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Abstract.  This paper presents a simple n-order four variable refined theory for buckling analysis of functionally 

graded plates. By dividing the transverse displacement into bending and shear parts, the number of unknowns and 

governing equations of the present theory is reduced, and hence, makes it simple to use. The present theory is 

variationally consistent, uses the n-order polynomial term to represent the displacement field, does not require shear 

correction factor, and eliminates the shear stresses at the top and bottom surfaces. A power law distribution is used to 

describe the variation of volume fraction of material compositions. Equilibrium and stability equations are derived 

based on the present n-order refined theory. The non-linear governing equations are solved for plates subjected to 

simply supported boundary conditions. The thermal loads are assumed to be uniform, linear and non-linear 

distribution through-the-thickness. The effects of aspect and thickness ratios, gradient index, on the critical buckling 

are all discussed. 
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1. Introduction 

 
Functionally graded materials (FGMs) are new inhomogeneous materials which have widely 

used in many engineering applicants such as nuclear reactors and high-speed spacecraft industries 

(Yamanouchi et al. 1990). The mechanical properties of FGMs vary smoothly and continuously 

from one surface to the other. Typically these materials are made from a mixture of ceramic and 

metal or from a combination of different materials. The ceramic constituent of the material 

provides the high-temperature resistance due to its low thermal conductivity. The ductile metal 

constituent on the other hand, prevents fracture caused by stresses due to the high temperature 

gradient in a very short period of time. Furthermore a mixture of ceramic and metal with a 

continuously varying volume fraction can be easily manufactured (Fukui 1991, Koizumi 1997). 

With the developments in manufacturing methods (Fukui et al. 1991, Fukui et al. 1997 and 

El-Hadek et al. 2003) functionally graded materials seem to have great potential in sandwich 

structures. The analysis of these materials has been considered by many researchers. The 

functionally graded (FG) plates are commonly used in thermal environments; they can buckle 

under thermal and mechanical loads. Thus, the buckling analysis of such plates is essential to 
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ensure an efficient and reliable design. Eslami and his co-workers (Javaheri et al. 2002, Samsam et 

al. 2005) have treated a series of problems relating to the linear buckling of simply supported 

rectangular FG plates, with and without imperfections, under mechanical and thermal loads. By 

using an analytical approach, they obtained closed-form expressions for buckling loads. Sohn et al. 

(2008) dealt with the stabilities of FG panels subjected to combined thermal and aerodynamic 

loads. The first-order theory was used to simulate supersonic aerodynamic loads acting on the 

panels. The influence of the material constitution of FG panels on thermal buckling and flutter 

characteristics was examined. Zenkour et al. (2010a) studied the thermal Buckling Analysis of 

Ceramic-Metal Functionally Graded Plates. Bouiadjra et al. (2012) developed a four-variable 

refined plate theory for buckling analysis of functionally graded plates. Song et al. (2013) used 

a n-order four variable refined theory for bending and free vibration of functionally graded plates. 

Klouche (2014) studied the bending and free vibration of functionally graded plates by using 

a n-order four variable refined theory. The n-order four variable refined theory proposed by Song 

et al. (2013) is based on the assumption that the in-plane and transverse displacements consist of 

bending and shear components in which the bending components do not contribute toward shear 

forces and, likewise, the shear components do not contribute toward bending moments.  

The most interesting feature of this theory is uses the n-order polynomial term to represent the 

displacement field, does not require shear correction factor, and eliminates the shear stresses at the 

top and bottom surfaces. Although several studies on the buckling of FG plates have been carried 

out based on variety of plate theories, no studies can be found for the thermal buckling of FG 

plates based on the refined theory proposed by Song Xiang et al. (2013). Therefore, the aim of this 

study is to extend the n-order refined theory to the thermal buckling of FG plates. The material 

properties of FG plate are assumed to vary according to a power law distribution of the volume 

fraction of the constituents. The n-order four variable refined theory is used to obtain the buckling 

of the plate under different types of thermal loads. The thermal loads are assumed to be uniform, 

linear and non-linear distribution through the thickness. Illustrative examples are given so as to 

demonstrate the efficacies of the theory. The effects of various variables, such as thickness and 

aspect ratios, gradient index, on the critical buckling are all discussed. 

 
 
2. Theoretical formulation 
 

2.1 Displacement field and strains 

 

Consider a plate of total thickness h  and composed of functionally graded material through 

the thickness. It is assumed that the material is isotropic and grading is assumed to be only through 

the thickness. The xy  plane is taken to be the undeformed mid plane of the plate with the z  

axis positive upward from the mid plane. The displacement field of this theory is as follows:  
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)t,y,x(w)t,y,x(w)t,z,y,x(w sb   
where 0u  and 0v  are the mid-plane displacements of the plate in the x and y direction, 

respectively; bw  and sw  are the bending and shear components of transverse displacement, 

respectively. 

The non-linear von Karman strain–displacement equations are as follows: 
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2.2 Constitutive relations 
 
Consider a functionally graded plate, which is made from a mixture of ceramics and metals. 

The plate is subjected to a thermal load  zyxT ,, . It is assumed that the composition properties 

of FGM vary through the thickness of the plate. 

The variation of material properties can be expressed as : 

  tbtb VPPP)z(P                            (4) 

where P  denotes a generic material property like modulus and tP  and bP  denote the 

corresponding properties of the top and bottom faces of the plate, respectively. Also tV  in Eq. (4) 

denotes the volume fraction of the top face constituent and follows a simple power-law as: 
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where k   k0  is a parameter that dictates the material variation profile through the 

thickness. Here we assume that moduli E , G  and the coefficient of thermal expansion   vary 

according to Eq. (4) and the Poisson’s ratio   is assumed to be a constant. 

The linear constitutive relations are : 
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where  yzxzxyyx  ,,,, and  yzxzxyyx  ,,,,  are the stress and strain components, 

respectively. Using the material properties defined in Eq. (4), stiffness coefficients, ijQ  , can be 

expressed as 
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2.3 Stability euations   
 

The total potential energy of the FG plate may be written as 
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2

1
U xzxzyzyzxyxyyyxx   

      
(8) 

The principle of virtual work for the present problem may be expressed as follows : 
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Using Eq. (6) in Eq. (10), the stress resultants of the FG plate can be related to the total strains 

by 
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where ijA , ijB , etc., are the plate stiffness, defined by 
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The stability equations of the plate may be derived by the adjacent equilibrium criterion. 

Assume that the equilibrium state of the FG plate under thermal loads is defined in terms of the 
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where the superscript 1 refers to the state of stability and the superscript 0 refers to the state of 

equilibrium conditions. 

Substituting Eqs. (2) and (15) into Eq. (9) and integrating by parts and then equating the 
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sw to zero, separately, the governing stability equations are 

obtained for the shear deformation plate theories as 
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with 

     
























yx

ww
N

y

ww
N

x

ww
NN sb

xy
sb

y
sb

x

112
0

2

112
0

2

112
0 2

         

(17) 

where the terms 
0

xN  and 
0

yN  are the pre-buckling force resultants obtained as 
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3. Exact solutıon for a sımply-supported fgm plate 
 

Rectangular plates are generally classified in accordance with the type of support used. We are 

here concerned with the exact solution of Eqs. (16) for a simply supported FG plate. The following 

boundary conditions are imposed at the side edges for the present four variable refined plate 

theory : 
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The following approximate solution is seen to satisfy both the differential equation and the 

boundary conditions 
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where ,1

mnU ,1

mnV 1

bmnW and 
1

smnW  are arbitrary parameters to be determined, am /   and 

bn /   and and m  and n  are mode numbers. Substituting Eq. (20) into Eq. (16), one 

obtains 

    PK                              (21) 

where    denotes the column 

                t

s m nb m nmnmn WWVU 1111 ,,,                       (22) 

and  K  is the symmetric matrix given by 
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(23)  

For nontrivial solution, the determinant of the coefficient matrix in Eq. (21) must be zero. This 

gives the thermal buckling load. 
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3.1 Buckling of FG Plates under Uniform Temperature Rise 
 

The plate initial temperature is assumed to be iT . The temperature is uniformly raised to a 

final value fT  in which the plate buckles. The temperature change is if TTT  . 

 

3.2 Buckling of FG Plates Subjected to Graded Temperature Change Across the Thickness 
 

We assume that the temperature of the top surface is tT  and the temperature varies from tT  

according to the power law variation through-the-thickness, to the bottom surface temperature bT  

in which the plate buckles. In this case, the temperature through-the-thickness is given by  

  tT
h

z
TzT 












2

1

                        
(24) 

where the buckling temperature difference bt TTT  and   is the temperature exponent 

  0 . Note that the value of   equal to unity represents a linear temperature change 

across the thickness. While the value of   excluding unity represents a non-linear temperature 

change through-the-thickness. 

 

 
4. Numerical results 

 

In this section, various numerical examples are presented and discussed for verifying the 

accuracy and efficiency of the present theory in predicting the critical buckling temperature change 

of simply supported FG plates under uniform, linear and nonlinear thermal loading through the 

thickness. For the verification purpose, the results obtained by the present four variable refined 

plate theory are compared with the existing data in the literature. 

It is assumed that the functionally graded plate is made of a mixture of aluminum and alumina. 

The Young modulus, coefficient of thermal expansion and thermal conductivity for aluminum are 

,70GPaEm  ,/10.23 6 Cm
  and for alumina are ,380GPaEc    Cxc

 /104.7 6

respectively. 

In order to prove the validity of the present formulation, results were obtained for FG plates 

under uniform, linear and nonlinear thermal loading through the thickness according to all 

theories. 
In Tables 1 and 2 the results of buckling analysis for the plate under uniform temperature rise 

are presented. These tables show the comparisons of the critical buckling temperature change 
obtained by the present theory with those given by Javaheri et al. (2002) based on both higher 
plate theory (HPT) and the classical plate theory (CPT), and Zenkour and Mashat (2010) based on 
sinusoidal plate theory (SPT). The results of the present theory show very good agreement with 
HPT and SPT both for thin and thick FG plates. 

Table 1 show that the buckling temperature increases by the increase of the aspect ratio ba /
and decreases with increase of the power law index )(k from 0 to 10. Table 2 shows that the 
buckling temperature decreases by the increase of the dimension ratio ha /  and the power law  
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Table 1 Critical buckling temperature of FG plate under uniform temperature rise for different values of 

power law index k and aspect ratio ba /  with 100/ ba  

k  Theory a/b=1 a/b=2 a/b=3 a/b=4 a/b=5 

 

0 

 

 

Present (n=3) 17.0894 42.6875 85.2551 144.6490 220.6706 

Present (n=5) 17.0896 42.6888 85.2600 144.6630 220.7033 

Present (n=7) 17.0898 42.6902 85.2658 144.6798 220.7423 

Present (n=9) 17.0900 42.6913 85.2703 144.6927 220.7723 

HPT*
 

17.08 42.68 85.25 144.64 220.66 

SPT
#
 17.08 42.68 85.25 144.65 220.28 

CPT* 17.09 42.74 85.49 145.34 222.28 

 

1 

 

 

Present (n=3) 7.9400 19.8358 39.6248 67.2506 102.6356 

Present (n=5) 7.9400 19.8363 39.6267 67.2561 102.6484 

Present (n=7) 7.9401 19.8369 39.6289 67.2627 102.6637 

Present (n=9) 7.9402 19.8373 39.6307 67.2678 102.6754 

HPT* 7.94 19.83 39.62 67.25 102.63 

SPT
#
 7.94 19.83 39.62 67.25 102.63 

CPT* 7.94 19.83 39.71 67.52 103.26 

 

 

5 

 

Present (n=3) 7.2606 18.1327 36.2025 61.3951 93.6069 

Present (n=5) 7.2609 18.1346 36.2102 61.4174 93.6585 

Present (n=7) 7.2612 18.1361 36.2161 61.4344 93.6981 

Present (n=9) 7.2613 18.1371 36.2202 61.4463 93.7258 

HPT* 7.26 18.13 36.20 61.39 93.60 

SPT
#
 7.26 18.13 36.20 61.39 93.60 

CPT* 7.26 18.13 36.20 61.75 94.45 

 

10 

 

Present (n=3) 7.4634 18.6366 37.2006 63.0687 96.1213 

Present (n=5) 7.4636 18.6382 37.2069 63.0870 96.1638 

Present (n=7) 7.4639 18.6398 37.2131 63.1047 96.2050 

Present (n=9) 7.4641 18.6409 37.2178 63.1182 96.2363 

HPT* 7.46 18.63 37.20 63.06 96.12 

SPT
#
 7.46 18.63 37.20 63.06 96.11 

CPT* 7.46 18.67 37.34 63.48 97.10 
# 
Results form Ref (Zenkour et al. 2010) 

* Results form Ref (Javaheri et al. 2002b) 

 

Table 2 Critical buckling temperature of square FG plate under uniform temperature rise for different values 

of power law index k  and side-to-thickness ratio ha /  

k  Theory a/h=10 a/h=20 a/h=40 a/h=60 a/h=80 a/h=100 

 

0 

Present (n=3) 1618.6819 421.5352 106.4940 47.4232 26.6938 17.0894 

Present (n=5) 1620.4093 421.6542 106.5016 47.4247 26.6943 17.0896 

Present (n=7) 1622.5030 421.7964 106.5107 47.4265 26.6948 17.0898 

Present (n=9) 1624.1224 421.9060 106.5177 47.4279 26.6953 17.0900 

HPT* 1617.48 421.52 106.49 47.42 26.69 17.08 

CPT* 1709.91 427.47 106.87 47.49 26.71 17.09 
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Table 2 Critical buckling temperature of square FG plate under uniform temperature rise for different values 

of power law index k  and side-to-thickness ratio ha /  

k  Theory a/h=10 a/h=20 a/h=40 a/h=60 a/h=80 a/h=100 

 

1 

 

Present (n=3) 758.3956 196.2652 49.5016 22.0369 12.4029 7.9400 

Present (n=5) 759.0826 196.3119 49.5046 22.0375 12.4031 7.9400 

Present (n=7) 759.9150 196.3678 49.5082 22.0382 12.4033 7.9401 

Present (n=9) 760.5586 196.4108 49.5109 22.0388 12.4035 7.9402 

HPT* 757.89 196.26 49.50 22.03 12.40 7.94 

CPT* 794.37 198.59 49.64 22.06 12.41 7.94 

 

5 

 

Present (n=3) 697.3104 178.5353 45.2139 20.1435 11.3403 7.2606 

Present (n=5) 682.0146 178.7230 45.2259 20.1459 11.3410 7.2609 

Present (n=7) 684.1093 178.8669 45.2352 20.1477 11.3416 7.2612 

Present (n=9) 685.5860 178.9679 45.2416 20.1490 11.3420 7.2613 

HPT* 678.92 178.53 45.21 20.14 11.34 7.26 

CPT* 726.57 181.64 45.41 20.18 11.35 7.26 

 

10 

Present (n=3) 692.6947 183.1444 46.4554 20.7029 11.6564 7.4634 

Present (n=5) 694.8769 183.2983 46.4653 20.7048 11.6570 7.4636 

Present (n=7) 697.0254 183.4480 46.4749 20.7067 11.6576 7.4639 

Present (n=9) 698.6695 183.5618 46.4822 20.7082 11.6581 7.4641 

HPT* 692.52 183.14 46.45 20.70 11.65 7.46 

CPT* 746.92 186.73 46.68 20.74 11.67 7.46 

* Results form Ref (Javaheri et al. 2002) 
# 
Results form Ref (Zenkour et al. 2010) 

 

 
index )(k  from 0 to 10. It is interesting to note that the buckling temperatures for homogeneous 
plates )0( k  are considerably higher than those for the FG plates ),0( k  especially for the 
comparatively longer and thicker plates. The critical buckling temperatures obtained based on 
classical plate theory are noticeably greater than values obtained based on higher order shear 
deformation theory. The differences are considerable for long and thin plates. 

In Tables 3 and 4 the results of buckling analysis for the plate under linear temperature change 
across the thickness are presented. It can be seen that the results of present theory are almost 
identical with those reported by Javaheri and Eslami (2002) based on HPT and by Zenkour and 
Mashat (2010) based on SPT. It is concluded that the buckling temperature increases by the 
increase of the aspect ratio ba / , decreases by the increase of the power law index )(k  and 
decreases by the increase of the dimension ratio ha / . 

Also, the buckling temperatures for homogeneous plates are considerably higher than those for 
the FG plates especially for the comparatively longer and thicker plates. The critical buckling 
temperatures obtained based on classical plate theory are noticeably greater than values obtained 
based on higher order shear deformation theory. The differences are considerable for long and thin 
plates. Hence, in order to obtain accurate results for thick FG plates, it is necessary to consider the 
transverse shear deformation effects by using shear deformation theories. It should be noted that 
the unknown function in present theory is only four, while the unknown function in both HPT and 
SPT is five. It can be concluded that the present theory is not only accurate but also simple in 
predicting critical buckling temperature of FG plates. 
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Fig. 1 Critical buckling temperature difference crT  due to uniform, linear and non-linear 

temperature rise across the thickness versus the aspect ratio ba /  3n  
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Fig. 2 Critical buckling temperature difference crT  due to uniform, linear and non-linear 

temperature rise across the thickness versus the side-to-thickness ratio ha /  3n  
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Fig. 3 Critical buckling temperature difference crT  due to uniform, linear and non-linear 

temperature rise across the thickness versus the aspect ratio ba /  3n . 
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Fig. 4 Critical buckling temperature difference crT  due to uniform, linear and non-linear 

temperature rise across the thickness versus the side-to-thickness ratio ha /  and for different 

values of the nonlinearity parameter    3,5  nk  

 

 

Tables 5 exhibit the critical temperature difference crcr Tt 310  for different values of the 

aspect ratio ba / , the temperature exponent   and the power law index k  under non-linear 

temperature loads at 10/ ha . The nonlinearity temperature exponent   is taken here as 2, 5 

and 10. It can be concluded from the presented results that the present theory gives more accurate 

results of critical buckling temperature when compared to the higher-order shear deformation 

theory. 
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The effect of ba /  on the critical buckling crt  is similar to that in the case of uniform and 

linear temperature difference across the thickness. As the power law index k  increases, the 

critical buckling crt  decreases to reach lowest values and then increases excluding crt  of the 

rectangular plates for 10 . It is also noticed from Table 5 that the crt  increases with the 

increase of the non-linearity parameter  . 

In general, the values of the critical temperature difference calculated by using the shear 

deformation theories are lower than those calculated by using the classical plate theory, indicating 

the shear deformation effect. 

Figure 1 shows the variation trend of critical temperature difference crt  with respect to the 

plate aspect ratio ba /  for different values of material gradient index k  under a uniform, linear 

and non-linear temperature loads. It is observed that with increasing the plate aspect ratio ba / , 

the critical buckling temperature difference also increases steadily, whatever the material gradient 

index k  is. Because the ceramic plate is weaker than the metallic one, thus the critical buckling 

temperature of the first plate is higher than that of the second. For the FG plate, crt  decreases as 

the metallic constituent in the plate increases. 

The critical buckling temperature change crt  versus the side-to-thickness ratio ha /  and the 

aspect ratio ba /  of FG plates under various thermal loading types is exhibited in Figures 2–4. 

It can be seen from these figures that, regardless of the loading type and the power-law index 

k , the critical buckling temperature difference crt  decreases as the side-to-thickness ratio ha /  

increases and it is reduced with the decrease of the aspect ratio ba / . The critical buckling 

temperature for the ceramic plate is higher than that for the FG plate. This is because the ceramic 

plate is stronger than the other. The differences between the loading types decrease with the 

increase of ha /  because the plate becomes thin. It is also noticed from figure 4 that the crt  

increases with the increase of the non-linearity parameter . 

 
 

5. Conclusion 
 
This paper presents a simple n-order four variable refined theory for buckling analysis of 

functionally graded plates. The present theory is variationally consistent, uses the n-order 

polynomial term to represent the displacement field, does not require shear correction factor, and 

eliminates the shear stresses at the top and bottom surfaces. A power law distribution is used to 

describe the variation of volume fraction of material compositions.  

Equilibrium and stability equations are derived based on the present n-order refined theory. The 

non-linear governing equations are solved for plates subjected to simply supported boundary 

conditions. The thermal loads are assumed to be uniform, linear and non-linear distribution 

through-the-thickness.  

Based on the above discussion, some conclusions are listed as follows : 

- It is shown through the numerical examples that the present theory can provide accurate 

results for critical temperatures of FG plates subjected to uniformly, linearly and non-linearly 

distributed temperatures across the thickness. 

- The critical buckling temperature difference of FG plates decreases when the side to- 
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thickness ratio increases ha / . 

- The critical buckling temperature difference crt  for FG plates is increased by increasing the 

aspect ratio ba / . 

- The higher order shear deformation theory underestimates the buckling load compared with 

the classical plate theory. 

- The critical buckling temperature of FG plate under non-linear temperature rise across the 

thickness increases as the temperature exponent   increases. 
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