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Abstract.  This study aims to analyze the mechanical buckling behavior of a single-walled carbon nanotube 
(SWCNT) integrated with a one-parameter elastic medium and modeled as a Kerr-type foundation under a longitudinal 
magnetic field. The structure is considered homogeneous and therefore modeled utilizing the nonlocal first shear 
deformation theory (NL-FSDT). This model targets thin and thick structures and considers the effect of the transverse 
shear deformation and small-scale effect. The Kerr model describes the elastic matrix, which takes into account the 
transverse shear strain and normal pressure. Using the nonlocal elastic theory and taking into account the Lorentz 
magnetic force acquired from Maxwell relations, the stability equation for buckling analysis of a simply supported 
SWCNT under a longitudinal magnetic field is obtained. Moreover, the mechanical buckling load behavior with 
respect to the impacts of the magnetic field and the elastic medium parameters considering the nonlocal parameter, the 
rotary inertia, and transverse shear deformation was examined and discussed. This study showed useful results that can 
be used for the design of nano-transistors that use the buckling properties of single-wall carbon nanotubes (CNTs) due 
to the creation of the magnetic field effect. 
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1. Introduction 
 

Nanotechnology is defined as the creation and use of materials, instruments, and systems relating 
to dimensions of the order of 1 to 100 nanometers (National Science and Technology Council). 
Suppose a new term, nanotechnologies, has been defined to refer to designate small objects. In that 
case, it is not only because they represent the final stage of miniaturization but also because, at the 

nanoscale, the behavior of matter gives rise to new physical, chemical, and even biological 
properties. Nanosciences are concerned with new phenomena at the level of nano-objects and 
interactions between nanometric objects. 

Carbon nanotubes (CNTs) were found by Simio Iijima in 1991 (Iijima 1991). They are formed 
by the winding of one or more sheets of graphene. They are considered nano-objects containing a 
macroscopic dimension in one direction and nanometric in the other two. These nano-objects 
supreme and outstanding characteristics attracted many physicists, chemists, and biologists from all 

countries. For this, many applications in nanotechnology are already identified in various fields; 
electronics (Tsukagoshi et al. 2002), optics (Kempa et al. 2007), and other areas of materials science 
(Ma et al. 1998, Meyyappan 2004). Experimental studies have shown that the CNTs’ physical 
properties are affected by the existence of buckling. Therefore, the alterable transformation between 
the normal and buckled states of CNTs can result in possible applications such as nano-fluid 
components “nano-valve” (Grujicic et al. 2005) and nano-electronic devices “nano-transistors” 
(Postma et al. 2001), and alterable elements in nano-electromechanical systems. 

Two essentially one-of-a-kind approaches to be had for theoretical simulation of nanostructured 

materials are the continuum mechanics simulations and atomistic approaches. The atomistic 
approach consists of tight-binding molecular dynamics “TBMD” and density functional theory 
“DFT”, and classical molecular dynamics “MD” (Iijima et al. 1996, Sánchez-Portal et al. 1999). 
These approaches are frequently computationally in-depth and expensive, particularly for large-
scale CNTs with an excessive range of walls. Several researchers have studied different structures 
by nonlocal models that have proven satisfying results compared to atomic models. Thus, the study 
based on the continuum mechanics of CNTs is increasingly considered a way of opportunity to 

model substances at the nanometer scale. 
In recent years, several researchers have studied the behavior of nanostructures using different 

continuum models, Wang et al. (2006) conducted micro-and nano-rods/tubes buckling analysis 
based on nonlocal Timoshenko beam theory. Ahmad et al. (2021) showed a thermal buckling 
analysis of circular bilayer graphene sheets resting on an elastic matrix based on nonlocal continuum 
mechanics. Abouelregal et al. (2021) investigated on temperature-dependent physical characteristics 
of the rotating nonlocal nanobeams subject to a varying heat source and a dynamic load established 

in the context of nonlocal thermoelasticity theory. Mikhasev et al. (2022) carried out a pull-in 
instability Analysis of a nanocantilever based on the two-phase nonlocal theory of elasticity. Shariati 
et al. (2022) studied size effect on the axisymmetric vibrational response of functionally graded 
circular nano-plate based on the nonlocal stress-driven method. Abouelregal et al. (2022) presented 
a computational analysis of an infinite magneto-thermoelastic solid periodically dispersed with 
varying heat flow based on non-local Moore-Gibson-Thompson approach. In the literature there are 
many studies about carbon nanotubes that deal with their mechanical and vibrational response, some 
of them present them in a void medium, and others embedded in an elastic one. Sudack (2003) 

presented column buckling of multiwalled CNTs by utilizing the approach of nonlocal continuum 
mechanics. Salamat and Sedighi (2017) investigated vibrational behavior of single-walled CNTs at 
a small scale and a moving nanoparticle Bensattalah et al. (2019) established a free vibration analysis 
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of chiral single-walled carbon nanotubes for a new nonlocal beam model. Malikan et al. (2018a) 
analyzed the dampened forced vibration of single-walled carbon nanotubes based on a viscoelastic 
foundation in a thermal environment using non-local strain gradient theory. Malikan et al. (2019b, 
2020a, 2020b and 2020c) analyzed the buckling response of a différents carbon nanotubes based on 
a various continuum beam models. Koochi and Goharimanesh (2021) explored the nonlinear 
oscillations of the CNT nano-resonator. Yusufoglu, and Avey (2021) analyzed the nonlinear dynamic 

response of shells reinforced various distributions of CNTs. The distributions were hyperbolic 
paraboloidal. Gia Phi et al. (2022) studied nonlinear free vibration characteristics of functionally 
graded (FG) composite micro-beams reinforced by carbon nanotubes (CNTs) with piezoelectric 
layers in thermal environment. Civalek and Avcar (2022) utilized the discrete singular convolution 
method to analyze the free vibration and buckling of laminated non-rectangular plates reinforced 
with carbon nanotubes based on nonlocal elasticity.  

In recent years, many researchers have been widely interested in CNTs embedded in an elastic 

medium due to their large applications in different fields such as nanotechnology, electronics, 
physics, chemistry, reinforced composite structures, and engineering. Winkler (1867) presented the 
first type of elastic foundation as the “one parameter” foundation model, given that it is characterized 
only by the vertical stiffness of the Winkler foundation springs. Pasternak (1954) improved the 
Winkler model by introducing a second parameter to describe the existence of shear stress inside the 
elastic medium. Several researchers have utilized the first type of elastic foundation and the second 
type (Pradhan and Reddy 2011, Shahsavari et al. 2018, Avcar et al. 2016 and 2018, She et al. 2018, 
Demir et al. 2018, Malikan et al. 2019a and 2019c Shanab et al. 2020, Benferhat et al. 2020, Rachedi 

et al. 2020, Timesli 2020a and 2022, and Jena et al. 2021.), they studied the responses of nano and 
microstructures embedded in the Winkler-Pasternak and visco-Pasternak medium In order to further 
improve the Pasternak model, Kerr (1965) has proposed the addition of a third parameter (Kerr type) 
to present greater flexibility in controlling the grade of foundation-surface continuity among the 
loaded and the unloaded area of the elastic beam system. Recently many researchers have adopted 
Kerr’s foundation to model elastic mediums. Using Kerr elastic medium and the nonlocal Donnell 
shell theory under axial compression, Timesli (2020b) analyzed the stability of embedded double-

walled CNTs. Bensattalah et al. (2018) conducted critical buckling loads analysis of SWCNT 
implanted in the Kerr medium. Zhang et al. (2019) studied the impact of the Kerr-type elastic 
foundation parameters on the buckling response of a beam.  

The magnetic field effect on the mechanical and vibrational response of CNT embedded using 
the continuum model is not often referred to within the open literature. Narendar et al. (2012) utilized 
the approach of wave propagation and nonlocal elasticity to study the vibrations in SWCNTs under 
the longitudinal magnetic field. Their work includes circumferential vibration patterns in both axial 

and radial directions; it demonstrated that the vibration frequencies of SWCNTs drop significantly 
for various circumferential wave numbers and in the presence of the magnetic field. Such an effect 
is also observed for the SWCNT with diverse boundary conditions. Wei and Wang (2004) 
investigated the various wave patterns in the magnetic field with coupling in longitudinal or 
transverse. Wong et al. (2010) studied the influence of a longitudinal magnetic field on wave 
propagation in a CNT implanted in an elastic matrix. Using a new refined beam theory, Jena et al. 
(2020) recently studied the vibration and buckling responses of a nonlocal beam embedded in a 
magnetic field and resting on Winkler-Pasternak elastic foundation. They found that the critical 

buckling loads and natural frequency increase with increasing the Winkler modulus. Still, this rise 
is more important in the case of critical buckling load.  

In this work, the longitudinal magnetic field and the transverse shear deformation effects on the 
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buckling loads of implanted SWCNTs in an elastic medium modeled by Kerr are discussed for the 
first time via a continuum model which targets thin and slightly thick structures. However, it is not 
recommended for high-thickness structures. The influence of a longitudinal magnetic field on 
buckling loads of SWCNTs integrated with an elastic medium modeled by Kerr, considering the 
transverse shear deformation effects, is analyzed for the first time via a nonlocal first shear 
deformation theory (NL-FSDT). The results were validated by comparing the published results 

acquired by other researchers. The effects of the transverse shear deformation, nonlocal parameter, 
radius, and length of SWCNT, and the foundation parameters on buckling of SWCNT implanted in 
an elastic medium with the influence of a magnetic field are investigated. 

 
 

2. Methodology 
 

2.1 Assumptions 
 

Many beam theories suggested over the years to study the behaviour of unidimensional 
nanostructures modeled on isotropic nanobeams, NL-FSDT is fundamentally easier to adopt for 
modeling shear deformation effect. NL-FSDT is still in widespread use today thanks to their 
simplicity. It is now well known that in the analysis of nanobeams, shear deformation effects become 
important not only for thick beams, but even for thin beams. Since classical non-local beam theory 
(NL-CBT) does not take into account shear effects, many theories have developed to fill this gap. 

According to the N-FSDT, the following displacement field can be expressed as follows (Malikan 
2017) 

𝑢(𝑥, 𝑧) = −𝑧∅(𝑥)

𝑤(𝑥, 𝑧) = 𝑤(𝑥)
                                                         (1) 

where w is a transverse component of the dis-placement in the mid-plane of the beam. Moreover, ϕ 
denotes the rotation of the cross-sectional area of the beam. 

In the proposed theory, the displacement field is selected with the subsequent assumptions:  
(i) The displacements are small compared to the thickness of nanobeam, and, hence, the strains 

affected are infinitesimal. 
(ii) The transverse displacement w consists of two-part, one for bending wb, and the other for 

shear ws. These parts are considered to be functions of coordinate x only 

)()(),( xwxwzxw bs +=                                                  (2a) 

(iii) The transverse normal stress σz is insignificant compared to in-plane stresses σx.  
(iv) The rotation variable in the S-FSDT is expressed in terms of the bending component only: 

∅ =
𝑑𝑤𝑏

𝑑𝑥
                                                               (2b) 

 

2.2 Kinematics 
 

𝑢(𝑥, 𝑧) = −𝑧
𝑑𝑤𝑏

𝑑𝑥
                                                           (3a) 

𝑤(𝑥, 𝑧) = 𝑤𝑏 + 𝑤𝑠                                                        (3b) 
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where w is displacement in the transverse direction at point (x,z). On the middle plane, it is (i.e., z=0) 
of the beam. The strains related to the displacements in Eq. (3) are 

𝜀𝑥 = −𝑧
𝑑2𝑤𝑏

𝑑𝑥2
 and 𝛾𝑥𝑧 =

𝑑𝑤𝑠

𝑑𝑥
                                                    (4) 

 
2.3 Constitutive relations 

 
Eringen (1972) was the first considered nonlocal elasticity. The reference point’s stress is 

considered to be a function of the strain field at every continuum point. Eringen developed a form 
of nonlocal constitutive relation as (Eringen 1972) 

𝜎𝑥 − 𝜇
𝑑2𝜎𝑥

𝑑𝑥2
= 𝐸𝜀𝑥                                                         (5a) 

𝜏𝑥𝑧 − 𝜇
𝑑2𝜏𝑥𝑧

𝑑𝑥2
= 𝐺𝛾𝑥𝑧                                                        (5b) 

where 𝜎𝑥, 𝜏𝑥𝑧 , are the axial and shear stresses in the nanobeam, respectively. E and G are the Young 
and shear modulus of the nanobeam, respectively. μ=(e0a)2 is the nonlocal parameter, e0 is a constant 
factor used for each material, and a is a characteristic internal length (Demir and Civalek 2013, 
Ahmed et al. 2020, Bouhadra et al. 2021, Lata and Singh 2022).  

 

2.4 Stability equation 
 

The virtual work principle (VWP) is utilized here to acquire the equations of equilibrium. The 
principle can be analytically formulated in the following form (Ahmed et al. 2019, Mehar and Panda 
2019, Hosseini et al. 2020) 

𝛿 ∫ (𝑈 + 𝑉)𝑑𝑉
𝑉

= 0                                                               (6) 

where δU represents the strain energy, virtual variation; δV is the potential energy virtual variation. 
The strain energy variation of the beam is given as 

𝛿𝑈 = − ∫ 𝑀𝑏 (
𝑑2𝛿𝑤𝑏

𝑑𝑥2 )
𝐿

0
+ 𝑄 (

𝑑𝛿𝑤𝑠

𝑑𝑥
) 𝑑𝑥                                                (7) 

where 𝛿𝑤𝑏, 𝛿𝑤𝑠, and (𝑀𝑏, Q) are respectively the variation of bending displacement, the variation 
of de shear displacement, and the stress resultants defined as 

𝑀𝑏 = ∫ 𝑧 𝜎𝑥𝑑𝐴
𝐴

 and 𝑄 = ∫ 𝜏𝑥𝑧𝑑𝐴
𝐴

                                                  (8) 

The potential energy variation with applied loads can be found as 

𝛿 𝑉 = ∫ 𝑞𝛿(𝑤𝑏 + 𝑤𝑠)𝑑𝑥
𝐿

0
− ∫ 𝑃0

𝑑𝑤

𝑑𝑥

𝑑𝛿𝑤

𝑑𝑥
𝑑𝑥

𝐿

0
                                         (9) 

where 𝑃0 and 𝑞 are the axial and elastic foundation effects, respectively. 
Substituting the relations of δU and δV from Eqs. (7) and (9) into Eq. (6) and applying the 

integration by parts, and finding coefficients of 𝛿 𝑤𝑏 and 𝛿 𝑤𝑠, the equilibrium equations of the 
proposed beam theory can be determined 

𝛿𝑤𝑏 : −
𝑑2𝑀𝑏

𝑑𝑥2 + 𝑞 − 𝑃0
𝑑2

𝑑𝑥2
(𝑤𝑏 + 𝑤𝑠) = 0                                    (10a) 
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𝛿𝑤𝑠 : −
𝑑𝑄

𝑑𝑥
+ 𝑞 − 𝑃0

𝑑2

𝑑𝑥2
(𝑤𝑏 + 𝑤𝑠) = 0                                         (10b) 

By considering Eq. (8) into Eq. (5), the nonlocal moment resultant is found as 

𝑀𝑏 − 𝜇
𝑑2𝑀𝑏

𝑑𝑥2 = −𝐷
𝑑2𝑤𝑏

𝑑𝑥2                                                     (11a) 

𝑄 − 𝜇
𝑑2𝑀𝑏

𝑑𝑥2 = 𝐵
𝑑𝑤𝑠

𝑑𝑥
                                                       (11b) 

where  

𝐷 = ∫ 𝑧2𝐸𝑑𝐴 =
𝐴

𝐸𝐼 and 𝐵 = 𝑘𝑠 ∫ 𝐺
𝐴

𝑑𝐴 = 𝑘𝑠𝐺𝐴                                   (12) 

where E, G, I, A, and ks are respectively Young’s and shear modulus, the inertia moment of area, 
cross-area of the tube, and the shear correction factor that can be utilized to balance the error due to 

the constant shear stress assumption. To derive the nonlocal governing equations, first, we put Eqs. 
(10) into (11) to derive the resultants M and Q in the nonlocal forms. Then, the obtained resultants 
will be put into Eq. (10) to derive the final equations; the nonlocal equilibrium equation which 
describe the buckling load of a SWCNT embedded in an elastic medium and subjected to a 
longitudinal magnetic field effect, can be stated in terms of displacements (w) as 

𝐷
𝑑4𝑤𝑏

𝑑𝑥4 + (1 − 𝜇
𝑑2

𝑑𝑥2) [𝑞𝑘𝑒𝑟𝑟 + 𝑓(𝑥) − 𝑃0
𝑑2

𝑑𝑥2
(𝑤𝑏 + 𝑤𝑠)] = 0                     (12a) 

−𝐵
𝑑2𝑤𝑠

𝑑𝑥2 + (1 − 𝜇
𝑑2

𝑑𝑥2) [𝑞𝑘𝑒𝑟𝑟 + 𝑓(𝑥) − 𝑃0
𝑑2

𝑑𝑥2 (𝑤𝑏 + 𝑤𝑠)] = 0                    (12b) 

The current theory is utilized to analyse the buckling behaviour of the SWCNTs under an axial 

compressive load 𝑃0 and embedded in a longitudinal magnetic field. The elastic medium is 
represented as Kerr type of foundation. It contains three parameters in the elastic model consisting 
of an independent upper (with stiffness kc), shear layer (with stiffness kG), and lower (with stiffness 
kw) elastic layers (represented by distributed springs) qKerr denotes the Kerr foundation model 
distributed reaction described by (Van Cauwelaert et al. 2002) 

𝑞𝑘𝑒𝑟𝑟 =
1

1+
𝑘𝑤 

𝑘𝑐

𝑘𝑤𝑤 − 𝑘𝐺
𝑑2𝑤

𝑑𝑥2 −
𝐷𝑘𝐺

𝑘𝑐

𝑑6𝑤

𝑑𝑥6                                        (12c) 

It is assumed that the SWCNT is under a longitudinal magnetic field effect in this problem.  

Here f(x) represents the force per length. Therefore, it can be expressed as (Narendar et al. 2012) 

𝑓(𝑥) = 𝑓𝑧𝐴                                                             (13) 

where 𝑓𝑧 is the Lorentz magnetic force that can be found from Maxwell’s relations (Narendar et al. 
2012, Jena et al. 2020) and A the cross area. 

𝑓𝑧 = 𝜂𝐻𝑥
2 𝑑2𝑤

𝑑𝑥2                                                            (14) 

in which 𝑓𝑧 represents the body force, 𝜂 is the magnetic permeability, and Hx is an axial magnetic 
field (Narendar et al. 2012). 
 

2.5 Analytical solutions 
 

In this work, the analytical solutions for buckling were given for simply supported isotropic  
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Fig. 1 The SWCNT in a longitudinal magnetic field embedded in Kerr medium (Bouchareb et al. 2022) 

 

 
beams. The boundary conditions of beams used are 

𝑤 = 0, 𝑀 = 0 at 𝑥 = 0, 𝐿                                                       (15) 

Based on Navier’s procedure (Malikan and  Dastjerdi 2018, Hadji et al. 2019, Hadji and Bernard 
2020). The displacement field satisfies governing equations, and boundary conditions can be given 
as follows 

{
𝑤𝑏

𝑤𝑠
} = ∑ {

𝑊𝑏𝑛 sin(𝛼𝑥) 𝑒𝑖𝜔𝑡

𝑊𝑠𝑛 sin(𝛼𝑥) 𝑒𝑖𝜔𝑡
}∞

𝑛=1                                                (16) 

where Wbn and Wsn, are arbitrary parameters to be obtained, ω is the eigenfrequency related to m, the 

eigenmode, and α=.mπ/L.  
Considering Eq. (16) into Eqs. (11) the closed-form solutions can be expressed as follows 

𝑃𝑐𝑟 = −
𝑆11𝑆22

𝜆(𝑆11−𝑆22)
+ 𝜂𝐴𝐻𝑥

2 +

𝛼2𝑆11𝑘𝐺
𝑘𝑐

+
𝑘𝑤
𝛼2 +𝑘𝐺

(1+
𝑘𝑤
𝑘𝑐

)
                                    (17) 

where 𝑆11 = 𝐷𝛼2, 𝑆22 = 𝑘𝑠𝐺𝐴 and 𝜆 = 1 + 𝜇𝛼2 
And by putting only Hx=0, the corresponding buckling load via NFSDT of the CNT embedded 

in Kerr’s medium can be obtained. 
 
 

3. Results and discussions 
 

In this part, the numerical calculations are carried out for the mechanic buckling characteristics 
of embedded SWCNTs in the Kerr medium under a longitudinal magnetic field (see Fig. 1).  
 

3.1 Validation 
 
By putting (kw, kG)=0 and kc˃˃ and Hx=0, we obtain the corresponding analytical solutions for 

SWCNT without any elastic medium or magnetic field effect. Then the results are compared with 

those published by Malikan and Dastjerdi (2018), Jena et al. (2020) for different beam lengths and 
nonlocal parameters, which can be demonstrated in Tables 1 and 2. For the calculations purpose, the 

values of E=1 TPa, Poisson’s ratio ()=0.18, and diameter (d)=1 nm were used. 
In Table 1, the results of the critical buckling load (Pcr) via the current method are compared 

with those shown by Malikan and Dastjerdi (2018b) carried out by the Timoshenko beam theory  
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Table 1 Validation of critical buckling load (Pcr) with (Malikan and Dastjerdi 2018) 

 e0a=0 e0a=0.5 e0a=1 e0a=1.5 e0a=2 

Malikan and Dastjerdi (2018) 
L=10 

4.7609 4.6462 4.3332 3.8957 3.4133 

Present 4.7609 4.6462 4.3332 3.8957 3.4133 

Malikan and Dastjerdi (2018) 
L=12 

3.3237 3.2677 3.1105 2.8797 2.6086 

Present 3.3237 3.2677 3.1105 2.8797 2.6086 

Malikan and Dastjerdi (2018) 
L=14 

2.4498 2.4193 2.3323 2.2005 2.0391 

Present 2.4498 2.4193 2.3323 2.2005 2.0391 

Malikan and Dastjerdi (2018) 
L=16 

1.8795 1.8616 1.8098 1.7295 1.6284 

Present 1.8795 1.8616 1.8098 1.7295 1.6284 

Malikan and Dastjerdi (2018) 
L=18 

1.4872 1.4760 1.4432 1.3918 1.3257 

Present 1.4872 1.4760 1.4432 1.3918 1.3257 

Malikan and Dastjerdi (2018) 
L=20 

1.2059 1.1985 1.1768 1.1424 1.0976 

Present 1.2059 1.1985 1.1768 1.1424 1.0976 

 
Table 2 Validation of critical buckling load with Ref. (Malikan and Dastjerdi 2018, Jena et al. 2020) (Pcr in 

nN) 

 e0a=0 e0a=0.5 e0a=1 e0a=1.5 e0a=2 

Malikan and Dastjerdi (2018), Jena et al. (2020) 
L=10 

4.7609 4.6462 4.3332 3.8957 3.4133 

Present* 4.7609 4.6462 4.3332 3.8957 3.4133 

Malikan and Dastjerdi (2018), Jena et al. (2020) 
L=12 

3.3991 3.3418 3.1810 2.9449 2.6677 

Present* 3.3991 3.3418 3.1810 2.9449 2.6677 

Malikan and Dastjerdi (2018), Jena et al. (2020) 
L=14 

2.4905 2.4595 2.3711 2.2370 2.0729 

Present* 2.4905 2.4595 2.3711 2.2370 2.0729 

Malikan and Dastjerdi (2018), Jena et al. (2020) 
L=16 

1.9034 1.8852 1.8327 1.7515 1.6494 

Present* 1.9034 1.8852 1.8327 1.7515 1.6494 

Malikan and Dastjerdi (2018), Jena et al. (2020) 
L=18 

1.5021 1.4907 1.4577 1.4057 1.3389 

Present* 1.5021 1.4907 1.4577 1.4057 1.3389 

Malikan and Dastjerdi (2018), Jena et al. (2020) 
L=20 

1.2156 1.2082 1.1864 1.1517 1.1064 

Present* 1.2156 1.2082 1.1864 1.1517 1.1064 

 
 

(TBT), it is noted that there is an excellent matching between the results. 
In Table 2, the results of the critical buckling load (Pcr) obtained from the current study are 

compared with those presented by Malikan and Dastjerdi (2018b), Jena et al. (2020) analyzed with 
two models, consecutively, a simple first shear theory (S-FSDT) and a one variable shear 
deformation theory (OVFSDT). It can be observed that the results shown for the two theories are an 

excellent match with the proposed method results. 
It can be noted that the shear correction factor found in Timoshenko’s theory could be a severe 

defect in light of its approximate quantity (ks=5/6). Even though this value has been applied in the 
case of moderately thick models, it is found that it cannot be considered an exact value to analyze 
several cases, especially nanostructures (Malikan and Dastjerdi 2018, Jena et al. 2020). This is why 
we made the shear correction factor ks disappear in the current method (present *). 

In Table 3, the results of the critical buckling load by the current model (present*) are compared 

with the results displayed by Jena et al. (2020) via OVFSDT for Winkler modulus and Pasternak  
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Table 3 Effect of Winkler, Pasternak, and Kerr modulus on the critical buckling load: (Pcr in nN with L=10 

nm) 

   e0a=0.5 e0a=1 e0a=1.5 e0a=2 

Effect of Winkler 

modulus (kw in GPa) 

kw=0 
Jena et al. (2020) 700.7004 700.2334 699.5807 698.8610 

Present* 698.1328 697.6573 696.9929 696.2601 

kw=1 
Jena et al. (2020) 711.2901 710.8230 710.1704 709.4506 

Present* 708.2649 707.7894 707.1250 706.3922 

kw=2 
Jena et al. (2020) 721.8797 721.4127 720.7600 720.0402 

Present* 718.3970 717.9215 717.2571 716.5243 

kw=3 
Jena et al. (2020) 732.4693 732.0023 731.3496 730.6299 

Present* 728.5291 728.0536 727.3892 726.6565 

kw=4 
Jena et al. (2020) 743.0590 742.5919 741.9393 741.2195 

Present 738.6612 738.1858 737.5213 736.7886 

kw=5 
Jena et al. (2020) 753.6486 753.1816 752.5289 751.8091 

Present* 748.7933 748.3179 747.6534 746.9207 

Effect of shear 

modulus (kG in nN) 

kG=0 
Jena et al. (2020) 188.7128 188.2458 187.5931 186.8733 

Present* 208.2649 207.7894 207.1250 206.3922 

kG=100 
Jena et al. (2020) 293.2283 292.7612 292.1086 291.3888 

Present* 308.2649 307.7894 307.1250 306.3922 

kG=200 
Jena et al. (2020) 397.7437 397.2767 396.6240 395.9042 

Present* 408.2649 407.7894 407.1250 406.3922 

kG=300 
Jena et al. (2020) 502.2592 501.7921 501.1395 500.4197 

Present* 508.2649 507.7894 507.1250 506.3922 

kG=400 
Jena et al. (2020) 606.7746 606.3076 605.6549 604.9351 

Present 608.2649 607.7894 607.1250 606.3922 

kG =500 
Jena et al. (2020) 711.2901 710.8230 710.1704 709.4506 

Present* 708.2649 707.7894 707.1250 706.3922 

Effect of Kerr 

modulus (kc in GPa) 

kc =10 

Present* 

693.7105 693.2350 692.5706 691.8378 

kc =20 700.6411 700.1657 699.5012 698.7685 

kc =30 703.1004 702.6250 701.9605 701.2278 

kc =40 704.3600 703.8846 703.2201 702.4874 

kc =50 705.1257 704.6502 703.9858 703.2530 

 

 
modulus. It can be observed that there is excellent matching between the results. The adopted data 
in generating these results are:  

To calculate the effect of the Winkler modulus, kG=500 nN, kc˃˃, and Hx=0 with L=10 nm were 
considered.  

To calculate the effect of the Pasternak modulus, kW=1 GPa, kc˃˃, and Hx=0 with L=10 nm were 
used.  

For this analysis’s interest, the Kerr modulus was calculated by setting kW=1 GPa, kG=500 nN, 

and Hx=0 with L=10 nn. 
On the other hand, it is clearly observed from Table 3 that the trend of the critical buckling load 

is the same for the variation of the three parameters of the elastic medium, it increases with the 
increased modulus, and we also notice that the nonlocal parameter drops the critical buckling load. 
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Fig. 2 Ratio of the critical buckling load of SWCNT by NL-FSDT to the nonlocal EBT (Bensattalah 

et al. 2018) and the length to diameter ratio (L/d) for different nonlocal parameters values (e0a) 
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Fig. 3 Magnetic field effect (Hx) on the critical buckling loads with various values of Kerr modulus (kc) 

 
 
The parameters used in calculations for Fig. 2 are: E=1 TPa, G=E/ [2(1+ν)], ν=0.19, rod diameter 

d=1 nm and I=πd4/64. And the following dimensionless variables are introduced for the lower spring 
parameter kw, the upper spring parameter kc and the intermediate shear layer parameter kG: 

(Bensattalah et al. 2018) 

𝑘𝑤 =
𝐿4

𝐷
𝑘𝑤, 𝑘𝐺 =

𝐿2

𝐷
𝑘𝐺 , 𝑘𝑐 =

𝐿4

𝐷
𝑘𝑐 

From Fig. 2, it can be found that for various nonlocal parameter values, all ratios are smaller than 
1.0. This can be attributed to the effects of the critical buckling load, and the transverse shear 
deformation of the nonlocal NL-FSDT is lower than that of the nonlocal Euler-Bernoulli beam 
model (Bensattalah et al. 2018). This phenomenon is evident for smaller nonlocal parameter values 
and slenderness ratios. It means that the effects of the transverse shear deformation can be used, and 

the nonlocal NL-FSDT is more precise for short CNT. 
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Fig. 4 Critical buckling load variation of SWCNT versus the Kerr modulus (kc) for different values 

of nonlocal parameters (e0a) 
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Fig. 5 Critical buckling load variation of SWCNT according to the Lenght of the nanotube (L) for 

various magnetic field values (Hx) 

 
 
For different values of Hx and kc, the influence of the intensity in the magnetic field on critical 

buckling loads is presented in Fig. 3. It can be observed from the results that the critical buckling 
loads increased very quickly in response to the change in the value of Hx and for different values of 

kc (10, 20, 30, 40, and 50 GPa), the obtained curves for the critical buckling loads keep the same 
trend as for Hx. We can deduce from this analysis that the magnetic field plays the same role as the 
elastic medium, i.e. increases the hardness of the material. 

Fig. 4 shows the variation of the critical buckling load of SWCNT as a function of Kerr modulus 
for different nonlocal parameter values. Five different nonlocal parameters values (e0a=0, 0.5, 1, 
1.5 and 2 nm.) are considered. This present computation uses a constant value of magnetic field  
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Fig. 6 Relation between the critical buckling loads and the length (L) with different values of the 

mode number (m) 

 
 

(Hx=4×108 A/m) and Kerr’s parameters (kw=1 GPa, kG=500 nN). The figure shows that the critical 
buckling load decreases as the nonlocal parameter increases. It can also be seen from the obtained 
curves that the critical buckling loads directly correlate with Kerr modulus values (kc). From this 
analysis, it is obvious that the elastic medium hardens our material contrary to the scale parameter, 
Hence the need to take that into account when manipulating these kinds of structures. 

Fig. 5 shows the critical buckling loads variation of SWCNT with the length for different 
magnetic field values. Four different magnetic field values are considered for the study, viz. Hx=0, 
3×108, 5×108 and 7×108 A/m. The figure shows that as the length (L) increases, the critical buckling 
loads decrease until they become constant for higher values of L. This can be explained by the 
disappearance of the shear effect which becomes negligible for longer structures. On the other hand, 
the magnetic field effect keeps the trend as for the other figures. 

Fig. 6 demonstrates the relation between the critical buckling loads and the length and axial mode 
number. The most observed characteristic is that the mode number (m) influence increases the 

critical buckling loads, unlike the length (L), which decreases the critical buckling loads. However, 
the difference becomes insignificant with increasing lengths; this can be justified by the weakness 
of the structure due to the increase in its length 
 
 

5. Conclusions 
 

In this study and using nonlocal first shear deformation beam theory (NL-FSDT), the critical 
buckling features of SWCNTs implanted in an elastic medium in a longitudinal magnetic field were 
predicted. The size effect is considered in the mathematical formulation with the help of Eringen’s 
nonlocal model. The governing equations of the system were determined via a virtual work model 
and resolved by Navier’s method. The influences of the small scale, the length, the mode number, 
the stiffness of the surrounding elastic medium, the transverse shear deformation, and the magnetic 
field of the critical buckling properties are investigated. 
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It is observed that the critical buckling load of NL-FSDT is lower than that of the nonlocal Euler-
Bernoulli beam model (Bensattalah et al. 2018) for smaller aspect ratio values because of the 
presence of transverse shear deformation that decreases the critical buckling loads. It means that the 
effects of the transverse shear deformation could be considered, and the nonlocal NFSDT is more 
accurate for short CNT. 

The critical buckling loads decrease with increasing nonlocal parameter values. Therefore, it can 

be observed that the classical elastic (i.e., the local) model that doesn’t take the nonlocal parameter 
influences will provide a higher estimation for the critical buckling load. However, the theory of the 
nonlocal continuum will demonstrate a precise and reliable result. Moreover, an attractive 
characteristic that can be presumed is that as Kerr’s parameters increase, the critical buckling load 
value decreases regardless of the magnetic field values. The critical buckling load follows an 
increasing pattern with the rise of mode number, unlike the length, which decreases the critical 
buckling loads but becomes low in slender nanotubes.  

These results are important in the mechanical design considerations of the next generation of 
nano-devices using carbon nanotubes under a magnetic field (e.g., in electronic applications; the 
design of nano-transistors that use the buckling properties of single-wall CNTs due to the creation 
of a magnetic field effect, etc.). In fact, the embedded CNTs may not give researchers a good 
performance if the mechanical response of the nanotubes in a magnetic surround is not understood. 
Similar work will be started in the near future concerning other nano-objects, based on other 
continuums models. 

The current model can be extended to examine others types of materials as used in (Cuong-Le et 

al. 2019a, b, 2020a, b, Khatir et al. 2019, Zenzen et al.2020, Khatir et al. 2021, Akbas 2022, 
Alimoradzadeh and Akbas 2022, Azandariani et al. 2022, Chinnapandi et al. 2022, Cho 2022a, b, 
Choi et al. 2022, Cuong-Le et al. 2022a, b, Du et al. 2022, Bochkareva and Lekomtsev 2022, Ding 
et al. 2022, Fan et al. 2022, Huang et al. 2022, Hagos et al. 2022, Kumar and Kattimani 2022, Liu 
et al. 2022, Mula et al. 2022, Man 2022, Rezaiee-Pajand et al. 2022, Tran and Cuong-Le 2022, Polat 
and Kaya 2022, Yaylaci et al. 2022c, Wu and Fang 2022, Zhu et al. 2022). 
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