /   and m  and n  are mode numbers. Substituting Eq. (24) into Eq. (19), one 
obtains 

    0K                               (25) 

Where    denotes the column 
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And  K  is the symmetric matrix given by 
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In which 
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By applying the static condensation approach to eliminate the coefficients associated with the 
in-plane displacements, Eq. (25) can be rewritten as 
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Eq. (29) represents a pair of two matrix equations 

    0212111  KK                           (31a) 
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T

                        (31b) 

Solving Eq. (31a) for 1  and then substituting the result into Eq. (31b), the following equation 
is obtained 
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For nontrivial solution, the determinant of the coefficient matrix in Eq. (32) must be zero. This 
gives the following expressions: 

For the thermal buckling load  
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For mechanical buckling load 
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Buckling of FG Plates under Uniform Temperature Rise 
The plate initial temperature is assumed to be Ti. The temperature is uniformly raised to a final 

value Tf in which the plate buckles. The temperature change is ∆T=Tf-Ti. Using this distribution of 
temperature, the critical buckling temperature change 

crT becomes by using Eqs. (22) and (34) 
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For the case of CPT, the expression of the critical buckling temperature change ∆Tcr can be 
simplified by setting the shear component of transverse displacement to zero (ws=0) as 
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Buckling of FG Plates Subjected to Graded Temperature Change across the 

Thickness 
We assume that the temperature of the top surface is Tt and the temperature varies from Tt, 

according to the power law variation through-the-thickness, to the bottom surface temperature Tb 
in which the plate buckles. In this case, the temperature through-the-thickness is given by 
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Where the buckling temperature difference ∆T=Tb-Tt and  is the temperature exponent 
(0<γ<∞). Note that the value of  equal to unity represents a linear temperature change across the 
thickness. While the value of  excluding unity represents a non-linear temperature change 
through-the-thickness. Similar to the previous loading case, the critical buckling temperature 
change ΔTcr becomes by using Eqs. (22) and (34) 
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For the case of CPT, the expression of the critical buckling temperature change ΔTcr is obtained 
as follows 
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3. Results and discussion 
 
In this section, various numerical examples are presented and discussed for verifying the 

accuracy and efficiency of the present theory in predicting buckling stability of simply supported 
FG plates under mechanical and uniform, linear and nonlinear thermal loadings through the 
thickness. For the verification purpose, the results obtained by the present four variable refined 
plate theory are compared with the existing data in the literature. It is assumed that the functionally 
graded plate is made of a mixture of aluminum and alumina. The Young modulus and coefficient 
of thermal expansion for aluminum are Em=70 GPa, αm=23×10-6/°C and for alumina are Ec=380 
GPa, αc=7.4×10-6/°C, respectively. For the linear and non-linear temperature rises through the 
thickness, the temperature rises 5°C in the metal-rich surface of the plate (i.e., Tm=5°C). We will 
assume in all analyzed cases (unless otherwise stated) that a/b=2, a/h=10, and γ=3. 

 
3.1 Mechanical buckling load 
 
This study is done on the mechanical buckling of FGM plates subjected to axial and biaxial 

mechanical loads. Based on two shear refined functions of four unknowns, the plate is assumed 
simply supported. The various non-dimensional parameters used are 
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Table 1 shows the results of the critical buckling load of an isotropic plate under different types 
of loads depending on aspect ratio a/b and the thickness ratio h/b. This table shows the comparison 
of critical buckling loads obtained by the present refined theories (present1 and present2) with 
those given by the higher order theories FSDT and Reddy (2000). These theories 1 and 2 show a 
very good agreement with the high-order theories FSDT and Reddy (2000) for functionally graded 
plates, where the shear effect has a major importance. It should be noted that these theories involve 
only four unknowns against five unknowns in higher order theories Reddy (2000) and FSDT, and 
this without using shear correction factors. And even, more the plate becomes very thick, more the 
difference between the results obtained by the first-order theory and those theories FSDT high 
order (present1, present2 and Reddy 2000) increases. This is due to the incorrect insertion of the 
shearing effect by the first order theory FSDT. 

 
 

Table 1 Variation of the critical buckling loads N̂ of isotropic plates under different types of loading with 
(P=0) 

a/b h/b Theory 
Load type 

-1,0 0,-1 -1,-1 

1 

0.1 

FSDT 3.7865 3.7865 1.8932 

Reddy (2000) 3.7866 3.7866 1.8933 

Present Theory 1 3.7869 3.7869 1.8934 

Present Theory 2 3.7878 3.7878 1.8939 

0.2 

FSDT 3.2637 3.2637 1.6319 

Reddy (2000) 3.2653 3.2653 1.6327 

Present Theory 1 3.2665 3.2665 1.6332 

Present Theory 2 3.2697 3.2697 1.6348 

0.3 

FSDT 2.6533 2.6533 1.3266 

Reddy (2000) 2.6586 2.6586 1.3293 

Present Theory 1 2.6611 2.6611 1.3305 

Present Theory 2 2.6665 2.6665 1.3332 

0.4 

FSDT 1.9196 1.9196 1.0513 

Reddy (2000) 1.9550 1.9550 1.0567 

Present Theory 1 1.9651 1.9632 1.0585 

Present Theory 2 1.9663 1.9666 1.0622 

1.5 

0.1 

FSDT 4.0250 2.0048 1.3879 

Reddy (2000) 4.0253 2.0048 1.3879 

Present Theory 1 4.0258 2.0049 1.3880 

Present Theory 2 4.0271 2.0052 1.3882 

0.2 

FSDT 3.3048 1.7941 1.2421 

Reddy (2000) 3.3077 1.7946 1.2424 

Present Theory 1 3.3096 1.7950 1.2427 

Present Theory 2 3.3139 1.7963 1.2436 

0.3 FSDT 2.5457 1.5267 1.0570 
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Table 1 Continued 

a/b h/b Theory 
Load type 

-1,0 0,-1 -1,-1 

1.5 

0.3 

Reddy (2000) 2.5545 1.5285 1.0582 

Present Theory 1 2.5580 1.5295 1.0588 

Present Theory 2 2.5650 1.5318 1.0605 

0.4 

FSDT 1.9196 1.2632 0.8745 

Reddy (2000) 1.9421 1.2670 0.8772 

Present Theory 1 1.9473 1.2686 0.8782 

Present Theory 2 1.9563 1.2718 0.8805 

2 

0.1 

FSDT 3.7865 1.5093 1.2074 

Reddy (2000) 3.7866 1.5093 1.2075 

Present Theory 1 3.7869 1.5094 1.2075 

Present Theory 2 3.7879 1.5096 1.2077 

0.2 

FSDT 3.2637 1.3694 1.0955 

Reddy (2000) 3.2654 1.3697 1.0958 

Present Theory 1 3.2666 1.3700 1.0960 

Present Theory 2 3.2697 1.3708 1.0966 

0.3 

FSDT 2.5726 1.1862 0.9490 

Reddy (2000) 2.5839 1.1873 0.9490 

Present Theory 1 2.5882 1.1879 0.9503 

Present Theory 2 2.5964 1.1894 0.9515 

0.4 

FSDT 1.9034 0.9991 0.7992 

Reddy (2000) 1.9230 1.0015 0.8012 

Present Theory 1 1.9292 1.0025 0.8020 

Present Theory 2 1.9394 1.0047 0.8038 

 
Table 2 Variation of the critical buckling loads of simply supported rectangular FGM plates (a/b=0.5, p=1) 

(γ1, γ2) Theory 
a/h 

5 10 20 30 40 50 

(-1,0) 

FSDT 3.7382 3.8000 3.8158 3.8188 3.8198 3.8203 
Reddy (2000) 3.4163 3.7110 3.7930 3.8086 3.8140 3.8166 

Present Theory 1 3.4170 3.7112 3.7930 3.8086 3.8141 3.8166 
Present Theory 2 3.4188 3.7117 3.7932 3.8086 3.8141 3.8168 

(-1,-1) 

FSDT 2.9906 3.0400 3.0526 3.0550 3.0558 3.0562 
Reddy (2000) 2.7330 2.9688 3.0344 3.0468 3.0512 3.0533 

Present Theory 1 2.7336 2.9690 3.0344 3.0469 3.0512 3.0533 
Present Theory 2 2.7350 2.9694 3.0345 3.0469 3.0513 3.0533 

(-1,1) 

FSDT 4.9843 5.0667 5.0878 5.0917 5.0931 5.0937 
Reddy (2000) 4.5551 4.9481 5.0573 5.0781 5.0854 5.0888 

Present Theory 1 4.5560 4.9483 5.0574 5.0781 5.0854 5.0888 
Present Theory 2 4.5584 4.9490 5.0576 5.0782 5.0855 5.0888 
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Table 2 shows the variation of the critical buckling loads of simply supported functionally 
graded rectangular plates (FGM) in various types of mechanical loads (axial or biaxial) using 
different shear theories, where the variation of volume fraction of the components is linear (P=1). 
It is clear that the results obtained by these refined theories 1 and 2 are in excellent convergence 
with those obtained by high-order theories (Reddy 2000 and FSDT) for all values of the thickness 
ratio a/h. From this comparison we can see that the critical buckling load increases by increasing 
the thickness ratio a/h, in other words, from the thin plate to thick one. 
 
 
Table 3 Variation of the critical buckling load N  of a simply supported plate under uniaxial compression 
(γ1=-1, γ2=0) 

a/b Theory a/h 
P 

ceramic 1 5 20 metal 

0.5 

Present Theory 1 

5 6.7218b 3.4170b 2.1459b 1.7126b 2.7663b 

20 7.5993b 3.7930b 2.4942b 2.0255b 3.9627b 

100 7.6635b 3.8200b 2.5204b 2.0277b 4.0763b 

Present Theory 2 

5 6.7259b 3.4188b 2.1446b 1.7148b 2.7716b 

20 7.5996b 3.7932b 2.4940b 2.0057b 3.9632b 

100 7.6635b 3.8200b 2.5204b 2.0277b 4.0764b 

1 

Present Theory 1 

5 16.0271b 8.2272b 5.0448b 4.0112b 3.6244b 

20 19.3531b 9.6676b 6.3438b 5.0991b 5.4568b 

100 19.6145b 9.7775b 6.4506b 5.1896b 5.6408b 

Present Theory 2 

5 16.0424b 8.2340b 5.0407b 4.0188b 3.6325b 

20 19.3543b 9.6681b 6.3433b 5.0998b 5.4577b 

100 19.6145b 9.7775b 6.4506b 5.1897b 5.6409b 

1.5 

Present Theory 1 

5 28.2386a 15.0531a 8.4506a 6.6304a 5.2018a 

20 45.8960a 23.0298a 14.9408a 11.9869a 8.4545a 

100 47.8298a 23.8469a 15.7252a 12.6502a 8.8107a 

Present Theory 2 

5 28.3163a 15.0904a 8.4445a 6.6628a 5.2161a 

20 45.9050a 23.0337a 14.9373a 11.9919a 8.4561a 

100 47.8302a 23.8471a 15.7251a 12.6504a 8.8108a 

a- the mode of the plate is (m, n) = (2, 1). b- the mode of the plate is (m, n) = (1, 1) 
 

Table 4 Variation of the critical buckling load N  of a simply supported plate under biaxial compression 
(γ1=-1, γ2=-1) 

a/b Theory a/h 
p 

ceramic 1 5 20 metal 

0.5 

Present Theory 1 

5 5.3774 2.7336 1.7167 1.3701 0.9905 

20 6.0795 3.0344 1.9953 1.6044 1.1199 

100 6.1308 3.0560 2.0163 1.6222 1.1293 

Present Theory 2 
5 5.3807 2.7350 1.7157 1.3718 0.9911 

20 6.0797 3.0345 1.9952 1.6045 1.1199 
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Table 4 Continued 

a/b Theory a/h 
p 

ceramic 1 5 20 metal 

0.5 Present Theory 2 100 6.1308 3.0560 2.0163 1.6222 1.1293 

1 

Present Theory 1 

5 8.0135 4.1136 2.5224 2.0056 1.4761 

20 9.6765 4.8338 3.1719 2.5495 1.7825 

100 9.8072 4.8887 3.2253 2.5948 1.8066 

Present Theory 2 

5 8.0212 4.1170 2.5203 2.0094 1.4775 

20 9.6771 4.8340 3.1716 2.5499 1.7826 

100 9.8072 4.8887 3.2253 2.5948 1.8066 

1.5 

Present Theory 1 

5 11.6896 6.0834 3.6097 2.8587 2.1533 

20 15.5892 7.7978 5.0994 4.0966 2.8717 

100 15.9312 7.9419 5.2388 4.2146 2.9346 

Present Theory 2 

5 11.7072 6.0915 3.6063 2.8639 2.1566 

20 15.5908 7.7985 5.0987 4.0475 2.8719 

100 15.9312 7.9419 5.2388 4.2147 2.9347 

 
Table 5 Variation of the critical buckling load N  of a simply supported plate under biaxial load, 
compression and tension (γ1=-1, γ2=1)  

a/b Theory a/h 
p 

ceramic 1 5 20 metal 

0.5 

Present Theory 1 

5 8.9624b 4.5560b 2.8612b 2.2835b 1.6509b 

20 10.1325b 5.0574b 3.3256b 2.6740b 1.8665b 

100 10.2180b 5.0933b 3.3606b 2.7037b 1.8822b 

Present Theory 2 

5 8.9679b 4.5584b 2.8595b 2.2864b 1.6519b 

20 10.1329b 5.056b 3.3254b 2.6742b 1.8665b 

100 10.2180b 5.0933b 3.3606b 2.7037b 1.8822b 

1 

Present Theory 1 

5 26.2338a 13.8618a 7.9389a 6.2473a 4.8325a 

20 39.4971a 19.7933a 12.8833a 10.3417a 7.2757a 

100 40.8291a 20.3554a 13.4247a 10.7998a 7.5211a 

Present Theory 2 

5 26.2928a 13.8896a 7.9318a 6.2729a 4.8434a 

20 39.5033a 19.7960a 12.8808a 10.3452a 7.2769a 

100 40.8294a 20.3555a 13.4246a 10.8000a 7.5212a 

1.5 

Present Theory 1 

5 64.5454a 34.4071a 19.3158a 15.1552a 11.8899a 

20 104.9052a 52.6397a 34.1505a 27.3986a 19.3246a 

100 109.3253a 54.5073a 35.9434a 28.9149a 20.1388a 

Present Theory 2 

5 64.7231a 34.4923a 19.3017a 15.2293a 11.9226a 

20 104.9258a 52.6484a 34.1425a 27.4101a 19.3284a 

100 109.3262a 54.5077a 35.9431a 28.9154a 20.1390a 

a- the mode of the plate is (m, n) = (2, 1). b- the mode of the plate is (m, n) = (1, 1) 
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Table 6 Critical buckling temperature of FGM plate under uniform temperature rise for different values of 
power law index P and aspect ratio a/b with a/h=100 

P Theory a/b=1 a/b=2 a/b=3 a/b=4 a/b=5 

Ceramic 

CPT 17.0991 42.7477 85.4955 145.3424 222.2883

Reddy (2000) 17.0894 42.6875 85.2551 144.6490 220.6706
Zenkour (2010) 17.0894 42.6876 85.2554 144.6500 220.6729

Present Theory 1 17.0894 42.6876 85.2554 144.6500 220.6729

Present Theory 2 17.0895 42.6879 85.2565 144.6531 220.6802

1 

CPT 7.9437 19.8594 39.7188 67.5220 103.2690
Reddy (2000) 7.9400 19.8358 39.6248 67.2506 102.6356

Zenkour (2010) 7.9400 19.8369 39.6249 67.2510 102.6365

Present Theory 1 7.9400 19.8359 39.6249 67.2510 102.6365
Present Theory 2 7.9400 19.8360 39.6253 67.2523 102.6394

2 

CPT 7.0426 17.6065 35.2130 59.8621 91.5538 

Reddy (2000) 7.0390 17.5840 35.1234 59.6037 90.9508 

Zenkour (2010) 7.0390 17.5840 35.1233 59.6034 90.9501 
Present Theory 1 7.0390 17.5840 35.1233 59.6034 90.9501 

Present Theory 2 7.0390 17.5841 35.1235 59.6039 90.9514 

5 

CPT 7.2657 18.1642 36.3285 61.7585 94.4542 

Reddy (2000) 7.2606 18.1327 36.2025 61.3951 93.6069 
Zenkour (2010) 7.2606 18.1324 36.2014 61.3921 93.5999 

Present Theory 1 7.2606 18.1324 36.2014 61.3921 93.5999 

Present Theory 2 7.2605 18.1323 36.2008 61.3904 93.5959 

10 

CPT 7.4692 18.6731 37.3463 63.4888 97.1005 

Reddy (2000) 7.4634 18.6366 37.2006 63.0687 96.1213 

Zenkour (2010) 7.4634 18.6365 37.2001 63.0673 96.1183 

Present Theory 1 7.4634 18.6365 37.2001 63.0673 96.1183 
Present Theory 2 7.4634 18.6365 37.2002 63.0677 96.1191 

Metal 

CPT 5.5014 13.7536 27.5072 46.7623 71.5188 

Reddy (2000) 5.4983 13.7342 27.4299 46.5392 70.9983 

Zenkour (2010) 5.4983 13.7342 27.4300 46.5395 70.9991 
Present Theory 1 5.4983 13.7342 27.4300 46.5395 70.9991 

Present Theory 2 5.4983 13.7343 27.4303 46.5405 71.0014 

 
Table 7 Critical buckling temperature of square FGM plate under uniform temperature rise for different 
values of power law index k and side-to-thickness ratio a/h 

P Theory a/h=10 a/h=20 a/h=40 a/h=60 a/h=80 a/h=100

Ceramic 

CPT 1709.9106 427.4776 106.8694 47.4975 26.7173 17.0991

Reddy (2000) 1618.6819 421.5352 106.4940 47.4232 26.6938 17.0894

Zenkour (2010) 1618.8200 421.5439 106.4946 47.4233 26.6938 17.0894
Present Theory 1 1618.8200 421.5439 106.4946 47.4233 26.6938 17.0894

Present Theory 2 1619.2253 421.5706 106.4962 47.4236 26.6939 17.0895
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Table 7 Continued 

P Theory a/h=10 a/h=20 a/h=40 a/h=60 a/h=80 a/h=100

1 

CPT 728.9363 183.7513 46.6355 21.0055 11.9571 7.7348 

Reddy (2000) 758.3956 196.2652 49.5016 22.0369 12.4029 7.9400 
Zenkour (2010) 758.4505 196.2686 49.5019 22.0370 12.4029 7.9400 

Present Theory 1 758.4506 196.2686 49.5019 22.0370 12.4029 7.9400 

Present Theory 2 758.6117 196.2791 49.5025 22.0371 12.4029 7.9400 

2 

CPT 610.4694 155.4493 40.1353 18.3323 10.5570 6.8958 

Reddy (2000) 670.1092 173.8487 43.8763 19.5351 10.9953 7.0390 

Zenkour (2010) 670.0769 173.8462 43.8762 19.5350 10.9952 7.0390 

Present Theory 1 670.0769 173.8462 43.8762 19.5350 10.9952 7.0390 
Present Theory 2 670.1544 173.8511 43.8765 19.5351 10.9953 7.0390 

5 

CPT 647.7594 165.3567 42.8152 19.5758 11.2718 7.3568 

Reddy (2000) 679.3104 178.5353 45.2139 20.1435 11.3403 7.2606 

Zenkour (2010) 670.0769 173.8462 43.8762 19.5350 10.9952 7.0390 
Present Theory 1 678.9491 178.5098 45.2122 20.1432 11.3402 7.2606 

Present Theory 2 678.7519 178.4956 45.2113 20.1430 11.3401 7.2605 

10 

CPT 704.2150 178.3669 45.5614 20.5966 11.7463 7.6037 

Reddy (2000) 692.6947 183.1444 46.4554 20.7029 11.6564 7.4634 
Zenkour (2010) 692.5441 183.1338 46.4547 20.7027 11.6564 7.4634 

Present Theory 1 692.5442 183.1333 46.4547 20.7027 11.6564 7.4634 

Present Theory 2 692.5976 183.1364 46.4548 20.7028 11.6564 7.4634 

Metal 

CPT 550.1451 137.5362 34.3840 15.2818 8.5960 5.5014 

Reddy (2000) 520.7933 135.6243 34.2633 15.2579 8.5884 5.4983 

Zenkour (2010) 520.8377 135.6271 34.2634 15.2579 8.5884 5.4983 

Present Theory 1 520.8377 135.6271 34.2634 15.2579 8.5884 5.4983 
Present Theory 2 520.9681 135.6357 34.2640 15.2580 8.5884 5.4983 

 
Table 8 Critical buckling temperature of FGM plate under linear temperature rise for different values of 
power law index P and aspect ratio a/b with a/h=100 

P Theory a/b=1 a/b=2 a/b=3 a/b=4 a/b=5 

Ceramic 
0 

CPT 24.1982 75.4955 160.9910 280.6848 434.5767 

Reddy (2000) 24.1789 75.3751 160.5102 279.2980 431.3412 

Zenkour (2010) 24.1789 75.3753 160.5109 279.3000 431.3459 

Present Theory 1 24.1789 75.3753 160.5109 279.3000 431.3459 

Present Theory 2 24.1790 75.3758 160.5131 279.3063 431.3605 

1 

CPT 5.5209 27.8683 65.1140 117.2580 184.3002 

Reddy (2000) 5.5138 27.8242 64.9376 116.7490 183.1123 

Zenkour (2010) 5.5138 27.8242 64.9379 116.7498 183.1140 

Present Theory 1 5.5138 27.8242 64.9379 116.7498 183.1140 

Present Theory 2 5.5139 27.8244 64.9387 116.7521 183.1194 
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Table 8 Continued 

P Theory a/b=1 a/b=2 a/b=3 a/b=4 a/b=5 

2 

CPT 3.5956 22.1916 53.1850 96.5757 152.3637 

Reddy (2000) 3.5893 22.1522 53.0273 96.1209 151.3023 

Zenkour (2010) 3.5893 22.1521 53.0271 96.1203 151.3011 

Present Theory 1 3.5893 22.1521 53.0271 96.1203 151.3011 

Present Theory 2 3.5893 22.1522 53.0275 96.1213 151.3034 

5 

CPT 3.8999 22.6595 53.9256 97.6980 153.9769 

Reddy (2000) 3.8912 22.6052 53.7086 97.0725 152.5184 

Zenkour (2010) 3.8911 22.6047 53.70.68 97.0673 152.5063 

Present Theory 1 3.8911 22.6047 53.7068 97.0673 152.5063 

Present Theory 2 3.8911 22.6045 53.7058 97.0644 152.4995 

10 

CPT 4.3757 24.8897 57.3198 103.6459 163.2080 

Reddy (2000) 4.3653 24.1650 57.0615 102.9015 161.4729 

Zenkour (2010) 4.3653 24.1648 57.0607 102.8991 161.4774 

Present Theory 1 4.3653 24.1648 57.0607 102.8991 161.4674 

Present Theory 2 4.3653 24.1649 57.0609 102.8997 161.4689 

Metal 

CPT 1.0029 17.5072 45.0145 83.5246 133.0377 

Reddy (2000) 0.9967 17.4685 44.8598 83.0785 131.9967 

Zenkour (2010) 0.9967 17.4685 44.8600 83.0791 131.9982 

Present Theory 1 0.9967 17.4685 44.8600 83.0791 131.9982 

Present Theory 2 0.9967 17.4687 44.8607 83.0811 132.0029 

 
Table 9 Critical buckling temperature of square FG plate under linear temperature rise for different values of 
power law index P and side-to-thickness ratio a/h 

P Theory a/h=10 a/h=20 a/h=40 a/h=60 a/h=80 a/h=100

Ceramic 

CPT 3409.8213 844.9553 203.7388 84.9950 43.4347 24.1982

Reddy (2000) 3227.3638 833.0705 202.9881 84.8464 43.3876 24.1789

Zenkour (2010) 3227.6401 833.0879 202.9892 84.8466 43.3877 24.1789

Present Theory 1 3227.6401 833.0879 202.9892 84.8466 43.3877 24.1789

Present Theory 2 3228.4506 833.1413 202.9925 84.8473 43.3879 24.1790

1 

CPT 1357.7181 335.2421 78.0861 30.0178 13.0479 5.1291 

Reddy (2000) 1412.9608 358.7114 83.4614 31.9522 13.8839 5.5138 

Zenkour (2010) 1413.0711 358.7178 83.4618 31.9523 13.8839 5.5138 

Present Theory 1 1413.0711 358.7178 83.4618 31.9523 13.8839 5.5138 

Present Theory 2 1413.3734 358.7375 83.4630 31.9525 13.8840 5.5139 

2 

CPT 1065.8296 264.8413 61.8500 23.4694 9.7823 3.3373 

Reddy (2000) 1170.8157 297.2305 68.4355 25.5866 10.5537 3.5893 

Zenkour (2010) 1170.7587 297.2261 68.4352 25.5866 10.5537 3.5893 

Present Theory 1 1170.7587 297.2261 68.4352 25.5866 10.5537 3.5893 

Present Theory 2 1170.8951 297.2347 68.4357 25.5867 10.5537 3.5893 
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Table 9 Continued 

P Theory a/h=10 a/h=20 a/h=40 a/h=60 a/h=80 a/h=100

5 

CPT 1106.3768 276.0209 65.0910 25.0893 10.7956 4.0568 

Reddy (2000) 1160.6852 298.7050 69.2199 26.0665 10.9135 3.8912 

Zenkour (2010) 1160.0634 298.6611 69.2171 26.0659 10.9133 3.8911 
Present Theory 1 1160.0634 298.6611 69.2171 26.0659 10.9133 3.8911 

Present Theory 2 1159.7240 298.6366 69.2155 26.0656 10.9132 3.8911 

10 

CPT 1239.0539 307.2174 71.8775 27.6383 11.9548 4.6139 

Reddy (2000) 1218.6392 315.6834 73.4616 27.8265 11.7956 4.3653 
Zenkour (2010) 1218.3724 315.6637 73.4603 27.8263 11.7956 4.3653 

Present Theory 1 1218.3724 315.6637 73.4603 27.8263 11.7956 4.3653 

Present Theory 2 1218.4670 315.6692 73.4607 27.8263 11.7956 4.3653 

Metal 

CPT 1090.2903 265.0725 58.7681 20.5636 7.1920 1.0029 

Reddy (2000) 1031.5866 261.2487 58.5266 20.5158 7.1769 0.9967 

Zenkour (2010) 1031.6755 261.2543 58.5269 20.5158 7.1769 0.9967 

Present Theory 1 1031.6755 261.2543 58.5269 20.5158 7.1769 0.9967 
Present Theory 2 1031.9362 261.2715 58.5280 20.5161 7.1769 0.9967 

 
Table 10 Critical buckling temperature of FG plate under non-linear temperature rise for different values of 
power law index k and aspect ratio a/b, and temperature exponent γ with a/h=10 

 a/b=1 a/b=2 a/b=3 

P Theory γ=2 γ=5 γ=10 γ=2 γ=5 γ=10 γ=2 γ=5 γ=10

Ceramic 

CPT 5.1147 10.2294 18.7540 12.8093 25.6186 46.9675 25.6336 51.2673 93.9900
Reddy (2000) 4.8410 9.6820 17.7505 11.2269 22.4538 41.1654 20.0066 40.0133 73.3577

Zenkour (2010) 4.8414 9.6829 17.7520 11.2294 22.4589 41.1747 20.0164 40.0328 73.3934
Present Theory 1 4.8414 9.6829 17.7520 11.2294 22.4589 41.1747 20.0164 40.0328 73.3934
Present Theory 2 4.8426 9.6853 17.7564 11.2363 22.4727 41.1999 20.0401 40.0802 73.4803

1 

CPT 2.2072 4.5241 8.5812 5.5391 11.3534 21.5346 11.0921 22.7355 43.1235
Reddy (2000) 2.1066 4.3179 8.1900 4.9508 10.1476 19.2474 8.9673 18.3802 34.8626

Zenkour (2010) 2.1067 4.3182 8.1906 4.9517 10.1495 19.2512 8.9711 18.3880 34.8774
Present Theory 1 2.1067 4.3182 8.1906 4.9517 10.1496 19.2512 8.9711 18.3880 34.8774
Present Theory 2 2.1072 4.3191 8.1924 4.9543 10.1549 19.2613 8.9804 18.4070 34.9134

2 

CPT 1.7627 3.4419 6.4379 4.4256 8.6417 16.1638 8.8640 17.3080 32.3737
Reddy (2000) 1.6766 3.2738 6.1235 3.9246 7.6633 14.3339 7.0658 13.7970 25.8066

Zenkour (2010) 1.6765 3.2736 601232 3.9243 7.6627 14.3327 7.0654 13.7962 25.8051
Present Theory 1 1.6765 3.2736 6.1232 3.9243 7.6627 14.3327 7.0654 13.7962 25.8051
Present Theory 2 1.6767 3.2740 6.1239 3.9255 7.6650 14.3370 7.0700 13.8052 25.8218

5 

CPT 1.7083 3.0498 5.3522 4.2885 7.6562 13.4363 8.5888 15.3337 26.9097
Reddy (2000) 1.5964 2.8500 5.0017 3.6521 6.5202 11.4425 6.3755 11.3822 19.9751

Zenkour (2010) 1.5955 2.8485 4.9990 3.6479 6.5126 11.4292 6.3635 11.3608 19.9377
Present Theory 1 1.5955 2.8485 4.9990 3.6479 6.5126 11.4292 6.3635 11.3608 19.9377
Present Theory 2 1.5950 2.8477 4.9975 3.6457 6.5086 11.4223 6.3572 11.3508 19.9200
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Table 10 Continued 

  a/b=1 a/b=2 a/b=3 

P Theory γ=2 γ=5 γ=10 γ=2 γ=5 γ=10 γ=2 γ=5 γ=10

10 

CPT 1.8092 3.1126 5.1492 4.5414 7.8130 12.9250 9.0951 15.6470 25.8848
Reddy (2000) 1.6770 2.8850 4.7728 3.7970 6.5322 10.8062 6.5402 11.2515 18.6134

Zenkour (2010) 1.6766 2.8844 4.7717 3.7953 6.5293 10.8015 6.5362 11.2448 18.6022
Present Theory 1 1.6766 2.8844 4.7717 3.7953 6.5293 10.8015 6.5362 11.2448 18.6022
Present Theory 2 1.6767 2.8846 4.7721 3.7962 6.5309 10.8040 6.5400 11.2512 18.6128

Metal 

CPT 1.6354 3.2708 5.9965 4.1110 8.2221 15.0739 8.2371 16.4743 30.2029
Reddy (2000) 1.5473 3.0947 5.6737 3.6019 7.2039 13.2072 6.4267 12.8535 23.5647

Zenkour (2010) 1.5475 3.0950 5.6742 3.6027 7.2055 13.2102 6.4298 12.8597 23.5762
Present Theory 1 1.5475 3.0950 5.6742 3.6027 7.2055 13.2102 6.4298 12.8597 23.5762
Present Theory 2 1.5479 3.0958 5.6757 3.6050 7.2100 13.2183 6.4375 12.8750 23.6042

 
Table 11 Critical buckling temperature of FG plate under non-linear temperature rise for different values of 
power law index P and aspect ratio a/b, and temperature exponent γ with a/h=5 

 a/b=1 a/b=2 a/b=3 

P Theory γ=2 γ=5 γ=10 γ=2 γ=5 γ=10 γ=2 γ=5 γ=10 

Ceramic 

CPT 20.5039 41.0078 75.1810 51.2823 102.5646 188.0351 102.4896 205.1592 376.1253
Reddy 
(2000) 

16.7353 33.4706 61.3626 32.8633 65.7266 120.4989 48.5388 97.0776 177.9756

Zenkour 
(2010) 

16.7353 33.4833 61.3861 32.8985 65.7971 120.6281 48.6504 97.3080 178.3980

Present 
Theory 1 

16.7416 33.4833 61.3861 32.8985 65.7971 120.6281 48.6540 97.3080 178.3980

Present 
Theory 2 

16.7577 33.5154 61.4450 32.9725 65.9451 120.8994 48.8584 97.7169 179.1477

1 

CPT 8.8709 18.1827 34.4879 22.1983 45.4997 86.3014 44.4106 91.0281 172.6573
Reddy 
(2000) 

7.4561 15.2827 28.9875 15.0800 30.9094 58.6274 22.9214 46.9819 89.1127

Zenkour 
(2010) 

7.4585 15.2878 28.9970 15.0944 30.9390 58.6835 22.9714 47.0843 89.3070

Present 
Theory 1 

7.4585 15.2878 28.9970 15.0944 30.9390 58.6835 22.9714 47.0843 89.3070

Present 
Theory 2 

7.4647 15.3005 29.0212 14.1247 31.0011 58.8013 23.0600 47.2659 89.6516

2 

CPT 7.0886 13.8415 25.8889 17.7406 34.6407 64.7936 35.4938 69.3061 129.6333
Reddy 
(2000) 

5.8885 11.4980 21.5065 11.7750 22.9923 43.0059 17.7018 34.5650 64.6519

Zenkour 
(2010) 

5.8880 11.4971 21.5048 11.7774 22.9970 43.0146 17.7226 34.6058 64.7282

Present 
Theory 1 

5.8880 11.4971 21.5048 11.7774 22.9970 43.0146 17.7226 34.6058 64.7282

Present 
Theory 2 

5.8910 11.5030 21.5157 11.7940 23.0294 43.0753 17.7774 34.7127 64.9282
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Table 11 Continued 

  a/b=1 a/b=2 a/b=3 

P Theory γ=2 γ=5 γ=10 γ=2 γ=5 γ=10 γ=2 γ=5 γ=10 

5 

CPT 6.8687 12.2627 21.5203 17.1895 30.6885 53.8566 34.3909 61.3982 107.7502
Reddy 
(2000) 

5.3741 9.5945 16.8378 10.1682 18.1534 31.8582 14.5269 25.9349 45.5142

Zenkour 
(2010) 

5.3654 9.5789 16.8104 10.1426 18.1076 31.7779 14.4932 25.8748 45.4087

Present 
Theory 1 

5.3654 9.5789 16.8104 10.1426 18.1076 31.7779 14.4932 25.8748 45.4087

Present 
Theory 2 

5.3611 9.5711 16.7968 10.1335 18.0914 31.7494 14.4953 25.8785 45.4152

10 

CPT 7.2736 12.5134 20.7009 18.2025 31.3150 51.8043 36.4172 62.6510 103.6433
Reddy 
(2000) 

5.5400 9.5308 15.7669 10.2435 17.6226 29.1530 14.3463 24.6810 40.8297

Zenkour 
(2010) 

5.5369 9.5255 15.7580 10.2387 17.6144 29.1395 14.3554 24.6966 40.8555

Present 
Theory 1 

5.5369 9.5255 15.7580 10.2387 17.6144 29.1395 14.3554 24.6966 40.8555

Present 
Theory 2 

5.5392 9.5296 15.7648 10.2532 17.6393 29.1806 14.4038 24.7799 40.9934

Metal 

CPT 6.5867 13.1734 24.1513 16.4893 32.9787 60.4609 32.9937 65.9874 120.9769
Reddy 
(2000) 

5.3742 10.7484 19.7055 10.5632 21.1264 38.7319 15.6066 31.2133 57.2244

Zenkour 
(2010) 

5.3762 10.7525 19.7130 10.5745 21.1491 38.7734 15.6437 31.2874 57.3603

Present 
Theory 1 

5.3762 10.7525 19.7130 10.5745 21.1491 38.7734 15.6437 31.2874 57.3603

Present 
Theory 2 

5.3814 10.7628 19.7319 10.5983 21.1967 38.8607 15.7095 31.4190 57.6015

 
 
The critical buckling load is presented in Tables 3, 4 and 5 for a simply supported plate 

subjected to uniaxial compression, biaxial compression and compression and tension at the same 
time, respectively. In each table we took three different values of aspect ratio a/b and the thickness 
ratio a/h, further, the material varies gradually from ceramic to metal. From the tables, it can 
clearly be observed that the critical buckling load decreases with the increase of the material 
property P, which is logical since we goes from the more rigid material (which is ceramic) at least 
rigid material (which is metal). Moreover, the critical buckling load increases with increasing of 
the thickness ratio a/h and the aspect ratio a/b for all load cases. 

Fig. 2 shows the variation of the critical buckling load of a functionally graded plate as a 
function of the material property P for different values of the aspect ratio a/b using the present 
theories 1 and 2. From this figure we can pull two important observations: first, the critical 
buckling load decreases with the increase of the material index P, which is obvious since we 
graduate from the more rigid material to the less rigid, and second, that this load increases by 
increasing the aspect ratio a/b. Fig. 3 shows the variation of the critical buckling load of a 
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functionally graded square plate as function of thickness ratio of a/h for different values of 
material index P, where the critical load increases quickly in the case of thick plates (a/h<20) and 
slowly for thin plates (a/h>20). Fig. 4 shows that the critical buckling load of the plate is 
maximum in the case of ceramic and decreases until the metal where it reaches its minimum value 
(see also e comparison tables). 

Fig. 5 shows the variation of the critical buckling load of a square FGM plate as a function of 
Ec/Em ratio for different values of material index P. From the last figure it can be seen that the 
critical buckling load increases with the increasing of Ec/Em ratio, that is to say the increase in the 
percentage of the ceramic increases the critical buckling load in the plate and vice versa. 

 
3.2 Thermal buckling load 
 
In Tables 6 and 7 the results of buckling analysis for the plate under uniform temperature rise 

are presented. These tables show the comparisons of the critical buckling temperature change 
obtained by the present theory with those given by Eslami and Samsam (2006) based on both 
higher plate theory Reddy (2000), Zenkour (2010) and the classical plate theory CPT, The results 
of the presents theories (present theory 1 and present theory 2) show very good agreement with 
higher plate theory (Reddy 2000, Zenkour and Sobhy 2010) and thick FGM plates. Table 6 shows 
that the buckling temperature increases by the increase of the aspect ratio b/a and decreases with 
increase of the power law index P from 0 to 10. Table 7 shows that the buckling temperature 
decreases by the increase of the dimension ratio a/h and the power law index P from 0 to 10. It is 
interesting to note that the buckling temperatures for homogeneous plates (P=0) are considerably 
higher than those for the FGM plates (P>0), especially for the comparatively longer and thicker 
plates. The critical buckling temperatures obtained based on classical plate theory are noticeably 
greater than values obtained based on higher order shear deformation theory. The differences are 
considerable for long and thin plates. 

In Tables 8 and 9 the results of buckling analysis for the plate under linear temperature change 
across the thickness are presented. It can be seen that the results of present theory are almost 
identical with those reported by Javaheri and Eslami (2002) based on Reddy (2000), Zenkour and 
Sobhy (2010). It is concluded that the buckling temperature increases by the increase of the aspect 
ratio a/b, decreases by the increase of the power law index P, and decreases by the increase of the 
dimension ratio a/h. Also, the buckling temperatures for homogeneous plates are considerably 
higher than those for the FGM plates especially for the comparatively longer and thicker plates. 
The critical buckling temperatures obtained based on classical plate theory are noticeably greater 
than values obtained based on higher order shear deformation theory. The differences are 
considerable for long and thin plates. Hence, in order to obtain accurate results for thick FG plates, 
it is necessary to consider the transverse shear deformation effects by using shear deformation 
theories. It should be noted that the unknown function in present theory is only four, while the 
unknown function in both Reddy (2000), Zenkour and Sobhy (2010) is five. It can be concluded 
that the present theory is not only accurate but also simple in predicting critical buckling 
temperature of FG plates. 

Tables 10 and 11 exhibit the critical temperature difference tcr=10-3Tcr for different values of the 
aspect ratio a/b, the temperature exponent  and the power law index P under non-linear 
temperature loads at a/h=10 and 5, respectively. The nonlinearity temperature exponent  is taken 
here as 2, 5 and 10. It can be concluded from the presented results that the present theory gives 
more accurate results of critical buckling temperature when compared to the higher-order shear 
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deformation theory. The effect of a/b on the critical buckling tcr is similar to that in the case of 
uniform and linear temperature difference across the thickness. As the power law index k 
increases, the critical buckling tcr decreases to reach lowest values and then increases excluding tcr 
of the rectangular plates for =10. It is also noticed from Tables 10 and 11 that the Tcr increases 
with the increase of the non-linearity parameter . In general, the values of the critical temperature 
difference calculated by using the shear deformation theories are lower than those calculated by 
using the classical plate theory, indicating the shear deformation effect. 

Fig. 6 shows the variation trend of critical temperature difference Tcr with respect to the plate 
aspect ratio a/b for different values of material gradient index P under a uniform, linear and non-
linear temperature loads. It is observed that with increasing the plate aspect ratio a/b, the critical 
buckling temperature difference also increases steadily, whatever the material gradient index P is. 
Because the ceramic plate is weaker than the metallic one, thus the critical buckling temperature of 
the first plate is higher than that of the second. For the FGM plate, Tcr decreases as the metallic 
constituent in the plate increases. The critical buckling temperature change Tcr versus the side-to-
thickness ratio a/h and the aspect ratio a/b of FGM plates under various thermal loading types is 
exhibited in Figs. 7, 8 and 9. It can be seen from these figures that, regardless of the loading type 
and the power-law index P, the critical buckling temperature difference Tcr decreases as the side-
to-thickness ratio a/h increases and it is reduced with the decrease of the aspect ratio a/b. The 
critical buckling temperature for the ceramic plate is higher than that for the FGM plate. This is 
because the ceramic plate is stronger than the other. The differences between the loading types 
decrease with the increase of a/h because the plate becomes thin. It is also noticed from Figs. 8 and 
9 that the Tcr increases with the increase of the non-linearity parameter . 
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Fig. 2 Variation of the critical buckling load N of an FGM square plate of as a function 
of the material proprety P for different values of the aspect ratio a/b with (a=5h) 
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Fig. 3 Variation of the critical buckling load N of a functionally graded square plate as 
a function of thickness ratio a/h 
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Fig. 4 The effect of the material property P on the critical buckling load for a simply 
supported square plate (a=b=10h) under various loading conditions 
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Fig. 5 Effect of the ratio Ec/Em on the critical buckling load for a simply supported 
square plate made of FGM (a=b=10h) under uniaxial compression (γ1=-1, γ2=0) 

 

 

Fig. 6 Critical buckling temperature difference Tcr due to uniform (a), linear (b) and non-
linear (c) temperature rise across the thickness versus the aspect ratio a/b 
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Fig. 7 Critical buckling temperature difference Tcr due to uniform (a), linear (b) and non-
linear (c) temperature rise across the thickness versus the side-to-thickness ratio a/h

 

 
Fig. 8 Critical buckling temperature difference Tcr due to uniform, linear and non-linear 
temperature rise across the thickness versus the side-to-thickness ratio a/h and for 
different values of the nonlinearity parameter γ (P=5) 
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Fig. 9 Critical buckling temperature difference Tcr due to uniform, linear and 
non-linear temperature rise across the thickness versus the aspect ratio a/b and 
for different values of the non-linearity parameter γ (P=5) 

 
 

4. Conclusions 
 
In this paper, an efficient and simple refined plate theory was successfully developed for 

buckling analysis of FGM plates. Based on the four variable refined plate theory, the equilibrium 
and stability equations of thick functionally graded rectangular plates have been derived. The 
theory, which has strong similarity with classical plate theory in many aspects, accounts for a 
quadratic variation of the transverse shear strains across the thickness and satisfies the zero 
traction boundary conditions on the top and bottom surfaces of the plate without using shear 
correction factors. The accuracy and efficiency of these presents theories have been demonstrated 
for buckling analysis of simply supported FGM plates. To certify the accuracy of the presents 
theories, the results obtained by the present analysis have been compared with their counterparts in 
the literature. It can be concluded that the presents theories  is not only accurate but also efficient 
in predicting the critical buckling loads of FGM plate. Due to the interesting features of the 
presents theories, the present findings will be a useful benchmark for evaluating the reliable of 
other future plate theories. 
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