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Abstract.  The objective of the present work is to optimize process parameters namely, cutting speed, feed 

rate, and depth of cut in milling of AISI 304 stainless steel. In this work, experiments were carried out as per 

the Taguchi experimental design and an L27 orthogonal array was used to study the influence of various 

combinations of process parameters on surface roughness (Ra) and material removal rate (MRR). As a 

dynamic approach, the multiple response optimization was carried out using grey relational analysis (GRA) 

and desirability function analysis (DFA) for simultaneous evaluation. These two methods are considered in 

optimization, as both are multiple criteria evaluation and not much complicated. The optimum process 

parameters found to be cutting speed at 63 m/min, feed rate at 600 mm/min, and depth of cut at 0.8 mm. 

Analysis of variance (ANOVA) was employed to classify the significant parameters affecting the responses. 

The results indicate that depth of cut is the most significant parameter affecting multiple response 

characteristics of GFRP composites followed by feed rate and cutting speed. The experimental results for the 

optimal setting show that there is considerable improvement in the process. 
 

Keywords:  AISI 304 stainless steel; end milling; surface roughness; MRR; GRA; DFA 

 
 
1. Introduction 
 

Austenitic stainless steels are grades of chromium-nickel steels exhibiting a very high corrosion 

resistance in addition to a wide range of excellent mechanical properties not offered by any other 

alloy. Austenitic stainless steels cannot be hardened by traditional heat treatment processes but 

they can be strengthened by cold working (Peckner and Bernstein 1977). AISI 304 steel is hard to 

machine due to their high strength, high ductility and low thermal conductivity, high tensile 

strength, high fracture toughness and high work hardening rate. Machining operations of austenitic 

stainless steels are usually accompanied by a number of difficulties such as irregular wear and 

built-up-edge on the tool flank face and crater face, respectively (Kosa 1989, Groover 1990). The 

present of built-up-edge will cause an increase in tool wear rate and deterioration of the surface 

integrity of the work. 
The surface roughness (Ra) and material removal rate (MRR) have been identified as quality 
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attributes and are assumed to be directly related to performance of machining process, productivity 

and production costs. Several experimental investigations have been carried out over the years in 

order to study the effect of cutting parameters, tool geometries and cutting fluids on the workpiece 

surface integrity using several workpiece materials. 

Thangarasu et al. (2012) established a relationship with the basic parameters to the responses 

namely surface roughness and material removal rate for AISI 304 stainless steel using 

Box-Behnken Response Surface Methodology, and multi-objective optimization of CNC milling 

process was carried out using Genetic Algorithm. Nalbant et al. (2007) used Taguchi method to 

find optimum cutting parameters for surface roughness in turning of AISI 1030 carbon steel bars 

using TiN coated tools by considering three cutting parameters namely, insert radius, feed rate, and 

depth of cut. They recommended, use of greater insert radius, low feed rate and low depth of cut to 

achieve better surface roughness for the specific test range. The Influence of cutting fluids on tool 

wear and surface roughness during turning of AISI 304 with carbide tool was carried out by 

Anthony Xavior et al. (2009). The study of surface roughness and tool wear on milling of AISI 

304 stainless steel using different cooling conditions was done by Chockalingam et al. (2012). 

Kaladhar et al. (2010) studied surface roughness in turning of AISI 202 austenitic stainless steel 

using CVD coated cemented carbide tools. They have observed feed is the most significant factor 

that influences the surface roughness followed by nose radius. Bhattacharya et al. (2009) presented 

Taguchi and ANOVA techniques to analyse the effect of cutting parameters on surface finish and 

power consumption during high speed machining of AISI 1045 steel. They reported that cutting 

speed is the most significant factor on the surface roughness and power consumption, while the 

other parameters did not substantially affect the responses. The influence of machining parameters 

on the performance measures, surface roughness and flank wear in turning of AISI 304 austenitic 

stainless steel with a two layer Chemical vapour deposition(CVD) coated tool was attempted by 

Kaladhar et al.(2013). Ghani et al. (2004) applied Taguchi method to find optimum cutting 

parameters for surface roughness and cutting force in end milling when machining hardened steel 

AISI H13 with TiN coated P10 carbide insert tool under semi-finishing and finishing conditions of 

high speed cutting. Yang et al. (1998) have used Taguchi method to optimize the turning operation 

of S45C steel bars using tungsten carbide cutting tools and reported that cutting speed, feed rate, 

and depth of cut are the significant cutting parameters on surface roughness. El-Tamimi and 

El-Hossainy (2008) investigated the machinability of austenitic AISI 302 stainless steel under 

oblique cutting. They have studied the surface roughness at different cutting conditions and nose 

radius. Philip Selvaraj and Chandramohan (2010) brought out the influence of cutting parameters 

like cutting speed, feed rate and depth of cut on the surface roughness of AISI 304 austenitic 

stainless steel bars during dry turning. 

From the earlier work done and literature, it shows that the surface quality (surface roughness) 

and material removal rate is strongly dependent on cutting parameters, tool geometry and cutting 

forces. Therefore this paper focuses on the effect of cutting speed, feed rate, and depth of cut on 

multiple responses using grey relational analysis (GRA) and also using desirability function 

approach with an aim to minimize Surface roughness and maximize material removal rate. To 

identify the significant parameters affecting the multiple response characteristic for milling AISI 

304 stainless steel, ANOVA was applied. 

 

 

2. Grey relational analysis (GRA) 
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Multi-response optimization for milling AISI 304 Stainless steel using GRA and DFA 

GRA is a measurement technique in grey system theory that analyzes the degree of relation in a 

discrete sequence. GRA had been used for optimization of multiple response characteristics in 

machining variety of materials, and this method for the optimization of the multi-response 

problems is a very useful tool for converting multi-responses into single response problem. The 

step-by-step procedure followed by Gopalsamy et al. (2009) for converting multi-responses into 

single response problem is used for the analysis: 

 

Step 1: Data preprocessing 

Grey data processing must be performed before grey correlation coefficients are calculated. A 

series of various units must be transformed to be dimensionless. In order to find grey relational 

grade usually, each series is normalized by dividing the data in the original series by their average. 

Let the original reference sequence and sequence for comparison be represented as xi (k) and yi 

(k), i=1, 2….m; k=1, 2,….n, respectively, where m is the total number of experiments to be 

considered, and n is the total number of responses. Data preprocessing converts the original 

sequence to a comparable sequence. Several methodologies of preprocessing data can be used in 

GRA, depending on the characteristics of the original sequence. If the target value of the original 

sequence is “the-smaller-the-better”, then the original sequence is normalized with Eq. (1). 

xi(k) =
max yi(k) − yi(k)

maxyi(k) − minyi(k)
 (1) 

If the target value of the original sequence is “the-larger-the-better”, then the original sequence is 

normalized with Eq. (2). 

xi(k) =
yi(k) −min yi(k)

maxyi(k) − minyi(k)
 (2) 

Step 2: Grey relational coefficients  

Following the data preprocessing, a grey relational coefficient can be calculated with the Eq. 

(3) using the pre-processed sequences. 

χ
i
(k) =

∆min + ξ Δmax
Δ0i(k) + ξ Δmax

 (3) 

Where, 

Δ0i(𝑘) = |x0(k) − xi(k)| = difference of absolute value x0(k) and xi(k); 
ξ = the distinguishing coefficient 0 ≤ ξ ≤ 1; 

∆min= ∀j
min ∈ i ∀kmin|x0(k) − xi(k)| = The smallest value of Δ0i; and  

Δmax = ∀j
max ∈ i∀kmax|x0(k) − xi(k)| = The largest value of Δ0i. 

 

Step 3: Grey relational grade (GRG) 

The grey relational coefficient values are used to find the grey relational grade. The grey 

relational grade for each experimental run can be obtained by accumulating the grey relational 

coefficient of each quality characteristic. The average grey grade for the i
th
 experimental run for all 

„n‟ responses is given by Eq. (4). 
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γ
i
=
1

n
∑ χ

i
(k)

n

k=1

 (4) 

where n is the number of process responses and χ
i
(k) is the grey relational coefficient of k

th
 

response in i
th
 experiment. 

The higher value of grey relational grade corresponds to intense relational degree between the 

reference sequence xo(k) and the given sequence xi(k). The reference sequence xo(k) represents the 

best process sequence; therefore, higher grey relational grade means that the corresponding 

parameter combination is closer to the optimal. The optimum level of the process parameters is the 

level with the highest grey relational grade. 

 

 

3. Desirability function analysis (DFA) 
 

Desirability function analysis (DFA) is one of the most extensively used methods for the 

optimization of multi-responses problems. DFA is used to change the multi-responses problems 

into single response problems. As a result, optimization of the complicated multi-response 

problems could be converted into optimization of a single response problem termed composite 

desirability (Naveen Sait 2009). 

 

Step 1. Individual desirability function (di) for the corresponding responses has to be 

determined. For the smaller-the-better, the desirability function can be expressed as in Eq. (5). The 

value of 𝑦̂ is expected to be the smaller-the-better while 𝑦̂ is less than a particular criterion 

value, the desirability value will be equal to 1; if the 𝑦̂ exceeds a particular criterion value, the 

desirability value will be equal to 0. 

𝑑𝑖 = 

{
 

 
                   1,            

(
𝑦̂ − 𝑦𝑚𝑎𝑥

𝑦𝑚𝑖𝑛 − 𝑦𝑚𝑎𝑥
)
𝑟

      0,

,

𝑦̂ ≤ 𝑦𝑚𝑖𝑛
      𝑦𝑚𝑖𝑛 ≤ 𝑦̂ ≤ 𝑦𝑚𝑎𝑥,   𝑟 ≥ 0

𝑦̂ ≥ 𝑦𝑚𝑎𝑥

 (5) 

where the ymin represents the lower tolerance limit of 𝑦̂, the ymax represents the upper tolerance 

limit of 𝑦̂ and r refers to the weight. 

For the-larger-the better, the value of ŷ is expected to be the larger the better. When the ŷ 

exceeds a particular criteria value, which can be viewed as the requirement, the desirability value 

equals to 1; if the 𝑦̂ is less than a particular criteria value, which is unacceptable, the desirability 

value equals to 0. The desirability function of the larger- the better can be written as given in Eq. 

(6) 

𝑑𝑖 = 

{
 

 
                   0,            

(
𝑦̂ − 𝑦𝑚𝑖𝑛

𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛
)
𝑟

,

      1,

𝑦̂ ≤ 𝑦𝑚𝑖𝑛
𝑦𝑚𝑖𝑛 ≤ 𝑦̂ ≤ 𝑦𝑚𝑎𝑥,   𝑟 ≥ 0

𝑦̂ ≥ 𝑦𝑚𝑖𝑛

 (6) 
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Table 1 Chemical composition of AISI 304 Stainless Steel 

Element C Mn Si Cr Ni P S 

Wt % 0.02 1.31 0.32 16.38 12.17 0.3 0.2 

 

 

where, ymin represents the lower tolerance limit of 𝑦̂, ymax represents the upper tolerance limit of 

𝑦̂ and r represents the weight. 

 

Step 2. The index of individual desirability for entire responses can be united to form a single 

value named composite desirability (dG) by Eq. (7) 

𝑑𝐺 = √(𝑑1
𝑤1 ∗  𝑑2

𝑤2 ………… . .∗  𝑑𝑖
𝑤𝑖)

𝑤
 (7) 

where di is the individual desirability of the property Yi, wi refers to the weight of the property 

“Yi” in the composite desirability, and w is the summation of the individual weights. 

 

Step 3. At last, the optimal parameter and its level of combinations are to be determined: The 

higher the composite desirability value implies better product quality. Thus, on the basis of the 

composite desirability (dG), the parameter effect and the optimum level for each parameter are 

estimated. 

 

 

4. Experimental details 
 

The experimental investigation presented here was carried out on a CNC milling (KENT Ind. 

Co. Ltd., Taiwan) with 7.5 kW power and maximum spindle speed of 8000 rpm. The work 

material selected for the study was AISI 304 stainless steel with high strength, high ductility and 

low thermal conductivity. The selection of the AISI 304 stainless steel was made taking into 

account its use in almost all industrial applications for approximately 50% of the world‟s stainless 

steel production and consumption. The important characteristics responsible for the commercial 

popularity of this material are its ability to resistance to corrosion and staining. Low maintenance, 

relatively low cost and familiar lustre make it an ideal base material for a host of commercial 

 

 

 
Fig. 1 Experimental setup on CNC vertical machining center 
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applications. The chemical composition of the work piece material is given in Table 1. The 

dimension of the work piece used in the experiment was 460 mm×100 mm×10 mm. The cutting 

tool used was tungsten carbide end mill with 4 flutes of 10 mm diameter. A schematic diagram of 

 

 

Table 2 Machining parameters and levels 

Parameters Variables Level 1 Level 2 Level 3 

Cutting speed (m/min) A 63 79 95 

Feed rate (mm/min) B 600 700 800 

Depth of cut (mm) C 0.4 0.6 0.8 

 
Table 3 Experimental design using L27 orthogonal array and their responses 

Trial No. 
Variables Surface roughness, Ra 

(µm) 

Material removal rate, 

MRR 

(mm
3
/min) A B C 

1 1 1 1 0.32 120 

2 1 1 2 0.30 150 

3 1 1 3 0.34 160 

4 1 2 1 0.39 140 

5 1 2 2 0.42 165 

6 1 2 3 0.32 180 

7 1 3 1 0.56 115 

8 1 3 2 0.47 150 

9 1 3 3 0.46 170 

10 2 1 1 0.38 140 

11 2 1 2 0.44 180 

12 2 1 3 0.46 200 

13 2 2 1 0.57 160 

14 2 2 2 0.60 180 

15 2 2 3 0.52 200 

16 2 3 1 0.64 145 

17 2 3 2 0.56 155 

18 2 3 3 0.57 170 

19 3 1 1 0.49 160 

20 3 1 2 0.58 165 

21 3 1 3 0.61 200 

22 3 2 1 0.70 140 

23 3 2 2 0.74 170 

24 3 2 3 0.59 210 

25 3 3 1 0.88 135 

26 3 3 2 0.73 180 

27 3 3 3 0.75 200 
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the experimental set-up used in this study is shown in Fig. 1. 

The responses considered in this study are surface roughness and material removal rate. The 

surface roughness was evaluated using stylus type profilometer Mitutoyo SJ-201. The surface 

roughness used in this study is the arithmetic mean average surface roughness value (Ra), which is 

mostly used in industries. The experiments are repeated for three times and average values are 

used for the analysis. Material removal rate is used to evaluate a machining performance. Material 

removal rate is expressed as the amount of material removed under a period of machining time and 

is calculated using the Eq. (8). 

𝑀𝑅𝑅 =
𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑟𝑒𝑚𝑜𝑣𝑒𝑑 𝑓𝑟𝑜𝑚 𝑤𝑜𝑟𝑘 𝑝𝑖𝑒𝑐𝑒(𝑚𝑚3)

𝑀𝑎𝑐𝑕𝑖𝑛𝑖𝑛𝑔 𝑡𝑖𝑚𝑒(𝑚𝑖𝑛)
 (8) 

where, Volume of material removed from work  piece (mm
3
) = Depth of cut (mm) *  breadth of 

the work piece (mm) * groove width (mm). 

To perform the experimental design, three levels of machining parameters cutting speed, feed 

rate, and depth of cut are selected and are shown in Table 2. To select an appropriate orthogonal 

array for the experiments, the total degrees of freedom need to be computed. The degrees of 

freedom for the orthogonal array should be greater than or equal to those for the process 

parameters. In this study, an L27 orthogonal array is used because it has 26 degrees of freedom 

more than the 6 degrees of freedom in the machining parameters. The experimental combinations 

of the machining parameters using the L27 orthogonal array are presented in Table 3. Based on the 

designed orthogonal array, twenty seven milling operations are performed on AISI 304 stainless 

steel. 

 

 
4. Results and discussion  
 

4.1 Multiple response optimizations using GRA 

 
The Taguchi experimental design for various combination of machining parameters and 

experimental results for the surface roughness and MRR are tabulated in Table 3. Basically, the 

surface roughness belongs to the “smaller-the-better” methodology and the MRR belongs to the 

“larger-the-better” methodology that in Eqs. (1-2) which are employed for data preprocessing. The 

values of the surface roughness and MRR are set to be the reference sequence xi (k), k=1,2. 

Moreover, the results of twenty seven experiments are the comparability sequences yi (k), 

i=1,2….27, k=1,2. Table 4 lists all of the sequences after implementing the data preprocessing 

using Eqs. (1-2). Then the deviation sequences, Δ0i(k) =|x0(k) − xi(k)|, Δmax(k) and Δmin(k) 

for i=1-27, k=1, 2 can be calculated. The distinguishing coefficient ξ can be substituted for the 

grey relational coefficient in Eq. (3). If all the performance characteristics have equal weightage, ξ 
is set to be 0.5. The grey relational grade is calculated based on the Eq. (4). Table 5 lists the grey 

relational coefficients and the grade for all twenty seven comparability sequences. The higher grey 

relational grade represents that the corresponding experimental result is closer to the ideally 

normalized value. 

This investigation employs the response table of the Taguchi method to calculate the average 

grey relational grade for each factor level, as illustrated in Table 6 and is represented graphically in 
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Table 4 The data preprocessing of the each individual quality characteristic 

Trial No. Ra MRR 

Reference sequence 1.0000 1.0000 

1 0.9655 0.0526 

2 1.0000 0.3684 

3 0.9310 0.4737 

4 0.8448 0.2632 

5 0.7931 0.5263 

6 0.9655 0.6842 

7 0.5517 0.0000 

8 0.7069 0.3684 

9 0.7241 0.5789 

10 0.8621 0.2632 

11 0.7586 0.6842 

12 0.7241 0.8947 

13 0.5345 0.4737 

14 0.4828 0.6842 

15 0.6207 0.8947 

16 0.4138 0.3158 

17 0.5517 0.4211 

18 0.5345 0.5789 

19 0.6724 0.4737 

20 0.5172 0.5263 

21 0.4655 0.8947 

22 0.3103 0.2632 

23 0.2414 0.5789 

24 0.5000 1.0000 

25 0.0000 0.2105 

26 0.2586 0.6842 

27 0.2241 0.8947 

 

 
Fig. 2 Effect of milling parameters on grey relational grade (GRG) 
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Table 5 Grey relational coefficient of responses and grey relational grade (GRG) 

Trial  No. 
Grey relational coefficient Grey relational grade 

(GRG) Ra MRR 

1 0.9355 0.3455 0.6405 

2 1.0000 0.4419 0.7209 

3 0.8788 0.4872 0.6830 

4 0.7632 0.4043 0.5837 

5 0.7073 0.5135 0.6104 

6 0.9355 0.6129 0.7742 

7 0.5273 0.3333 0.4303 

8 0.6304 0.4419 0.5361 

9 0.6444 0.5429 0.5937 

10 0.7838 0.4043 0.5940 

11 0.6744 0.6129 0.6437 

12 0.6444 0.8261 0.7353 

13 0.5179 0.4872 0.5025 

14 0.4915 0.6129 0.5522 

15 0.5686 0.8261 0.6974 

16 0.4603 0.4222 0.4413 

17 0.5273 0.4634 0.4953 

18 0.5179 0.5429 0.5304 

19 0.6042 0.4872 0.5457 

20 0.5088 0.5135 0.5111 

21 0.4833 0.8261 0.6547 

22 0.4203 0.4043 0.4123 

23 0.3973 0.5429 0.4701 

24 0.5000 1.0000 0.7500 

25 0.3333 0.3878 0.3605 

26 0.4028 0.6129 0.5078 

27 0.3919 0.8261 0.6090 

 
Table 6 Response table for GRG 

Parameter Level-1 Level-2 Level-3 Optimum levels 

A 0.6192 0.5769 0.5357 A1 

B 0.6365 0.5948 0.5005 B1 

C 0.5012 0.5608 0.6697 C3 

 

 
Fig. 2. Since the grey relational grades represent the level of correlation between the reference 

and the comparability sequences, the larger grey relational grade means the comparability 

sequence exhibiting a stronger correlation with the reference sequence 
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Based on this study, a combination of the levels can be selected so that it can provide the largest 

average response. In Table 6, the combination of A1, B1, and C3 shows the largest value of the 

grey relational grade for the factors A, B, and C respectively. Therefore, it is observed that the 

cutting speed at 63 m/min, feed rate at 600 mm/min, and depth of cut at 0.8 mm is the optimal 

parameter combination of the milling AISI 304 stainless steel. 

Table 7 shows the results of ANOVA for the grey relational grade. From the Table 7, it is 

observed that the depth of cut (Percentage contribution, P = 42.45 %) is the most significant 

machining parameter followed by feed rate (P = 28.23%), and cutting speed (P = 10.13%) 

affecting the multiple performance characteristics for AISI 304 stainless steel. 

 
4.2 Multi-response optimization using DFA 
 
For every response, the individual desirability (di) is calculated depending upon the required 

quality characteristics. For data pre-processing in the desirability function analysis process, surface 

roughness is taken as the “smaller is better” and material removal rate is taken as the “larger is 

better”. The calculated individual desirability for each quality characteristics with Eqs. (5)-(6), is 

shown in Table 8. With Eq. (7), composite desirability values (dG) are calculated. Finally, these 

values are taken for optimization of multi-response parameter design problem. The results are 

shown in Table 9. The effect of process parameters on composite desirability is graphically shown 

in Fig. 3. Considering the maximization of composite desirability value, the optimal parameter 

condition is obtained as A1B1C3 for milling AISI304 stainless steel. 
 

 

Table 7 Results of the ANOVA for GRG 

Parameter Sum of square (SS) 
Degree of 

freedom 

Mean square 

(MS) 
F- test % Contribution 

A 0.031385 2 0.015693 5.28 10.13 

B 0.087431 2 0.043715 14.71 28.23 

C 0.131472 2 0.065736 22.11 42.45 

Error 0.059453 20 0.002973  19.19 

Total 0.309741 26   100 

R-Sq = 80.81%   R-Sq(adj) = 75.05% 

 
Table 8 Individual desirability (di) and composite desirability (dG) 

Trial No. 
Individual desirability (di) 

Composite desirability (dG) 
Ra MRR 

1 0.9655 0.0526 0.5091 

2 1.0000 0.3684 0.6842 

3 0.9310 0.4737 0.7024 

4 0.8448 0.2632 0.5540 

5 0.7931 0.5263 0.6597 

6 0.9655 0.6842 0.8249 

7 0.5517 0.0000 0.2759 

8 0.7069 0.3684 0.5377 
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Table 8 Continued 

9 0.7241 0.5789 0.6515 

10 0.8621 0.2632 0.5626 

11 0.7586 0.6842 0.7214 

12 0.7241 0.8947 0.8094 

13 0.5345 0.4737 0.5041 

14 0.4828 0.6842 0.5835 

15 0.6207 0.8947 0.7577 

16 0.4138 0.3158 0.3648 

17 0.5517 0.4211 0.4864 

18 0.5345 0.5789 0.5567 

19 0.6724 0.4737 0.5730 

20 0.5172 0.5263 0.5218 

21 0.4655 0.8947 0.6801 

22 0.3103 0.2632 0.2868 

23 0.2414 0.5789 0.4102 

24 0.5000 1.0000 0.7500 

25 0.0000 0.2105 0.1053 

26 0.2586 0.6842 0.4714 

27 0.2241 0.8947 0.5594 

 
Table 9 Response table for composite desirability (dG) 

Parameter Level-1 Level-2 Level-3 Optimum levels 

A 0.5999 0.5941 0.4842 A1 

B 0.6404 0.5923 0.4455 B1 

C 0.4151 0.5640 0.6991 C3 

 

 
Fig. 3 Effect of milling parameters on composite desirability (dG) 
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Table 10 Results of the ANOVA for composite desirability 

Parameter Sum of square (SS) 
Degree of 

freedom 

Mean square 

(MS) 
F- test % Contribution 

A 0.07647 2 0.03823 6.33 10.25 

B 0.18572 2 0.09286 15.37 24.88 

C 0.36338 2 0.18169 30.07 48.68 

Error 0.12083 20 0.00604  16.19 

Total 0.74640 26   100 

R-Sq = 83.81%   R-Sq(adj) = 78.96% 

 
Table 11 Results of confirmation test 

Initial machining parameters 

Optimal machining parameters 

Using GRA 

Optimal machining parameters 

Using DFA 

Prediction Experiment Prediction Experiment 

Levels A1B3C1 A1B1C3 A1B1C3 A1B1C3 A1B1C3 

Surface roughness (μm) 0.56  0.34  0.34 

MRR 115  160  160 

Grey relational grade 0.4303 0.7709 

0.6830 

 - (improvement in GRG 

= 0.2527) 

Composite desirability 0.2759  - 0.8206 

0.7024 

(improvement in dG = 

0.4265) 

 

 
The results of ANOVA for the composite desirability is shown in Table 10. From the Table 10, 

it is observed that the depth of cut (Percentage contribution, P = 48.68%) is the most significant 

machining parameter and feed rate (P = 24.88%) is the next significant parameter affecting the 

multiple performance characteristics for AISI 304 stainless steel. 

 

 
5. Confirmation test 
 

Once the optimal level of the process parameters has been determined, the final step is to verify 

the improvement of the responses using the optimal level of process parameters. Table 11 shows 

the comparison of the multi-response for initial and optimal machining parameters using both 

GRA and DFA. The initial designated levels of machining parameters are A1B3C1 which is the 

seventh experiment shown in the Table 3. As noted from the Table 11, the surface roughness is 

decreased from 0.56 μm to 0.34 μm and the MRR is increased from 115 mm
3
/min to 160 mm

3
/min 

respectively. The estimated grey relational grade is increased from 0.4303 to 0.6830 and the 

composite desirability value is increased from 0.2759 to 0.7024, which are shown in Table 11. 

78
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6. Conclusions 
 

This present investigation is focused on effective milling of AISI 304 stainless steel using 

tungsten carbide end mill with multi-response optimization of machining parameters. From this 

study, using GRA, DFA, and ANOVA, the following results can be concluded: 

• Multi-response optimization using GRA and DFA were performed for milling AISI 304 

stainless steel and found the optimum setting of cutting speed at 63 m/min, feed rate at 600 

mm/min, and depth of cut at 0.8 mm for minimization of surface roughness and maximization of 

material removal rate. 

• From the results of ANOVA, the most significant machining parameters affecting the multiple 

performance characteristics is the depth of cut followed by feed rate, and cutting speed. 

• Confirmation test results proved that the determined optimum condition of milling parameters 

satisfy the real requirements. 
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