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Abstract.  This work deals with the two-dimensional deformation in a homogeneous isotropic nonlocal magneto- 
thermoelastic solid with two temperatures under the effects of inclined load at different inclinations. The 
mathematical model has been formulated by subjecting the bounding surface to a concentrated load. The Laplace and 
Fourier transform techniques have been used for obtaining the solution to the problem in transformed domain. The 
expressions for nonlocal thermal stresses, displacements and temperature are obtained in the physical domain using a 
numerical inversion technique. The effects of nonlocal parameter, rotation and inclined load in the physical domain 
are depicted and illustrated graphically. The results obtained in this paper can be useful for the people who are 
working in the field of nonlocal thermoelasticity, nonlocal material science, physicists and new material designers. It 
is found that there is a significant difference due to presence and absence of nonlocal parameter. 
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1. Introduction 

 
Thermoelasticity covers a broad area of developments. It deals with the theory of stresses and 

strains considering the heat transfer equation. The thermoelastic theories defining the heat flow 
and deformation have gained a lot of attention during last few years and the nonlocal theory of 
thermoelasticity, two temperature theory are some of those theories to be named. The concept of 
nonlocality has been well studied and documented till now. It considers the dependence of the 
various physical quantities defined at a point as not just a function of the values of independent 
constitutive variables at that point only but as a function of their values over the whole body. 

Edelen et al. (1971) and Edelen and Law (1971) developed the concept of nonlocal continuum 
mechanics. Eringen and Edelen (1972) developed the nonlocal elasticity theory which contains 
information about long range forces of atoms and according to this theory the stress field at a 
particular point is impacted by the strain at all the other point of the body. Marin (1996) obtained 
solutions in micropolar bodies with voids. Marin (1997) find result for thermoelastic body with 
voids and proved their uniqueness. Eringen (2002) derived nonlocal continuum field theories. 
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Ebrahimi and Shafiei (2016) applied Eringen’s nonlocal elasticity theory for vibration analysis of 
FG nanobeams. Abouelregal (2019) studied the rotating magneto-thermoelastic rod due to moving 
heat sources via Eringen’s nonlocal model. Balubaid et al. (2019) investigated nanoscale plate 
using nonlocal plate theory. Hussain et al. (2019) studied the nonlocality in thermoelastic materials. 
Lata and Singh (2019, 2020d) discussed the nonlocal effects due to inclined load and due to ramp 
type sources respectively for their research work and proved that nonlocal effects play a major role 
depicting the results graphically. Soleimani et al. (2019) also used nonlocal elasticity theory to 
prove his results. Asghar et al. (2020) assessed nonlocal natural frequencies of DWCNTs. 

Thermoelasticity with two temperatures is a highly important non-classical theories of 
thermodynamics of elastic solids. This theory differs due to the consideration of thermal effects 
only. It was due to Chen and Gurtin (1968) that the theory gained importance. They suggested the 
dependence of deformable bodies upon two distinct temperatures, namely the thermodynamic 
temperature and the conductive temperature. Youssef (2005) gave the uniqueness theorem in case 
of two temperature generalized thermoelasticity. Youssef and Al-Lehaibi (2007) investigated 
various problems related to two temperature thermoelasticity and proved the reliability of the two 
temperatures generalized thermoelasticity. Othman and Abbas (2012) studied generalized 
thermoelasticity of thermal-shock problem using Green and Naghdi type II and type III theories. 
Marin et al. (2015) extended the thermoelasticity concepts to porous micropolar bodies and proved 
some relevant results. Abualnour et al. (2019) analyzed composite plates thermomechanically 
using a four variable trigonometric plate theory. Saeed et al. (2020) developed a GL model on 
thermoelastic interactions by using finite element method. Jahangir et al. (2020) studied reflection 
of photothermoelastic waves in a semiconducting medium and proved the existence of different 
type of waves. 

The effect of magenetic field and rotation also has been discussed by many researchers. 
Othman et al. (2015) studied effect of rotation on plane waves in generalized thermo-microstretch 
elastic bodies in the context of Green and Naghdi theory. Kumar et al. (2016) described 
thermomechanical interactions with combined effects of rotation, vacuum and two temperatures. 
They proved the significance of thermodynamic temperature and conductive temperature. Lata and 
Singh (2020a, b) studied the deformation in a nonlocal magneto-thermoelastic solid with hall 
current due to normal force and time harmonic interactions in nonlocal thermoelastic solid with 
two temperatures respectively. Khan et al. (2019) studied third-grade magnetohydrodynamic fluid 
with variable thermal conductivity and chemical reaction over an exponentially stretching surface. 
Lata and Singh (2020c) investigated the thermomechanical interactions in a nonlocal thermoelastic 
model due to memory dependent derivatives. Lata and Singh (2020e) analyzed the propagation of 
plane waves in a nonlocal magneto-thermoelastic solid with Hall current. 

Alzahrani and Abbas (2016) investigated the effects of magnetic field on a thermoelastic 
material using GN-III theory. Sharma et al. (2016) discussed the rotation effects in a transversely 
isotropic magnetothermoelastic medium with and without energy dissipiation due to two 
temperatures. Abouelregal (2019) used Eringen’s nonlocal model to discuss the effects of moving 
heat sources on a rotating magneto-thermoelastic rod. Mondal (2020) used a novel mathematical 
model of generalized thermoelasticity to study the memory dependent response in a magneto-
thermoelastic rod with a moving heat source using Eringen’s theory of nonlocality. Zenkour (2020) 
gave a refined multi-phase-lag model to study the Magneto-thermal shock for a fiber-reinforced 
anisotropic body. Heidari et al. (2021) investigated the mechanics of nanocomposites reinforced 
by nanotubes. Matouk et al. (2020) used the integral Timoshenko beam theory to study the hygro-
thermal vibration of nanobeam. Rouabhia et al. (2020) used the nonlocal integral first-order theory 
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for their investigation of the physical stability response of a SLGS. 
From above discussion, it has been evaluated and observed that a lot of research has been 

carried out in recent years on nonlocal effects using two temperature theories. But not much 
attention has been given to the study of magneto-thermoelastic transversely isotropic nonlocal 
material with combined effects of rotation and two temperatures. So, in this paper an effort has 
been made to study the rotation and inclined load on a magneto-thermoelastic medium under the 
effect of local and non-local parameters. The analytic expressions for the displacements, stresses 
and temperature distribution have been obtained in two-dimensional transversely isotropic 
magneto-thermoelastic solid. 

 
 

2. Basic equations 
 
Following Eringen (2002) and Abouelregal (2019), the equation of motion for a homogeneous 

nonlocal magneto-thermoelastic solid rotating with a uniform angular velocity Ω = Ωn, where n is 
a unit vector demonstrating the direction of the rotation axis and taking into account of Lorentz 
force is (λ + 2𝜇)∇(∇. 𝒖) − 𝜇 (∇ × ∇ × 𝒖) − 𝛽∇𝜃 = (1 − 𝜖ଶ∇ଶ)𝜌 𝜕ଶ𝒖𝜕𝑡ଶ . (1)

 
where, 𝑭 = 𝜇଴ (𝑱 ×  𝑯𝟎) denotes the Lorentz force, 𝑯𝟎 is the external applied magnetic field 
intensity vector, 𝑱 is the current density vector, 𝒖 is the displacement vector, 𝜇଴ and 𝜀଴ are the 
magnetic and electric permeabilities respectively. 

The above equations are supplemented by generalized Ohm’s law for media with finite 
conductivity and including the hall current effect (from Kumar et al. (2017)) 

 𝑱 = ఙబଵା௠మ ቆ𝑬 + 𝜇଴ ቀ𝒖ሶ × 𝑯 − ଵ௘௡೐ 𝑱 × 𝑯𝟎ቁቇ. (2)

 
where, E is the intensity vector of the electric field, H is the magnetic strength, 𝒖ሶ  is the velocity 
vector, 𝑚 (= 𝜔௘𝑡௘) is the Hall parameter, 𝜔௘ is the electronic frequency, 𝑡௘ is the electron 
collision time, e is the charge of an electron, 𝑛௘ is the number of density of electrons. 

Following Zenkour (2020), the heat conduction equation with multi-dual-phase-lag heat 
transfer is given as K∗ℒ௩𝜃,௜௝ = ℒ௤ 𝜕𝜕𝑡 ൫𝜌𝐶∗𝜃 + 𝛽𝜃଴𝑢௜,௝൯, (3)

 

where ℒ௩ = 1 + ∑ ఛೡೝ௥!ோభ௥ୀଵ డೝడ௧ೝ, and ℒ௤ = 𝜚 + 𝜏଴ డడ௧ + ∑ ఛ೜ೝ௥!ோమ௥ୀଶ డೝడ௧ೝ. 
Here 𝜏௩, 𝜏௤ and 𝜏଴ are thermal memories in which 𝜏௩ is the phase lag of the temperature 

gradient while 𝜏௤ is the phase lag of the heat flux (0 ≤ 𝜏௩ < 𝜏௤). Generally, the value of 𝑅ଵ =𝑅ଶ = 𝑅 may reach 5 or more according as refined multi-dual-phase-lag theory required while 𝜚 
is a non-dimension parameter (= 0 or 1 according to the thermoelasticity theory). 

The constitutive relations are given by 
 (1 − 𝜖ଶ∇ଶ)𝑡௜௝ = 𝜆𝑢௞,௞𝛿௜௝ + 𝜇൫𝑢௜,௝ + 𝑢௝,௜൯ − 𝛽𝜃𝛿௜௝. (4)
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where 𝜆, 𝜇 are material constants, 𝜖 is the nonlocal parameter, 𝜌 is the mass density, 𝜃 is 
absolute temperature and 𝜃଴  is reference temperature, 𝐾∗  is the coefficient of the thermal 
conductivity, 𝐶∗ the specific heat at constant strain, 𝛽 = (3λ + 2μ)α where α is coefficient of 
linear thermal expansion, Ω is the angular velocity of the solid, 𝑒௜௝ are components of strain 
tensor, 𝛿௜௝ is the Kronecker delta, 𝑡௜௝ are the components of stress tensor. 

 
 

3. Formulation of the problem 
 
We consider a homogeneous non local isotropic magneto-thermoelastic medium, permeated by 

an initial magnetic field 𝑯𝟎 = (0, 𝐻଴, 0) acting along y-axis body in an initially undeformed state 
at temperature 𝜃଴. The rectangular Cartesian coordinate system (x, y, z) is introduced, having 
origin on the surface (z = 0) with z-axis pointing normally into the half space. The surface of the 
medium is subjected to an inclined load acting at z = 0. We take a rectangular Cartesian co-
ordinate system (𝑥ଵ, 𝑥ଶ, 𝑥ଷ) with 𝑥ଷ  axis pointing normally into the half space. We assume 
that 𝛀 = (0, Ω, 0). Also, the current density components (using generalized Ohm’s law) are given 
as 𝐽ଵ = −𝜀଴𝜇଴𝐻଴ 𝜕ଶ𝑤𝜕𝑡ଶ , (5)

 𝐽ଶ = 0, (6)
 𝐽ଷ = 𝜀଴𝜇଴𝐻଴ 𝜕ଶ𝑢𝜕𝑡ଶ . (7)

 
We restrict our analysis to two-dimensional problem by using 
 𝒖 = (𝑢, 0, 𝑤). (8)
 
Using Eq. (8) in Eqs. (1)-(3), yields 
 (𝜆 + 2𝜇) 𝜕ଶ𝑢𝜕𝑥ଶ + (𝜆 + 𝜇) 𝜕ଶ𝑤𝜕𝑥𝜕𝑧 + 𝜇 𝜕ଶ𝑢𝜕𝑧ଶ − 𝛽 𝜕𝜃𝜕𝑥 − (1 − 𝜖ଶ∇ଶ)𝜇଴𝐽ଷ𝐻଴ = 𝜌(1 − 𝜖ଶ∇ଶ) ቊ𝜕ଶ𝑢𝜕𝑡ଶ − Ωଶu + 2Ω 𝜕𝑤𝜕𝑡 ቋ, (9)

 (𝜆 + 2𝜇) 𝜕ଶ𝑤𝜕𝑧ଶ + (𝜆 + 𝜇) 𝜕ଶ𝑢𝜕𝑥𝜕𝑧 + 𝜇 𝜕ଶ𝑤𝜕𝑧ଶ − 𝛽 𝜕𝜃𝜕𝑧 − (1 − 𝜖ଶ∇ଶ)𝜇଴𝐽ଵ𝐻଴ = 𝜌(1 − 𝜖ଶ∇ଶ) ቊ𝜕ଶ𝑤𝜕𝑡ଶ − Ωଶw − 2Ω 𝜕𝑤𝜕𝑡 ቋ, (10)

 𝐾∗ℒ௩ ቆ𝜕ଶ𝜃𝜕𝑥ଶ + 𝜕ଶ𝜃𝜕𝑧ଶቇ = ℒ௤ 𝜕𝜕𝑡 ൤𝜌𝐶∗𝜃 + 𝛽𝜃଴ ൬𝜕𝑢𝜕𝑥 + 𝜕𝑤𝜕𝑧 ൰൨. (11)

 
we define the following dimensionless quantities 
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(𝑥ᇱ, 𝑧ᇱ, 𝑢ᇱ, 𝑤ᇱ) = 𝜔ଵ𝑐ଵ (𝑥, 𝑧, 𝑢, 𝑤), 𝑡௜௝ᇱ = 𝑡௜௝𝛽𝜃଴ , 𝑡ᇱ = 𝜔ଵ𝑡,𝑎ᇱ = 𝜔ଵଶ𝑐ଵଶ 𝑎,      𝜃ᇱ = 𝜃𝜃଴ ,      Ωᇱ = Ω𝜔ଵ ,     𝜏௩ᇱ = 𝜔ଵ𝜏௩,      𝜏଴ᇱ = 𝜔ଵ𝜏଴,     𝜏௤ᇱ = 𝜔ଵ𝜏௤, 𝐹ଵᇱ =  𝐹ଵ𝛽𝜃଴     and     𝐹ଶᇱ =  𝐹ଶ𝛽𝜃଴. (12)

 

where 𝑐ଵଶ = 𝜇𝜌      and     𝜔ଵ =  𝜌 𝐶∗𝑐ଵଶ𝐾∗ . 
 

The relations between non-dimensional displacement components 𝑢, 𝑤 and the dimensionless 
potential functions 𝑞, 𝜓 can be expressed as potential functions defined by 

 𝑢 = 𝜕𝑞𝜕𝑥 − 𝜕𝜓𝜕𝑧 , 𝑤 = 𝜕𝑞𝜕𝑧 + 𝜕𝜓𝜕𝑥 . (13)

 
Upon introducing the quantities defined by Eqs. (12)-(13) in Eqs. (9)-(11), and suppressing the 

primes, yields 
 ቊ(1 + 𝑎ଵ)𝛻ଶ − (1 − 𝜖ଶ𝛻ଶ) ቈ 𝑀1 + 𝑚ଶ 𝜕𝜕𝑡 + 𝜕ଶ𝜕𝑡ଶ − 𝑎ଷΩଶ቉ቋ 𝑞 − 𝑎ଶ𝜃 = 0, (14)

 ቊ𝛻ଶ − (1 − 𝜖ଶ𝛻ଶ) ቆ 𝜕ଶ𝜕𝑡ଶ − 𝑎ଷΩଶቇቋ 𝜓 = 0 (15)

 𝑎ଶ∇ଶ𝑞 − ቂℒ௩𝑎ସ∇ଶ − ℒ௤𝑎ହ డడ௧ቃ 𝜃 = 0  (16)
 

where, 𝑎ଵ = ఒାఓఓ , 𝑎ଶ = ఉ బ்ఓ , 𝑎ଷ = ఠభమ௖భమ , 𝑎ସ = ୏ఠభ௖భ , 𝑎ହ = 𝜌𝐶∗ and 𝑀 = ఙబఓబమுబమఘ . 
The initial and regularity conditions are given by 
 𝑢(𝑥, 𝑧, 0) = 0 = 𝑢ሶ (𝑥, 𝑧, 0), 𝑤(𝑥, 𝑧, 0) = 0 = 𝑤ሶ (𝑥, 𝑧, 0), 𝜃(𝑥, 𝑧, 0) = 0 = 𝜃ሶ(𝑥, 𝑧, 0     for     𝑧 ≥ 0, −∞ < 𝑥 < ∞, 𝑢(𝑥, 𝑧, 𝑡) = 𝑤(𝑥, 𝑧, 𝑡) = 𝜃(𝑥, 𝑧, 𝑡) = 0     for     𝑡 > 0      when     𝑧 → ∞. 
 
Applying Laplace and Fourier Transform defined by 
 𝑓(̅x, z, s) = න 𝑓(𝑥, 𝑧, 𝑡)ஶ

଴ 𝑒ି௦௧𝑑𝑡, (17)

 𝑓መ(ξ, 𝑧, 𝑠) = න 𝑓(̅𝑥, 𝑧, 𝑠)ஶ
ିஶ 𝑒௜ஞ௫𝑑𝑥. (18)

 
on Eqs. (14)-(16), we obtain a system of equations 
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൤(1 + 𝑎ଵ)(−𝝃ଶ + 𝐷ଶ) − (1 + 𝜖ଶξଶ − 𝜖ଶDଶ)( 𝑀𝑠1 + 𝑚ଶ + 𝑠ଶ − 𝑎ଷΩଶ)൨ 𝑞෤ − [𝑎ଶ]𝜃෨ = 0, (19)

 [𝑎ଶDଶ − ξଶ]𝑞෤ − ൣℒ௩𝑎ସ(𝐷ଶ − 𝜉ଶ) − ℒ௤𝑎ହ𝑠൧𝜃෨ = 0, (20)
 [ 𝐷ଶ − 𝜉ଶ − (1 + 𝜖ଶ𝜉ଶ − 𝜖ଶ𝐷ଶ)(𝑠ଶ − 𝑎ଷΩଶ]𝜓෨ = 0. (21)
 

where ℒ௩ = 1 + ∑ ఛೡೝ௥!ோభ௥ୀଵ 𝑠௥ and ℒ௤ = 𝜚 + 𝜏଴𝑠 + ∑ ఛ೜ೝ௥!ோమ௥ୀଶ 𝑠௥. 
From Eqs. (18), (19) and (20), we obtain a set of homogeneous equations which will have a 

nontrivial solution if determinant of coefficient [𝑞෤, 𝜃෨, 𝜓෨]் vanishes so as to give a characteristic 
equation as 

 [𝐷଺ + Q𝐷ସ + 𝑅𝐷ଶ + 𝑆](𝑞෤, 𝜃෨, 𝜓෨) = 0. (22)
 

where 𝑄 = ఍ల௉ ሼ𝜁଺𝜁ଵଵ + 𝜁ଵଷ + 𝜁଼𝜁ଵଶ + 𝜁଼𝜁ଽሽ, 𝑅 = ିଵ௉ ሼ𝜁଺𝜁ଵଵ𝜁ଵଶ + 𝜁଺𝜁ଵସ + 𝜁଺𝜁ଽ𝜁ଵଵ + 𝜁ଽ𝜁ଵଷ +𝜁଼𝜁ଽ𝜁ଵଶሽ,   𝑆 = ఍వ௉ ሼ𝜁ଵଵ𝜁ଵଶ + 𝜁ଵସሽ, 𝑃 = −𝜁଺ଶ𝜁଼. 𝐷 = 𝑑𝑑𝑧,     𝜁ଵ = 1 + 𝑎ଵ,     𝜁ଶ = 1 + 𝜖ଶξଶ,     𝜁ଷ = 𝑀𝑠1 + 𝑚ଶ + 𝑠ଶ − 𝑎ଷΩଶ, 𝜁ସ = 1 + 𝑎ξଶ𝜁ହ = 𝑠ଶ − 𝑎ଷΩଶ,     𝜁଺ = 1 + 𝜁ହ𝜖ଶ,      𝜁଻ = 𝜁ଵ + 𝜁ଷ𝜖ଶ,     𝜁଼ = ℒ௩𝑎ସ,    𝜁ଽ = ξଶ + 𝜁ଶ𝜁ହ, 𝜁ଵ଴ = 𝑎ଶଶξଶ,   𝜁ଵଵ = ℒ௩𝑎ସξଶ + ℒ௤𝑎ହ𝑠,   𝜁ଵଶ = 𝜁ଵξଶ + 𝜁ଶ𝜁ଷ,   𝜁ଵଷ = 𝑎ଶ𝜁ଵ. 
 
The roots of the Eq. (22) are ±𝜆௜ (𝑖 = 1,2,3) satisfying the radiation condition that 𝑞෤, 𝜃,෩ 𝜓෨ →0 as 𝑧 → ∞, the solutions of equation can be written as 
 𝑞෤ = 𝐴ଵ𝑒ିఒభ௭ + 𝐴ଶ𝑒ିఒమ௭ + 𝐴ଷ𝑒ିఒయ௭, (23)
 𝜃෨ = 𝑑ଵ𝐴ଵ𝑒ିఒభ௭ + 𝑑ଶ𝐴ଶ𝑒ିఒమ௭ + 𝑑ଷ𝐴ଷ𝑒ିఒయ௭, (24)
 𝜓෨ = 𝑙ଵ𝐴ଵ𝑒ିఒభ௭ + 𝑙ଶ𝐴ଶ𝑒ିఒమ௭ + 𝑙ଷ𝐴ଷ𝑒ିఒయ௭, (25)
 𝑑௜ = 𝑃∗𝜆௜ସ + 𝑄∗𝜆௜ଶ + 𝑅∗𝑇∗𝜆௜ସ + 𝑈∗𝜆௜ଶ + 𝑉∗ 𝑖 = 1,2,3, (26)

 𝑙௜ = 𝑃∗∗𝜆௜ସ + 𝑄∗∗𝜆௜ଶ + 𝑅∗∗𝑇∗𝜆௜ସ + 𝑈∗𝜆௜ଶ + 𝑉∗ 𝑖 = 1,2,3, (27)
 

where 𝑃∗ = 𝜁଺ଶ,     𝑄∗ = −𝜁଺(𝜁ଽ + 𝜁ଵଶ),     𝑅∗ = 𝜁ଽ𝜁ଵଶ, 𝑇∗ = −𝜁଺𝜁଼,     𝑈∗ = 𝜁଼𝜁ଽ + 𝜁଺𝜁ଵଵ,     𝑉∗ = −𝜁ଽ𝜁ଵଵ, 𝑃∗∗ = −𝜁଺𝜁଼,     𝑄∗∗ = 𝜁଼𝜁ଵଶ + 𝜁଺𝜁ଵଵ + 𝜁ଵଷ,     𝑅∗∗ = −(𝜁ଵଵ𝜁ଵଶ + 𝜁ଵସ). 
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Fig. 1 Inclined load over a nonlocal isotropic magneto-thermoelastic solid 
 
 

4. Applications 
 
We consider a normal line load 𝐹ଵ per unit length acting in the positive z-axis on the plane 

boundary 𝑧 = 0 along the y-axis and a tangential load 𝐹ଶ per unit length, acting at the origin in 
the positive x-axis. The boundary conditions are 

 𝑡௭௭(𝑥, 𝑧, 𝑡) = −𝐹ଵ𝜓ଵ(𝑥)𝐻(𝑡), (28)
 𝑡௫௭(𝑥, 𝑧, 𝑡) = −𝐹ଶ𝜓ଶ(𝑥)𝐻(𝑡), (29)
 𝜕𝜕𝑥ଷ 𝜑(𝑥ଵ, 𝑥ଷ, 𝑡) = 0. (30)
 

where, 𝐹ଵ  and 𝐹ଶ  are the magnitude of the forces applied, 𝜓ଵ(𝑥)  and 𝜓ଶ(𝑥)  specify the 
vertical and horizontal load distribution function along 𝑥 axis and H(t) is the Heaviside unit step 
function given by 𝐻(𝑡) = ቄ0, 𝑡 < 01, 𝑡 > 0. 

 
Applying the Laplace and Fourier transform defined by Eqs. (17) and (18) on the boundary 

conditions (28)-(30) and then using the dimensionless quantities defined by Eq. (12) and using Eqs. 
(4), (8), (13) and substituting values of 𝑞ො, 𝜃෠, 𝜓෠ from Eqs. (23)-(25), and solving, we obtain the 
components of displacement, normal stress, tangential stress and conductive temperature as 

 𝑢෤ = 𝐹ଵ𝜓ଵ෪(𝜉)sΔ ൝෍ 𝑀ଵ௜𝑒ିఒ೔௭ଷ
௜ୀଵ ൡ + 𝐹ଶ𝜓ଶ෪ (𝜉)sΔ ൝෍ 𝑀ଶ௜𝑒ିఒ೔௭ଷ

௜ୀଵ ൡ, (31)

 𝑤෥ = 𝐹ଵ𝜓ଵ෪(𝜉)sΔ ൝෍ 𝑑௜𝑀ଵ௜𝑒ିఒ೔௭ଷ
௜ୀଵ ൡ + 𝐹ଶ𝜓ଶ෪ (𝜉)sΔ ൝෍ 𝑑௜𝑀ଶ௜𝑒ିఒ೔௭ଷ

௜ୀଵ ൡ, (32)
 

29



 
 
 
 
 
 

Parveen Lata and Sukhveer Singh 

𝜃෠ = 𝐹ଵ𝜓ଵ෪(𝜉)sΔ ൝෍ 𝑙௜𝑀ଵ௜𝑒ିఒ೔௭ଷ
௜ୀଵ ൡ + 𝐹ଶ𝜓ଶ෪ (𝜉)sΔ ൝෍ 𝑙௜𝑀ଶ௜𝑒ିఒ೔௭ଷ

௜ୀଵ ൡ. (33)

 𝑡௭௭෦ = 𝐹ଵ𝜓ଵ෪(𝜉)sΔ ൝෍ 𝑑௜𝑀ଵ௜𝑒ିఒ೔௭ଷ
௜ୀଵ ൡ + 𝐹ଶ𝜓ଶ෪ (𝜉)sΔ ൝෍ 𝑑௜𝑀ଶ௜𝑒ିఒ೔௭ଷ

௜ୀଵ ൡ, (34)

 𝑡௭௫෦ = 𝐹ଵ𝜓ଵ෪(𝜉)sΔ ൝෍ Δଶ௜𝑀ଵ௜𝑒ିఒ೔௭ଷ
௜ୀଵ ൡ + 𝐹ଶ𝜓ଶ෪ (𝜉)sΔ ൝෍ Δଶ௜𝑀ଶ௜𝑒ିఒ೔௭ଷ

௜ୀଵ ൡ, (35)

 𝑡௫௫෦ = 𝐹ଵ𝜓ଵ෪(𝜉)sΔ ൝෍ 𝑆௜𝑀ଵ௜𝑒ିఒ೔௭ଷ
௜ୀଵ ൡ + 𝐹ଶ𝜓ଶ෪ (𝜉)sΔ ൝෍ 𝑆௜𝑀ଶ௜𝑒ିఒ೔௭ଷ

௜ୀଵ ൡ. (36)

 

where 
 ∆=  ෍ 𝑀ଷ௜T௜ଷ

௜ୀଵ , 𝑀ଵଵ = ∆ଶଶ∆ଷଷ − ∆ଷଶ∆ଶଷ,     𝑀ଵଶ = ∆ଶଵ∆ଷଷ − ∆ଷଵ∆ଶଷ,     𝑀ଵଷ = ∆ଷଶ∆ଶଵ − ∆ଷଵ∆ଶଶ, 𝑀ଶଵ = 𝑁ଶଷ,     𝑀ଶଶ = 𝑁ଵଷ,     𝑀ଶଷ = 𝑁ଵଶ, 𝑀ଷଵ = ∆ଶଶ∆ଷଷ + ∆ଷଶ∆ଶଷ,     𝑀ଷଶ = ∆ଶଵ∆ଷଷ + ∆ଷଵ∆ଶଷ,     𝑀ଷଷ = ∆ଷଶ∆ଶଵ + ∆ଷଵ∆ଶଶ, ∆ଶ௝= 𝜄𝜉𝑑௝ − 𝜆௝,        ∆ଷ௝= 𝑙௝𝜆௝,        𝑁௜௝ = 𝜆௜𝑑௝(𝜆 + 2𝜇) + 𝛽𝑙௜𝑙௝൫𝜆௝ − 𝜆௜൯. 
 
 

5. Special case 
 
5.1 Concentrated force 
 
The solution due to concentrated normal force on the half space is obtained by setting 
 𝜓ଵ(𝑥) = 𝛿(𝑥),         𝜓ଶ(𝑥) = 𝛿(𝑥), 
 

where 𝛿(𝑥) is dirac delta function. 
Applying Laplace and Fourier transform, we obtain 
 𝜓ଵ෢(𝜉) = 1, 𝜓ଶ෢ (𝜉) = 1. (37)
 
Using Eq. (37) in Eqs. (31)-(36), the components of displacement, stress and temperature are 

obtained. 
 
 

6. Particular cases 
 
Suppose an inclined load, 𝐹଴ per unit length is acting on the y-axis and its inclination with z-

axis is Θ, i.e. 𝐹ଵ = 𝐹଴ cos Θ and 𝐹ଶ = 𝐹଴ sin Θ (38)
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Using Eq. (38) in Eqs. (31)-(36), we obtain the expressions for displacement components, 
stress components and temperature for concentrated force on the surface of a homogeneous 
isotropic magneto-thermoelastic solid. 

 
• If 𝜖 = 0, then from Eqs. (31)-(36), the corresponding expressions for displacements, 

stresses and conductive temperature for isotropic solid with local effects are obtained. 
• If Ω = 0, then from Eqs. (31)-(36), the corresponding expressions for displacements, 

stresses and conductive temperature for isotropic solid without rotation and with nonlocal 
effects are obtained. 

• If Ω = 𝜖 = 0, then from Eqs. (31)-(36), the corresponding expressions for displacements, 
stresses and conductive temperature for local isotropic solid without rotation are obtained. 

 
 
7. Inversion of the transformation 

 
To obtain the solution of the problem in physical domain, we must invert the transforms in Eqs. 

(31)-(36). Here the displacement components, normal and tangential stresses and conductive 
temperature are functions of  𝑧 and the parameters of Laplace and Fourier transforms s and 𝜉 
respectively and hence are of the form 𝑓(𝜉, 𝑧, 𝑠). To obtain the function 𝑓(𝑥, 𝑧, 𝑡) in the physical 
domain, we first invert the Fourier transform using the formula 

 𝑓ሚ(𝑥, 𝑧, 𝑠) = 12𝜋 න 𝑒ି௜క௫ஶ
ିஶ 𝑓መ(𝜉, 𝑧, 𝑠)𝑑𝜉 = 12𝜋 න |cos(𝜉𝑥) 𝑓௘ − 𝑖 sin(𝜉𝑥) 𝑓଴|ஶ

ିஶ 𝑑𝜉. (39)

 
where, 𝑓௘ and 𝑓଴ are respectively the even and odd parts of 𝑓መ(𝜉, 𝑧, 𝑠). Thus the expression (39) 
gives the Laplace transform 𝑓ሚ(𝑥, 𝑧, 𝑠) of the function 𝑓(𝑥, 𝑧, 𝑡). Following Honig and Hirdes, the 
Laplace transform function 𝑓ሚ(𝑥, 𝑧, 𝑠) can be inverted to 𝑓(𝑥, 𝑧, 𝑡). 

The Last step is to calculate the integral in Eq. (39). The method for evaluating this integral is 
described in Press at al. It involves the use of Romberg’s integration with adaptive step size. This 
also uses the results from successive refinements of the extended trapezoidal rule followed by 
extrapolation of the results to the limit when the step size tends to zero. 

 
 

8. Numerical results and discussion 
 
Magnesium material is chosen for the purpose of numerical calculation which is isotropic and 

according to Dhaliwal and Singh (1980), physical data for which is given as 
 𝜆 = 9.4 × 10ଵ଴𝑁𝑚ିଶ,          𝜇 = 3.278 × 10ଵ଴𝑁𝑚ିଶ,      𝐾∗ = 1.7 × 10ଶ𝑊𝑚ିଵ𝐾ିଵ, 𝜌 = 1.74 ×  10ଷ𝐾𝑔𝑚ିଷ,     𝜃଴ = 298 𝐾,                             𝐶∗ = 10.4 × 10ଶ𝐽𝐾𝑔ିଵ𝑑𝑒𝑔ିଵ, 𝜇଴ = 4𝜋 × 10ି଻𝐻𝑚ିଵ,        𝜀଴ = 10ିଽ36𝜋 𝐹𝑚ିଵ,                    𝐻଴ = 1 𝐽𝑚ିଵ𝑛 𝑏ିଵ. 
 
Using the above values, a comparison of values of displacement components 𝑢 and 𝑤, stress 

components 𝑡௭௭, 𝑡௫௫, 𝑡௭௫  and temperature 𝜃 for a homogeneous isotropic nonlocal magneto-
thermoelastic solid with distance x has been made and the effects of rotation and inclination has 
been depicted for local parameter (𝜖 = 0) and non local parameter (𝜖 = 2), for Ω = 0 and Ω =
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0.5 and angle of inclination Θ = 30଴ and Θ = 45଴. 
 
1) The solid black colored line with center symbol square corresponds to local parameter (𝜖 =0) and Ω = 0. 
2) The dashed reddish colored line with center symbol circle represents local parameter (𝜖 =0) and Ω = 0.5. 
3) The dotted blue colored line with center symbol upward triangle corresponds to nonlocal 

parameter (𝜖 = 2) and Ω = 0. 
4) The dashed-dotted purplish colored line with center symbol downward triangle represents 

nonlocal parameter (𝜖 = 2) and Ω = 0.5. 
 
Fig. 2, shows the variations of the displacement component 𝑢 for isotropic magneto-

thermoelastic medium with rotation and nonlocal effects at Θ = 30଴. It is clear that the values of 𝑢 follow oscillatory pattern. For 𝜖 = 0 and Ω = 0, the variations are increasing rapidly for 0 <𝑥 < 2 while later on it follows oscillatory path. Same way all other values for different 𝜖 and Ω 
 
 

Fig. 2 Variation of displacement component 𝑢 with displacement x at Θ = 30଴ 
 
 

Fig. 3 Variation of displacement component 𝑢 with displacement x at Θ = 45଴ 
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Fig. 4 Variation of displacement component 𝑤 with displacement x at Θ = 30଴ 
 
 

Fig. 5 Variation of displacement component 𝑤 with displacement x at Θ = 45଴ 
 
 

Fig. 6 Variation of stress component 𝑡௭௭ with displacement x at Θ = 30଴ 
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Fig. 7 Variation of stress component 𝑡௭௭ with displacement x at Θ = 45଴ 
 
 

follows perfectly oscillatory path from beginning to end. Fig. 3 depicts the variation of values of 
displacement component 𝑢 at Θ = 45଴. The pattern is oscillatory with a clear difference between 
values for local and non-local parameters. the values of 𝑢 follow oscillatory pattern. For 𝜖 = 2 
and Ω = 0.5, the variations are increasing rapidly for 0 < 𝑥 < 2 while later on it 
followsoscillatory path. Figs. 4 and 5 describe the variations of the displacement component 𝑤 for 
isotropic magneto-thermoelastic medium with rotation and nonlocal effects at Θ = 30଴ and Θ =45଴ respectively. It is clear that the values of 𝑤 follow oscillatory pattern. For 𝜖 = 0 and Ω =0.5, the variations are increasing rapidly for 0 < 𝑥 < 2 while later on it follows oscillatory path 
with more clearly visible oscillations for Θ = 45଴, but the nonlocality effects are dominant for all 
values. Figs. 6 and 7 shows the variation of stress component 𝑡௭௭ for Θ = 30଴ and Θ = 45଴ 
respectively. Here too the behavior followed is oscillatory with more variations for 𝜖 = 0 and Ω = 0.5 for 𝑥 > 8 at Θ = 30଴ while the values decrease rapidly for 0 < 𝑥 < 2 at Θ = 45଴. 
Figs. 8 and 9 shows the variation of stress component 𝑡௭௫  for Θ = 30଴  and Θ = 45଴ 
respectively. Here too the behavior followed is oscillatory with nonlocality effects clearly visible 
 
 

Fig. 8 Variation of stress component 𝑡௭௫ with displacement x at Θ = 30଴ 
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Fig. 9 Variation of stress component 𝑡௭௫ with displacement x at Θ = 45଴ 
 
 

Fig. 10 Variation of stress component 𝑡௫௫ with displacement x at Θ = 30଴ 
 
 

Fig. 11 Variation of stress component 𝑡௫௫ with displacement x at Θ = 45଴ 
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Fig. 12 Variation of conductive temperature 𝜑 with displacement x at Θ = 30଴ 
 
 

Fig. 13 Variation of conductive temperature 𝜑 with displacement x at Θ = 45଴ 
 
 

for both angles of inclination. Figs. 10 and 11 shows the variation of stress component 𝑡௫௫ for Θ = 30଴ and Θ = 45଴ respectively. The behavior followed is oscillatory with a rapid decrease in 
values for 𝜖 = 2 and Ω = 0 for 0 < 𝑥 < 2 at Θ = 45଴ while there is a rapid increase for the 
values for 𝜖 = 2 and Ω = 0 and 𝜖 = 2 and Ω = 0.5 for 0 < 𝑥 < 2 at Θ = 30଴. Figs. 12 and 
13 shows the variation of temperature 𝜃 for Θ = 30଴ and Θ = 45଴ respectively. The pattern 
followed is oscillatory for all the values with only exception being a slight and rapid decrease in 
values for 𝜖 = 2 and Ω = 0.5 for 0 < 𝑥 < 2 at both the inclination angles. Also, the effects for 
nonlocality and rotation are clearly visible from the graphs. 

 
 

9. Conclusions 
 
In the above discussion the combined effects of nonlocal parameter, rotation and inclined load 

on the components of displacements, stresses and temperature have been examined in a nonlocal 
magneto-thermoelastic solid with Hall current and rotation. It is observed that nonlocality is 
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playing a significant effect on displacement components, stress components and temperature and 
the effects of magnetic rotation and the angle of inclination of the applied load are clearly visible 
along with local and nonlocal parameters. It is observed from the Figs. 2~13 that the trends in the 
variations of the characteristics mentioned are similar with difference in their magnitude when the 
concentrated forces are applied. Under the combined effects of nonlocality, rotation and inclined 
load; all the components are following an oscillatory path with respect to variations in x. There are 
differences in the magnitude for both local and nonlocal parameters and the magnitude increases 
as rotational effect and nonlocal effect are introduced in most of the cases. The results obtained 
give an inspiration to study nonlocality further in magneto-thermoelastic materials. The results of 
this paper can be helpful for the researchers working in the field of material engineering, 
geophysics, marine engineering, acoustics etc., for analysis of deformation field around mining 
tremors. 
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