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Abstract.  In the construction industry, thin-walled frame elements with very slender open cross-sections and low 
torsional stiffness are often subjected to a complex loading condition where axial, bending, shear and torsional 
stresses are present simultaneously. Hence, these often fail in instability even before the yield capacity is reached. One 
of the most common instability conditions associated with thin-walled structures is Lateral Torsional Buckling (LTB). 
In this study, a first order Generalized Beam Theory (GBT) formulation and numerical analysis of cold-formed steel 
lipped channel beams (C80×40×10×1, C90×40×10×1, C100×40×10×1, C80×40×10×1.6, C90×40×10×1.6 and 
C100×40×10×1.6) subjected to uniform moment is carried out to predict pure Lateral Torsional Buckling (LTB). 
These results are compared with the Finite Element Analysis of the beams modelled with shell elements using 
ABAQUS and analytical results based on Euler’s buckling formula. The mode wise deformed shape and modal 
participation factors are obtained for comparison of the responses along with the effect of varying the length of the 
beam from 2.5 m to 10 m. The deformed shapes of the beam for different modes and GBTUL plots are analyzed for 
comparative conclusions. 
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light gauge steel; lipped channel beams 
 
 
1. Introduction 

 
Thin-walled structural elements, such as cold-formed steel columns or beams have many 

advantages and have gained popularity during the recent decades (Ádány 2019). However, these 
thin-walled open structures frequently fail due to instability even before reaching the yield stress 
and the modes of deformation associated with it are influenced by the length of the structural 
member and stress distribution across the cross- section (Schardt 1994). Instability condition arises 
when a structure starts to lose its stiffness. This can be characterized as the condition where the 
structural deformation corresponding to any load tends to infinite values for even the slightest 
increase. 

Lateral Torsional Buckling (LTB) is the one of the possible modes of instability failure in 
laterally unsupported beams (Rossi et al. 2020a). It is a phenomenon in which the beam loses 
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equilibrium in the main bending plane due to lateral displacements with the addition of twist 
(Rossi et al. 2020b). Lateral Torsional Buckling comes under the category of global buckling 
whereas the other two buckling modes namely, local buckling and distortional buckling are known 
as cross-sectional buckling. In general, the deformed shape of any structural section is typically a 
result of cross-sectional buckling (local and distortional buckling) and rigid body displacements, 
which leads to a lower critical stress than the values taken individually. Incorporating the local-
global interaction in the analysis is still a challenging task, mainly because of the difficulties in 
modeling the simultaneous short and long wave structural response. Additionally, the results 
obtained from numerical analyses are often difficult to process and interpret (Gonçalves et al. 
2009). Some methods which have been adopted by the researchers are Finite Element Method, 
Finite Strip Method, Direct Strength Method, Codal Methods (AS/NZS4600, BS5950 PART-5, 
EUROCODE3-1.3, AISI method etc.), Generalized Beam Theory etc. 

Generalized Beam Theory was found to be more versatile and computationally efficient method 
than Finite Strip Method or Finite Element Method. Nowadays, GBT is used as an efficient tool to 
analyze thin-walled bars undergoing combinations of global, distortional and/or local deformations. 
This efficiency stems from the fact that the kinematic description of the beam is based on 
structurally meaningful “cross-section deformation modes”, which generally lead to accurate 
solutions when only a small number of them is included in the analysis (Manta et al. 2020). GBT 
follows a hierarchical procedure in which the solutions arise as a series of buckling modes starting 
from the one-dimensional beam behavior and gradually expanding to complex shell behavior. 
Hence, the designer gets the freedom to select the mode/modes depending on the situation under 
consideration. GBT describes the deformed configuration of a member as a linear combination of a 
set of assumed deformation modes, i.e., the degrees of freedom in GBT are modal displacements. 
As per conventional beam theory, there are four fundamental modes of deformation, namely 
extension, bending about two principal axes and torsion. These are called rigid body modes since 
distortions of cross-section are not involved. GBT unifies the analytical treatment of these rigid 
body modes and further extends it to include higher order deformation modes that involve cross-
sectional distortion. 

In the first order GBT, all these modes are orthogonal which implies that they are uncoupled, 
and their effects can be combined by simple superposition. A unifying feature of GBT is the 
introduction of ‘warping functions’ whereby each mode (k) of deformation is related with a 
distribution of axial strain (kữ). Accordingly, for the four rigid body modes, the first mode of 
deformation is the axial extension, and which has a constant axial strain distribution throughout 
the cross-section. Hence at any point, the warping function, (kữ = –1) for this mode. The second 
and third modes are bending about major and minor axis respectively and the warping functions 
linked to these modes are linear distribution of strain about the two principal axes. The final rigid 
body mode is torsion, and here warping function is the sectorial coordinates, which reflects the 
distribution of axial strain due to a moment. For a lipped Channel section, there are 6 orthogonal 
modes. As seen from Fig. 1, the four initial modes are rigid body modes and the higher modes 
(k>4) are distortional modes. For the sake of considering the effect of local buckling of flat 
elements between the fold lines or to increase the distortional modes, intermediate nodal points are 
to be added in-between the fold lines. The basic equation of GBT is Eq. (1) 

 𝐸௞𝐶௞𝑉ᇱᇱᇱ − 𝐺௞𝐷௞𝑉ᇱᇱ + 𝐵௞𝑉௞ = 𝑞௞ (1)
 
Where the forward superscript is used to represent the mode number. 
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Fig. 1 Deformed shapes and warping functions for channel sections (David et al. 2020) 

 
 
E = Modulus of elasticity 
G = Shear modulus 
Ck = Direct stress stiffness 
Dk = Shear stress stiffness 
Bk = Transverse bending stress stiffness 
Vk = Generalized deformation in mode k 
q k = Distributed load corresponding to mode k 
 
The solution of the Eq. (1) gives the stresses and deformations of the member for a specified 

loading and support condition. The equation can be solved in three different steps. The first step 
comprises of determining the warping function (kữ) and section properties (kC, kD and kB) 
corresponding to every mode (k) by considering only the cross-section. These basic section 
properties are further used in the solutions of fundamental GBT equation for each mode taking into 
account the relevant loading and boundary conditions. Once the cross-sectional properties are 
determined, material properties such as Modulus of elasticity (E) and Shear modulus (G) along 
with the support conditions, loads and length of the member are inputted into the basic equation of 
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Table 1 Details of channel sections 

Model 
no. 

Designation of 
channel section 

(hXbXaXt) 

h 
(mm) 

b 
(mm)

A 
(mm)

t 
(mm)

Xc 
(mm) 

Xs 
(mm) 

Area of 
section 
(mm2) 

1 C80×40×10×1 80 40 10 1 12.852 35.300 176 
2 C90×40×10×1 90 40 10 1 12.63 33.824 186 
3 C100×40×10×1 100 40 10 1 11.541 32.481 196 
4 C80×40×10×1.6 80 40 10 1.6 11.797 32.285 267.52 
5 C90×40×10×1.6 90 40 10 1.6 11.131 30.879 283.52 
6 C100×40×10×1.6 100 40 10 1.6 10.537 29.605 299.52 

 
 

GBT. Hence, an Eigen value problem is formed by a system of ordinary differential equations 
(ODEs) corresponding to each mode of deflection. The solution of this problem yields the member 
bifurcation stress resultants (Eigen values) and corresponding buckling mode shapes (Eigen 
functions). The third step involves combining the results of earlier step to calculate the required 
stresses and deflections. Using GBT, the stress resultant is determined as Eq. (2), 

 𝑊௞ = −𝐸௞𝐶௞𝑉ᇱᇱᇱ = ∫ 𝜎௞𝑢𝑑𝐴 (2)
 
Where, Wk is the stress resultant for mode k (e.g., bending moment for modes 2 and 3, bi 

moment for mode 4, etc.). 
Cold-formed channels are one of the most widely used sections in construction industry lately. 

The channel sections can be either square or rectangular. Out of these channel sections, the most 
used section is the lipped rectangular channel as the lip offers sufficient flexural rigidity to 
maintain straightness of the edge when the element buckles on loading along with the post-
buckling strength. The objective of this study is to use Generalized Beam Theory to predict the 
Lateral Torsional Buckling load of thin-walled (cold-formed) channel sections and to validate the 
results with Finite Element Analysis. Six different rectangular lipped channel sections are used for 
this study and the results reported is the extension of work carried out by Sharma et al. (2022). All 
the six beams are initially considered to be 2.5 m long with simply supported ends. All the models 
are modelled with shell elements with both of their ends torsionally restraint. Torsional restraints 
are provided at both ends to avoid the beams from undergoing a pure torsion under loading and in 
most practical applications, the ends are restrained from rotation about its own axis. All the models 
are laterally unsupported between the ends. The details of the cross-sections used are given in 
Table 1. 

 
 

2. GBTUL modelling and analysis 
 
GBTUL is a code developed by Bebiano et al. (2008) to solve the buckling and vibration 

problems of thin-walled open cross-sections. It is based on the implementation of GBT 
formulation so as to avoid the complex procedure of manually solving higher order differential 
equations involving several combinations of deformation modes. As already discussed, GBT can 
be considered as an elegant approach to solve several structural problems involving thin-walled 
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Fig. 2 Loading and support condition for buckling analysis (2D & 3D diagrams) 

 
 

sections and can also be used to obtain the contributions of each deformation mode (modal 
participation) in the final failure mode. GBTUL 2.0 as a code (Bebiano et al. 2018) can only 
handle elastic buckling and vibration analyses of different cross-sections made of isotropic/special 
orthotropic materials. The GBTUL model for analysis is shown in Fig. 2. 

 
 

3. Finite element analysis 
 
The geometry of the beams was modelled in ABAQUS CAE for the Finite Element Analysis 

along with assignment of material properties, constraints & boundary conditions and meshing.  
The element used for modelling is SR4 conventional shell elements. Shell extrusion technique is 
used to create the geometry. Initially the cross-section profile/geometry of the beam is defined by 
sketching the centre line of the channel cross-section in the x-y plane and the cross-section is 
extruded along the z-direction to generate the complete model of the channel beam section. The 
beam is simply supported at the ends and the supports have to be provided at the centroid. As the 
centroid of a channel section lies outside the cross section, a datum point/reference node is created 
at the centroid on both ends and it is connected to the centre of the web using a one-dimensional 
beam element (B31). 

The material of channel section (steel) is defined as a linear elastic with modulus of elasticity of 
200000 N/mm2 and Poisson’s ratio of 0.3. The purpose of the B31 beam element is to act as a rigid 
connection between the centroid and beam so that there is force flow between the support and the 
shell elements by restricting the deflection in beam making it infinitely stiff. Hence, the material 
for B31 beam element is modelled with very high flexural and torsional stiffness (the moment of 
inertia is in the range of 1010 mm4). 

As the boundary condition is simply supported and the pin-roller support need to be assigned at 
the centroid of the cross-section, the reference point which has already been created is used. In 
order to ensure a uniform force flow from the cross-section to the supports, the centroid should be 
rigidly connected/constrained to the cross-section boundary (web, flanges and lip). This is done by 
using multi-point constraints (MPC). In MPC, the slave nodes (or edges) are constrained against 
the master node through various links. In this model, the master node is the centroid and the cross-
section edges are selected as the slaves. The cross-section edges are constrained against the 
centroid with rigid beam links so that all the forces or displacements applied at the centroid will be 
transferred uniformly to the channel cross-section. 

After defining the multi-point constraints, support conditions are defined at both ends of the 
beam. On one end, at the centroid, all the translations are arrested while at the other end, 
translation along the longitudinal axis (z-axis) is released and translation along the other two 
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directions is arrested.  Since the beam is restrained against rotation, the rotational degree of 
freedom (DOF) about the longitudinal axis (z-axis) is arrested, while the other two rotational 
DOFs are released at both ends thereby stimulating a simply supported boundary condition. The 
loading on the beam is a constant moment applied throughout the beam about its major axis. This 
is simulated by applying equal and opposite moments at both ends. In order to avoid any 
eccentricities, the moments are applied at the centroid of the cross-section. 

LTB is an instability failure and therefore in order to analyse for LTB, Eigen value analysis 
needs to be performed. The basic principle in Eigen value analysis is to determine the load at 
which the model stiffness matrix becomes singular. For this study, the analysis is carried out as 
linear perturbation buckling analysis using ABAQUS. Subspace iteration method is being used for 
extracting Eigen values. After buckling analysis, the Eigen values associated with each buckling 
mode starting with the first mode is obtained. These Eigen values represent the buckling load. To 
arrive at the actual buckling load, the Eigen values are multiplied with the applied moment. The 
analysis also provides the buckling mode shapes and deformed configurations. Some of the 
observations after analysis are as follows: 

 
● For all the six models used in the study, the first buckling mode was Lateral Torsional 

Buckling as observed from the deflection diagram. 
● The analysis also gave higher buckling modes. Majority of the higher buckling modes 

involved local buckling and distortional buckling (Fig. 3). 
● The analysis also provided negative Eigen values. These are also mathematical solutions to 

the problem without any physical meaning. However, in this particular study, negative Eigen 
values and associated mode shape means that the load to cause buckling is of the opposite 
sign as compared to the applied load i.e., if the load was applied in the opposite direction to 
the actual case, the beam would have buckled in the respective mode shape. 

 
 

 
Fig. 3 Analysed model in ABAQUS (C80×40×10×1.6)

 
 

Fig. 4 Pure buckling of beam under compression
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Table 2 Comparison of GBTUL critical buckling loads with theoretical buckling values 

Model 
no. 

Designation of channel 
section (hXbXaXt) 

GBTUL 
(kN) 

ABAQUS
(kN) 

Theoretical 
buckling value (kN) 

1 C80×40×10×1 13.457 13.415 13.5 
2 C90×40×10×1 13.979 13.943 14.001 
3 C100×40×10×1 14.443 14.365 14.486 
4 C80×40×10×1.6 21.562 21.498 21.561 
5 C90×40×10×1.6 22.409 22.376 22.412 
6 C100×40×10×1.6 23.168 23.064 23.178 

 
 

● Buckling modes involving interactions between global and local buckling effects were also 
obtained at higher modes. 

 
Theoretical buckling load for a beam (Fig. 4) under compression is calculated using Euler’s 

buckling load formula. 
Euler’s Critical buckling load for the section C80×40×10×1.6 of modulus of elasticity (E = 

200000 N/mm2), moment of inertia about minor axis (I = 68337.58 mm4), Effective length (L = 
2500 mm) is calculated as follows 

 𝑃௖௥(௧௛௘௢௥௘௧௜௖௔௟) = 𝜋ଶ𝐸𝐼𝐿ଶ = 𝜋ଶ ∗ 200000 ∗ 68337.582500ଶ  (3)
 
The comparison of buckling loads calculated from the GBTUL model, ABAQUS model and 

theoretical approach is shown in Table 2. As seen, the difference between modelling and 
theoretical values is less than 0.85% for all cases. Thus, the buckling loads obtained from GBTUL 
models and theoretical buckling loads are comparable. This is an indication that the geometry, 
material property and boundary conditions have been modelled properly in GBTUL and hence the 
results obtained can be used for the comparative study. Earlier researchers have also obtained 
validation of GBT results by comparison with values obtained with Finite Element Analysis 
modelled using shell elements (Nedelcu and Mureşan 2017). 

 
 

4. Results and discussion 
 
In this study, six cold-formed steel channel sections were analyzed to determine the critical 

buckling load. Based on the results, a comparison is carried out between the buckling analysis 
results obtained from two different numerical analysis techniques (FEM and GBT). Since the 
study deals with an instability failure problem and follows Eigen value analysis, the comparison of 
first three Eigen modes is given here. The participation of each individual mode contributing to the 
failure corresponding to each Eigen mode is also obtained from GBTUL analysis. By checking the 
modal participation and deflected shape of the beam, the type of failure can be understood, 
whether it is Lateral Torsional Buckling or distortional. All the sections are of 2.5 m length and 
analysed under a uniform/constant moment load. Table 3 gives the comparison of critical buckling 
loads obtained from ABAQUS and GBTUL for channels C80×40×10×1, C90×40×10×1 and 
C100×40×10×1. Table 4 gives the modal participation (in percentage) for those sections. 
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Table 3 Comparison of critical buckling loads from ABAQUS and GBTUL analysis (1 mm thick sections) 

Sl. No. Channel 
section 

Critical buckling moment (kNm) 
Eigen value 1 Eigen value 2 Eigen value 3 

ABAQUS GBTUL ABAQUS GBTUL ABAQUS GBTUL 
1 C80×40×10×1 1.136 0.556 1.97 1.91 1.98 1.99 
2 C90×40×10×1 1.312 0.63 2.17 2.18 2.18 2.23 
3 C100×40×10×1 1.488 0.706 2.37 2.37 2.38 2.43 

 
 

Table 4 Modal participation for corresponding Eigen modes (1 mm thick sections) 

Sl. no. Channel 
section 

Eigen 
mode no. 

Modal participation (%) 

Axial Bending 
(major)

Bending
(minor) Torsion Symmetric 

distortion 

Anti-
symmetric 
distortion

1 C80×40×10×1 
EM 1 0 0 50 50 0 0 
EM 2 0 0 43 50 7 0 
EM 3 0 0 0 3 50 47 

2 C90×40×10×1 
EM 1 0 0 50 50 0 0 
EM 2 0 0 0 2 50 48 
EM 3 0 0 0 1.5 50 48.5 

3 C80×40×10×1 
EM 1 0 0 50 50 0 0 
EM 2 0 0 0 1 50 49 
EM 3 0 0 0 1 50 49 

 
 
From Table 4, it can be observed that for all the sections, first mode of failure is contributed by 

50% bending about minor axis (buckling) and 50% torsion which represents the global buckling 
failure mode of LTB (Lateral Torsional Buckling). In the second Eigen mode, distortion also 
contributes to the failure. The lowest buckling load (first Eigen value) in all the cases corresponds 
to LTB mode. The critical buckling load obtained for the first failure mode from FEM and GBT 
analyses differ greatly with each other. All the values obtained from ABAQUS are almost twice as 
that of GBTUL critical loads (Table 3). In the subsequent modes, critical loads obtained from both 
the analyses were comparable with a maximum percentage difference of 3%. Plots showing the 
variation of critical buckling load obtained from the two analyses are given in Fig. 5. 

Deflected shapes of C80×40×10×1 channel section corresponding to first Eigen mode are 
compared in Figs. 6(a) and (b). From the modal participation values shown in Table 2 and the 
deflection diagrams obtained from ABAQUS and GBTUL, it is clear that the first mode of 
buckling corresponds to Lateral Torsional Buckling. Even if the critical buckling load obtained 
varies from each other, the deflected diagrams confirm that the first mode of buckling in thin-
walled steel sections under a uniform/constant moment is LTB. It is inferred that this is likely due 
to pre buckling stress state not being uniform, with stress concentrations appearing near the 
member ends (Giovanni et al. 2016). 

The support condition chosen for the analysis was simply supported but the options to simulate 
support conditions with an additional restrained/free degree of freedom are not available in 
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Fig. 5 Comparison of ABAQUS and GBTUL critical buckling loads (1 mm thick sections) 

 
 

(a) ABAQUS (b) GBTUL 

Fig. 6 Comparison of ABAQUS and GBTUL critical buckling loads (1 mm thick sections) 
 
 

(a) ABAQUS (b) GBTUL 

Fig. 7 Deflected shapes of C80×40×10×1 beam in third Eigen mode 
 
 

GBTUL as of now. However, in ABAQUS the actual simulation of the support condition is done 
i.e., simply supported with torsional restraints and multi-point constraints to get the uniform 
distribution of loads. The disparity in critical buckling load in first Eigen mode which does not 
involve distortion (i.e., only involving rigid body deformation modes) and changes in deflected 
shapes can be due to this modelling difference. When the distortion comes into picture, the critical 
buckling loads and deflection diagrams obtained are similar. The deflection diagram for failure 
modes involving distortion is given in Figs. 7(a) and (b). 

Upon compression of C80×40×10×1.6, C90×40×10×1.6 and C100×40×10×1.6, it is seen that 
unlike sections with 1 mm thickness (slenderer), the buckling loads for these sections show 
considerable difference up to second Eigen mode (Table 5). This can be due to the modelling 
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Table 5 Comparison of critical buckling load values from ABAQUS and GBTUL analysis (1.6 mm thick 
sections) 

Sl. 
No. Channel section 

Critical buckling moment (kNm) 
Eigen value 1 Eigen value 2 Eigen value 3 

ABAQUS GBTUL ABAQUS GBTUL ABAQUS GBTUL 
1 C80×40×10×1.6 1.92 1.02 4.82 3.34 5.33 5.47 
2 C90×40×10×1.6 2.19 1.14 5.6 3.82 5.9 6.01 
3 C100×40×10×1.6 2.47 1.26 6.385 4.33 6.44 6.56 
 
 

Table 6 Modal participation for corresponding Eigen modes (1.6 mm thick sections) 

Sl. no. Channel 
section 

Eigen 
mode no. 

Modal participation (%) 

Axial Bending 
(major)

Bending
(minor) Torsion Symmetric 

distortion 

Anti-
symmetric 
distortion

1 C80×40×10×1.6 
EM 1 0 0 50 50 0 0 
EM 2 0 0 50 47 3 0 
EM 3 0 0 0 3 50 47 

2 C90×40×10×1.6 
EM 1 0 0 50 50 0 0 
EM 2 0 0 48 50 2 0 
EM 3 0 0 0 2 48 50 

3 C100×40×10×1.6 
EM 1 0 0 50 50 0 0 
EM 2 0 0 48 50 2 0 
EM 3 0 0 0 1 50 49 

 
 

difference as mentioned earlier. However, like the earlier findings, this disparity in values is 
present only when the failure mode is contributed solely by the rigid body deformations (Table 6). 
When distortions are involved, the values obtained are the same with less than 3% difference 
(Table 5 and Fig. 8). 

Deflection diagrams for the section C80×40×10×1.6 corresponding to first Eigen mode are 
given in Figs. 8(a) and (b). Similar to previous sections, the first mode is LTB, which can be 
interpreted from the modal participation values and the deflection diagrams. In these sections, the 
distortion is relatively negligible in the second Eigen mode compared to the previous sections with 
1 mm thickness. When the distortion mode is predominant, the critical loads and deflection 
diagrams obtained from ABAQUS and GBTUL are found to be comparable (Fig. 9). Hence, one 
of the important observations is that when the rigid body deformations are predominant in the final 
failure mode, the critical buckling load values obtaining from GBT are considerably lower than 
those obtained from FEM analysis. 

One of the most important factors which can influence the critical buckling load of a beam is its 
slenderness ratio which is directly proportional to its length. The earlier parts of this section 
presented the critical buckling load corresponding to LTB for simply supported channel sections 
2.5 m long. Here the variation of critical buckling load corresponding to LTB with the increase in 
length is presented for all cross-sections under consideration (Table 7). The plots showing the 
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Fig. 8 Comparison of ABAQUS and GBTUL critical buckling loads (1.6 mm thick sections) 

 
 

 

(a) ABAQUS (b) GBTUL 

Fig. 9 Comparison of ABAQUS and GBTUL critical buckling loads (1.6 mm thick sections) 
 
 

(a) ABAQUS (b) GBTUL 

Fig. 10 Deflected shapes of C80×40×10×1.6 beam in third Eigen mode 
 
 

variation of critical buckling loads (Fig. 10) and modal participation diagram (Fig. 11) for 
changing lengths are also given. 

From Table 7 and Fig. 11, it is clear that the critical buckling load shows a significant decrease 
with increase in length in the first Eigen mode for all the sections under consideration. It can be 
compared to the case of column buckling under axial load since the critical buckling load shows a 
similar variation with increase in height of column (Euler’s Buckling Theory). However, for all the 
channel sections under consideration, the first Eigen mode of failure is found to be Lateral 
Torsional Buckling (LTB) under uniform/constant moment irrespective of the length. This can be 
confirmed from the modal participation diagram (Fig. 12) obtained from GBTUL analysis for 
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Table 7 Modal participation for corresponding Eigen modes 

Sl. no Channel section 
Critical buckling moment (kNm) for different length, L 

Eigen Value 1 
L = 2.5 m L = 5 m L = 7.5 m L = 10 m 

1 C80×40×10×1 0.56 0.18 0.10 0.07 
2 C90×40×10×1 0.63 0.19 0.11 0.07 
3 C100×40×10×1 0.71 0.21 0.12 0.08 
4 C80×40×10×1.6 1.02 0.38 0.23 0.17 
5 C90×40×10×1.6 1.14 0.41 0.25 0.18 
6 C100×40×10×1.6 1.26 0.44 0.26 0.19 

 
 

 
Fig. 11 Modal participation diagram for first Eigen mode

 
 

Fig. 12 Modal participation diagram (C80×40×10×1) for third Eigen mode 
 
 

lengths varying from 2.5 m to 10 m. For all the lengths, it was observed that the first mode is 
solely contributed by minor axis bending (50%) and torsion (50%). However, the modal 
participation diagram for 3rd Eigen mode in general shows that for shorter lengths upto 3.5 m, the 
failure mode is mainly contributed by distortion modes but for beams longer than 4 m, the most 
critical failure mode is torsional buckling (Fig. 12). 
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5. Conclusions 
 
This study reports the results of buckling analysis of thin-walled lipped channel sections using 

GBT and its subsequent FEM analysis using ABAQUS for a constant/uniform moment load. 
Based on the study, following general conclusions have been made: 

 
● The critical buckling loads corresponding to LTB obtained from GBT analysis is almost half 

(46%-52% lesser) of the values that are obtained from FEM analysis. The modal 
participation values (from GBTUL) shows that the failure is solely contributed by torsion 
(50%) and buckling (50%) and the deflection diagrams obtained from both the analyses 
confirm the occurrence of LTB. Hence a conservative LTB prediction is done by GBT rather 
than FEM or in other words FEM overestimates the critical buckling value corresponding to 
LTB. 

● When the distortions (symmetric and anti-symmetric) are majorly involved in the final 
failure mode, the critical buckling values are found to be comparable with less than 3% 
difference. The deflection diagrams are also found to be similar. Hence, both the methods 
are equally reliable in predicting failure modes majorly involving distortion. 

● The buckling analysis of channel sections under axial load using FEM and GBT techniques 
give critical buckling loads marginally close to the Euler’s buckling load with a maximum 
percentage difference of 0.3% and 0.8% respectively. 

● For all the sections under consideration with 1 mm thickness, in the third mode of failure, 
distortion is the governing mode of deformation till 3.5 m beam length and LTB is the 
governing mode for lengths greater than 4 m. For sections with 1.6 mm thickness, governing 
mode is distortion up to 2.5 m length and for beams longer than 3 m, LTB is the governing 
mode. 

 
Based on the investigation, LTB is found to be the most critical global buckling phenomena 

(instability failure) for all the channel sections under consideration in both the analysis methods 
followed i.e., GBT and FEM. The critical buckling loads obtained from GBT corresponding to 
LTB are considerably lower than that obtained from FEM analysis. GBT provides a better 
interpretation of the final failure mode with the help of modal participation values. The 
participation percentage of torsion, buckling and distortions obtained in each mode could explain 
the deflection diagram obtained from ABAQUS. Considering the significance and additional 
insights provided by GBT, there is a need for increased research attention and wider adoption of its 
results in industrial practices and design codes. 
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