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Abstract.  In this paper, the nonlocal integral Timoshenko beam model is employed to study the free vibration 
characteristics of singled walled carbon nanotubes (SWCNTs) including the thermal effect . Based on the nonlocal 
continuum theory, the governing equations of motion  are formulated  by considering thermal effect. The influences of 
small scale parameter, the chirality of SWCNTs, the vibrational mode number, the aspect ratio of SWCNTs and 
temperature changes on the thermal vibration properties of single-walled nanotubes are examined and discussed. 
Results indicate significant dependence of natural  frequencies on the nonlocal parameter, the temperature change, the 
aspect ratio and the chirality of SWCNTs. This work should be useful reference for the application and the design of 
nanoelectronics and nanoelectromechanical devices that make use of the thermal vibration properties of SWCNTs. 
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1. Introduction 

 
The discovery of carbon nanotubes “CNTs” was by Iijima (1991), since this time, they have 

attracted worldwide attention. Recently, the analysis of CNTs has been of large interest to several 
scientific researchers because of their exceptional mechanical, electronic, electrochemical, 
physical and thermal properties (Robertson 2004). These properties support CNTs to be the 
suitable element for nanoelectronics, nanodevices, nanosensors and nanocomposites (Dai et al. 
1996, Dharap et al. 2004). There are certain experimental investigations of the effectives 
properties and behaviors of “CNTs” as the Young’s modulus “E”, shear modulus “G”, buckling 
behavior and vibration responses. For examples, experimental investigations by Treacy et al. 
(1996), who used the technique of transmission electron microscopy (TEM) to measure the 
Young’s modulus of MWCNTs, reported a mean value of 1.8 Tpa with a variation from 0.40 to 

 
∗Corresponding author, Professor, E-mail: med_bourada@yahoo.fr 

1



 
 
 
 
 
 

Mohamed Liani et al. 

4.15 Tpa. Tombler et al. (2000) and Salvetat et al. (1999) have used the technique of atomic force 
microscope (AFM) and they found the average Young’s modulus of MWCNTs to be 1.2 TPa and 
0.81 TPa. 

In the experiment, however, it is very difficult to measure the mechanical properties of CNTs, 
directly due to their very small size. Computer simulation has been regarded as a powerful tool for 
modeling the properties of CNTs. Generally, two major types of computational approaches to the 
simulation of mechanical properties of CNTs modelling. These are (a) atomistic approach such as 
Ab-initio (Ye et al. 2001), molecular dynamics “MD” (Frankland 2003) and tight binding “TBMD” 
(Hernandez et al. 1998) and (b) continuum mechanics approaches (Wang 2005). Among the 
available modeling techniques, molecular dynamics simulation numerically solves Newton’s 
equations of motion, thus allowing structural fluctuations to be remarked with respect to time 
(Tersoff and Ruoff 1994). However, MD simulation is limited to systems with a maximum atom 
number of about 109 by the scale and cost of computation (Tadmor et al. 1999). So only single-
walled nanotubes with small deflection can be simulated using the MD method. Hernandez et al. 
(1998) studies of the mechanical properties of SWCNTs using MD method which tight-binding 
approach (TBMD). SWCNTs have the highest Young’s modulus and the Poisson’s ratio, which 
were found to be 1.24 TPa and 0.262, respectively. Bao et al. (2004) used MD approach and 
reported the Young’s modulus average values were reported 935.805 ± 0.618 GPa, 935.287 ± 
2.887 GPa and 918.309 ± 10.392 GPa for Armchair, Zigzag and Chiral SWCNTs, respectively. 

It is well known that classical continuum mechanics theory is size-independent, because it 
cannot incorporate the small-scale effect in nano-scale structure. The local continuum mechanics 
theory assumes that the stress at a point depends only on the strain at the same point, whereas in 
the nonlocal continuum mechanics theory originated by Eringen (1972 and 1983), the stress state 
at a given point as a function of the strain states of all points in the continuum mechanics. There 
are many works in the literature that have used this theory. Wang et al. (2006) investigated the 
small-scale effect on elastic buckling of CNTs with nonlocal continuum models. The Dynamic 
instability on CNTs is investigated by Sedighi and Yaghootian (2016) based on nonlocal 
continuum elasticity. Timesli (2020) presented an explicit analytical formula to examine the 
stability of DWCNTs using Donnell shells continuum approach. The small-scale and thermal 
effect on dynamic response of an embedded Armchair SWCNTs is investigated by Hamidi et al. 
(2018) by employing the non-local Timoshenko beam model. Bensattalah et al. (2018) 
investigated on mechanical stability of CNT reposed on foundation type Kerr by employing the 
nonlocal continuum theory and EBT formulations. Based on Energy equivalent model, Eltaher et 
al. (2018) have analyzed the vibrational behaviors of Material Size-Dependent CNTS. Bensattalah 
et al. (2019a) proposed a novel nonlocal Timoshenko beam theory to examine the free vibrational 
response of the chiral single-walled CNTs. Ahmed et al. (2019) examined the post-buckling 
response of imperfect FG nanobeams based on higher order nonlinear refined beam theory. Based 
on Eringen’s differential law and Timoshenko beam theory, Jalaei and Civalek (2019) studied the 
dynamic instability of imperfect (FG) nanobeam subjected to axially oscillating loads. Also, 
Gafour et al. (2020) investigated the dynamic behavior of porous FG nanobeam by employing 
non-local higher order shear deformation theory. Abdulrazzaq et al. (2020) analyzed the thermal 
stability of clamped E-FG nano-size plate rested on an elastic substrate using a nonlocal refined 
theory. In similar works, the non-classical theory was used by several researchers to examine the 
static and dynamic response of the CNTs and others materials and structures (Attia and Rahman 
2018, Karami et al. 2018a, b, Al-Maliki et al. 2019, Karami and Janghorban 2019a, b, Belmahi et 
al. 2019, Hamad et al. 2019, Eltaher et al. 2019a, b, c, Ebrahimi and Barati 2019, Attia et al. 2019, 
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Shanab et al. 2020, Bensattalah et al. 2019b, 2020, Fenjan et al. 2020, Ghandourah and Abdraboh 
2020, Tahouneh et al. 2020, Arefi and Żur 2020, Yuan et al. 2020, Mirjavadi et al. 2020a, Asrari et 
al. 2020, Ahmed et al. 2020a, Eltaher et al. 2020,Thanh et al. 2020, Civalek et al. 2021). 

Therefore, the aim of this study is to analyze the free vibration of single-walled carbon 
nanotubes SWCNTs using a nonlocal integral Timoshenko elastic beam theory. Young’s modulus 
of SWCNTs is predicted using MD simulation carried out by Bao et al. (2004). The effects of both 
small scale parameter, the chirality of SWCNTs, the vibrational mode number, the aspect ratio of 
SWCNTs and temperature changes on the frequency of SWCNTs are studied and discussed. This 
work should be useful guidance for the study and design of the next generation of nanodevices that 
make use of the thermal vibration properties of SWCNTs. 

 
 

2. Structure of carbon nanotube 
 
The SWCNTs are generated by rolling up a graphene sheet into a seamless cylinder. This 

structures may be described by the tube chirality, defined or represented through a pair of indices 
(n, m) referred to as the chiral vector 𝐶ℎ, and the chiral angle 𝜃 (see Fig. 1(a)). The chiral vector 𝐶ℎ is defined as shown in the equation below 

 𝐶ℎ = 𝑛𝑎⃗ଵ + 𝑚𝑎⃗ଶ (1)
 
Where: 𝑎⃗ଵ  and 𝑎⃗ଶ  are the unit cell vectors of the two-dimensional lattice formed by the 

grapheme sheets, n and m are two integers. The direction of the CNT axis is perpendicular to this 
chiral vector. The chiral angle “𝜃௖” expression is given in the function of the integers “n, m” as 
(Dresselhaus et al. 2003) 

 𝜃௖ = 𝑐𝑜𝑠ିଵ ൬ 2𝑛 + 𝑚2√𝑛ଶ + 𝑛𝑚 + 𝑚ଶ൰ ;  𝜃௖ = 𝑠𝑖𝑛ିଵ ቆ √3𝑚2√𝑛ଶ + 𝑛𝑚 + 𝑚ଶቇ ; 𝜃௖ = 𝑡𝑎𝑛ିଵ ቆ √3𝑚2𝑛 + 𝑚ቇ (2)

 
 
 

 
(a) (b)

Fig. 1 (a) The 2D graphene sheet diagram showing a vector structure classification used to define CNT 
structure (Dresselhaus et al. 1996); (b) CNTs structure with different chiralities: armchair, zigzag 
and chiral 
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Depending on the chiral indices (n, m) and the chiral angles, CNTs can be classified to zigzag 
and armchair structures as shown in Fig. 1(b). For armchair CNTs, the chiral indices n and m are 
equal (n = m) and θc = 30° while for zigzag CNTs, m = 0 and θc = 0°. For other values of indices 
(n ≠ m), CNTs are known as chiral and 0° < θc < 30°. The length of the unit vector 𝑎 is defined 
as 𝑎 = √3𝑎஼ି஼ with the equilibrium carbon–carbon (C–C) covalent bond length 𝑎஼ି஼ usually 
taken to be 0.1421 nm (Wilder et al. 1998). The nanotube radius “𝑟” expression is given as 

 𝑟 = 𝑎 √𝑛ଶ + 𝑛𝑚 + 𝑚ଶ2𝜋  (3)

 
 

3. Nonlocal Timoshenko elastic beam models of SWCNTs 
 
In this article the Eringen model of nonlocal elasticity is adopted. In the theory of nonlocal 

elasticity (Eringen 1972 and 1983), the stress “𝜎” at a reference point “𝑥’ is supposed to be a 
functional of the strain accordance with atomic theory of lattice dynamics and experimental 
observations on phonon dispersion. In the limit when the effects of strains at points other than 𝑥 
are neglected, one obtains classical or local theory of elasticity. The basic equations for linear, 
homogeneous, isotropic, nonlocal elastic solid with zero body force are given by Eringen (1983) 

 𝜎௜௝,௝ = 0 𝜎௜௝(𝑥) = න 𝛵൫ห𝑥 − 𝑥 ′ห, ℎ൯𝐶௜௝௞௟ ൫𝑥 ′൯𝑑𝑉൫𝑥 ′൯, ∀𝑥 ∈ 𝑉𝜀௜௝ = 12 ൫𝑢௜௝ + 𝑢௝௜൯ 

(4)

 
where 𝐶௜௝௞௟  is the elastic modulus tensor of classical isotropic elasticity; 𝜎௜௝ and 𝜀௜௝ are stress 
and strain tensors respectively, and 𝑢௜  is displacement vector. 𝑇(|𝑥 − 𝑥ᇱ|, ℎ) is the nonlocal 
modulus or attenuation function incorporating into the constitutive equations to characterize the 
nonlocal effects at the reference point 𝑥 produced by local strain at the source 𝑥 ′. ห𝑥 − 𝑥 ′ห is the 
Euclidean distance, and ℎ = ௘బ௔௅  is a material constant that depends on internal and external 
characteristic length (such as the lattice spacing and wavelength), where 𝑒଴  is a constant 
appropriate to each material, 𝑎 is an internal characteristic length, e.g. length of C―C bond, 
lattice parameter, granular distance, and 𝐿  is an external characteristic length. Nonlocal 
constitutive relations for present nanotubes /nanobeams can be written as 

 𝜎௫ − (𝑒଴𝑎)ଶ 𝜕ଶ𝜎௫𝜕𝑥ଶ = 𝐸𝜀௫ ⇒ (1 − (𝑒଴𝑎)ଶ𝛻ଶ)𝜎௫ = 𝐸𝜀௫ (5a)

 𝜏௫௭ − (𝑒଴𝑎)ଶ 𝜕ଶ𝜏௫௭𝜕𝑥ଶ = 𝐺𝛾௫௭ ⇒ (1 − (𝑒଴𝑎)ଶ𝛻ଶ)𝜏௫௭ = 𝐺𝛾௫௭ (5b)

 
where 𝐸 is the Young’s modulus and 𝐺 is the shear modulus of the material, 𝛻ଶ is Laplace 
operator. 𝛾 is the shear strain and 𝜎௫ is the axial stress. The parameter 𝑒଴𝑎 is the parameter 
leading to small scale effect on the response of structures in nanosize. 
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Based on the integral Timoshenko beam theory, the displacement field is given as 
 𝑢(𝑥, 𝑧, 𝑡) = −𝑧𝑘 න 𝜃(𝑥, 𝑡)𝑑𝑥𝑤(𝑥, 𝑧, 𝑡) = 𝑤଴(𝑥, 𝑡) 

(6)

 
Where 𝜃  and  𝑤଴ are the two unknowns’ variables. The indeterminate integral appears in the 

above displacement field shall be resolved by the type of solutions used. k is the coefficient 
depends of the geometry. 

The expressions of the axial and shear strains 𝜀௫ and 𝛾௫௭ associated with the displacement 
field of Eq. (6) is obtained as 

 𝜀௫ = −𝑧𝑘𝜃𝛾௫௭ = −𝑘𝐴’ 𝜕𝜃𝜕𝑥 + 𝜕𝑤଴𝜕𝑥  
(7)

 
Where A’ is coefficient defined via adopted solutions type. In this case 𝐴’ = −1/𝜆ଶ. 
The expressions of the shear force and bending moment 𝑀 are given as 
 𝑀 = න 𝑧𝜎𝑑𝐴𝑉 = න 𝜏𝑑𝐴 

(8)

 
Using Eqs. (5), (7) and (8). The nonlocal shear force and bending moment are obtained as 
 𝑀 = (𝑒଴𝑎)ଶ 𝜕ଶ𝑀𝜕𝑥ଶ − 𝐸𝐼𝑘𝜃, (9a)

 𝑉 = (𝑒଴𝑎)ଶ 𝜕ଶ𝑉𝜕𝑥ଶ + 𝛽𝐺𝐴 ൬𝜕𝑤𝜕𝑥 − 𝑘𝐴’
𝜕𝜃𝜕𝑥൰, (9b)

 
Where 𝐴 is the cross-section area of the beam. 𝛽 is the form factor of shear depending on the 

shape of the cross section and 𝐼 = ׬ 𝑧ଶ஺ 𝑑𝐴 is the inertia moment. The recommended value of 𝛽, 
the adjustment coefficient, is 0,9 for a circular shape of the cross area (Timoshenko 1921).  

Based on the Hamilton’s principle (Ebrahimi and Barati 2017, Fenjan et al. 2019a, b, Dehghan 
et al. 2019, Hamed et al. 2020, Attia and Mohamed 2020, Barati and Shahverdi 2020, Dehsaraji et 
al. 2020, She et al. 2020, Shariati et al. 2020, Mirjavadi et al. 2020b, Kachapi 2020, Khazaei and 
Mohammadimehr 2020, Bahaadini et al. 2020, Mohamed et al. 2020, Karami et al. 2021). The 
equations of motion of an integral Timoshenko beam theory under thermal effect are obtained as 
follow − 𝜕𝑉𝜕𝑥 + 𝑁௧ 𝜕ଶ𝑤𝜕𝑥ଶ = − 𝜕ଶ𝑤𝜕𝑡ଶ 𝜌𝐴 (10a)

 −𝑀𝑘 + 𝜕𝑉𝜕𝑥 𝑘𝐴’ = 𝜌𝐼𝑘ଶ𝐴’ଶ 𝜕ସ𝜃𝜕𝑥ଶ𝜕𝑡ଶ (10b)
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Where 𝜌 is the mass density of the material, 𝑁௧ denotes an additional axial force and is 
dependent on temperature 𝜃்  and thermal coefficient 𝛼  of the nanotube; the force can be 
expressed as 𝑁௧ = −𝛼𝐸𝐴𝜃் (11)

 
Substituting Eq. (10) into Eq. (9) leads to 
 𝑀 = −𝐸𝐼𝑘𝜃 + (𝑒଴𝑎)ଶ ቈ𝜌𝐼𝑘ଶ𝐴’ଶ 𝜕଺𝜃𝜕𝑥ସ𝜕𝑡ଶ − 𝜌𝐴𝑘𝐴’

𝜕ସ𝑤𝜕𝑥ଶ𝜕𝑡ଶ − 𝑁௧𝑘𝐴’
𝜕ସ𝑤𝜕𝑥ସ ቉ (12a)

 𝑉 = 𝛽𝐺𝐴 ൬𝜕𝑤𝜕𝑥 − 𝑘𝐴’
𝜕𝜃𝜕𝑥൰ + (𝑒଴𝑎)ଶ ቈ𝜌𝐴 𝜕ଷ𝑤𝜕𝑥ଶ𝜕𝑡 + 𝑁௧ 𝜕ଷ𝑤𝜕𝑥ଷ ቉ (12b)

 
Replacing Eq. (12) into Eq. (10), the nonlocal equations of motion in function of displacement 

terms 𝜃  and  𝑤଴ is obtained as 
 𝐸𝐼𝑘ଶ𝜃 + 𝛽𝐺𝐴𝑘𝐴’ ቆ𝜕ଶ𝑤𝜕𝑥ଶ − 𝑘𝐴’

𝜕ଶ𝜃𝜕𝑥ଶቇ = 𝜌𝐼𝑘ଶ𝐴’ଶ ቈ 𝜕ସ𝜃𝜕𝑥ଶ𝜕𝑡ଶ − (𝑒଴𝑎)ଶ 𝜕଺𝜃𝜕𝑥ସ𝜕𝑡ଶ቉ (13a)

 𝛽𝐺𝐴 ቆ−𝑘𝐴’
𝜕ଶ𝜃𝜕𝑥ଶ + 𝜕ଶ𝑤𝜕𝑥ଶ ቇ + 𝑁௧ ቈ𝜕ଶ𝑤𝜕𝑥ଶ − (𝑒଴𝑎)ଶ 𝜕ସ𝑤𝜕𝑥ସ ቉ = 𝜌𝐴 ቈ−(𝑒଴𝑎)ଶ 𝜕ସ𝑤𝜕𝑥ଶ𝜕𝑡ଶ + 𝜕ଶ𝑤𝜕𝑡ଶ ቉ (13b)

 
In the present work, the SWCNT is supposed to be simply supported in the end edges; the 

solutions of the above equation of motion (Eq. (13)) are resolved via Navier method (Zouatnia and 
Hadji 2019, Safa et al. 2019, Mohammadimehr et al. 2020, Yaghoobi and Taheri 2020). The 
displacement coefficient is expressed as 

 𝑤(𝑥, 𝑡) = 𝑊ሜ 𝑒௜ఠ௧ 𝑠𝑖𝑛( 𝜆௡𝑥) (14a)
 𝜃(𝑥, 𝑡) = 𝜃ሜ𝑒௜ఠ௧ 𝑠𝑖𝑛( 𝜆௡𝑥), (14b)
 
Where 𝑊  and  𝜃  arbitrary parameters to be determined, ω are is the eigenfrequency 

associated with Nth eigenmode. 𝑖 is the imaginary unit and 𝜆௡ is the wave number with 𝜆௡ = ேగ௅ . 
Substituting the Navier Solutions of Eq. (14) into nonlocal equations of motion of Eq. (13), the 

correspondent frequency relation can be obtained as 
 (𝜔ே்)ଶ = 12 ቆ𝛼௡ േ ට𝛼௡ଶ − 4𝛽௡ቇ (15)
 
Where 
 𝛼௡ = 𝑁௫𝜆௡ଶ𝜌𝐴 + 𝛽𝐼𝐺𝜆௡ସ𝐴’ଶ + 𝛽𝐴𝐺𝜆௡ଶ𝐴’ଶ + 𝐸𝐼𝜌𝐼𝐴’ଶ𝜆௡ଶൣ1 + (𝑒଴𝑎)ଶ𝜆௡ଶ൧  (16a)
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𝛽௡ = 𝐸𝛽𝐺𝜌ଶ𝐴’ଶൣ1 + (𝑒଴𝑎)ଶ𝜆௡ଶ൧ଶ + 𝑁௧ ൫𝐸𝐼 + 𝛽𝐴𝐺𝐴’ଶ𝜆௡ଶ൯𝜌ଶ𝐼𝐴’ଶ𝜆௡ଶൣ1 + 𝜆௡ଶ(𝑒଴𝑎)ଶ൧ (16b)

 
The Timoshenko beam model can be reduced to Euler – beam model by eliminating the effect 

of rotary inertia and the shear force. to get the local model just put 𝑒଴ = 0. 
 
 

4. Results and discussions 
 
Based on the formulations obtained above with the nonlocal integral Timoshenko beam model, 

the effect of small scale parameter, the chirality of SWCNTs, the vibrational mode number, the 
aspect ratio of SWCNTs and temperature changes on the thermal vibration properties of single-
walled nanotubes are discussed here. The ratios of the results with nonlocal parameter and 
temperature change to those without nonlocal parameter or temperature change are, respectively, 
given by 𝜒ே = 𝜔ே்𝜔௅் ; 𝜒௧ℎ = 𝜔ே்𝜔ே்଴  (17)

 
where 𝜔௅் and 𝜔ே் are the frequency based on the local and nonlocal integral Timoshenko 
beam model including thermal effect and 𝜔ே்଴  is the frequency based on the nonlocal integral 
Timoshenko beam model without thermal effect (𝜃் = 0). As previously mentioned Jiang et al. 
(2004) found that the coefficients of thermal expansion for CNTs are negative at low or room 
temperature and become positive at high temperature. Consequently, the value of the ratio 𝜒 was 
herein calculated for both cases of low and high temperatures. For the case of room or low 
temperature, we suppose 𝛼 = −1.6 × 10ି଺𝐾ିଵ (Yao and Han 2006) and for the case of high 
temperature, we suppose 𝛼 = 1.1 × 10ି଺𝐾ିଵ  (Yao and Han 2006). The parameters used in 
calculations for the SWCNT are given as follows: the effective thickness of CNTs taken to be 0.34 𝑛𝑚 (Bao et al. 2004), the mass density 𝜌 = 2.3 𝑔𝑐𝑚ିଷ, Poisson ratio is 𝜈 = 0.25 and the 
shear module can be determined from the relation 𝐺 = ଴.ହா(ଵାఔ). 

The Young’s moduli used in this study of Armchair, Zigzag and Chiral SWCNTs are calculated 
by Bao et al. (2004) using MD approach. It was reported that the Young’s modulus average values 
were 935.805 ± 0.618 GPa, 935.287 ± 2.887 GPa and 918.309 ± 10.392 GPa for Armchair, Zigzag 
and Chiral SWCNTs, respectively (see Table 1) and weakly affected by the tube chirality and 
radius. The results given by MD approach are in good agreement with the available experimental 
results (Salvetat et al. 1999, Frankland 2003). 

On the other hand, parameter 𝑒଴ was given as 0.39 by Eringen (1983). A conservative estimate 
of the scaling effect parameter 0 𝑛𝑚 ≤ 𝑒଴𝑎 ≤ 2 𝑛𝑚 for SWCNTs is proposed by Wang et al. 
(2006) with nonlocal continuum models. The product 𝑒଴𝑎 instead of 𝑒଴ alone was evaluated by 

Wang et al. (2007) by using the asymptotic value of frequency of the DWCNTs 𝜔 = ଵ௘బ௔ ටாఘ 

derived in the analysis of wave propagation via a nonlocal Timoshenko beam model, where ρ is 
the mass density of carbon nanotubes. On the basis of the frequency equation, Wang found the 
scale coefficient 𝑒଴𝑎 < 2.1 𝑛𝑚 for a CNT by substituting the available experimental vibration 
frequency 0.1 THz (Krishnan et al. 1998) or 𝑒଴𝑎 > 2.1 𝑛𝑚 supposing that the measured 
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Table 1 Values of Young’s modulus for different tube radius and different 
chiralities using MD simulation by Bao et al. (2004) 

(n, m) Radius (nm) Young’s modulus E (GPa) 
Armchair 

(8, 8) 0.542 934.960 
(10, 10) 0.678 935.470 
(12, 12) 0.814 935.462 
(14, 14) 0.949 935.454 
(16, 16) 1.085 939.515 
(18, 18) 1.220 934.727 
(20, 20) 1.356 935.048 

Zigzag 
(14, 0) 0.548 939.032 
(17, 0) 0.665 938.553 
(21, 0) 0.822 936.936 
(24, 0) 0.939 934.201 
(28, 0) 1.096 932.626 
(31, 0) 1.213 932.598 
(35, 0) 1.370 933.061 

Chiral 
(12, 6) 0.525 927.671 
(14, 6) 0.696 921.616 
(16, 8) 0.828 928.013 
(18, 9) 0.932 927.113 

(20, 12) 1.096 904.353 
(24, 11) 1.213 910.605 
(30, 8) 1.358 908.792 

 
 

frequency value for the CNT was greater than 10 THz according to the observation of Yoon et al. 
(2004). It is clear that a large range of values for the scale coefficient 𝑒଴𝑎 is possible due to 
different vibration frequencies. Therefore, in this study, the nonlocal parameters are values 0 𝑛𝑚 ≤ 𝑒଴𝑎 ≤ 5 𝑛𝑚 to investigate nonlocal effects on the responses of SWCNTs. 

Fig. 2 shows the variation of the frequency ratio 𝜒ே (i.e., ratio of the frequency 𝜔ே் of the 
nonlocal integral Timoshenko beam to the corresponding local integral Timoshenko beam 𝜔௅்) 
versus the length–to-diameter ratio ௅ௗ for six vibration mode numbers (N) with scale parameter 𝑒଴𝑎 is 1 𝑛𝑚 without consideration of thermal effect (𝜃் = 0). It can be seen from Fig. 2 that the 
frequency ratios 𝜒ே of armchair (8,8) carbon nanotube are smaller than unity for all modes at 
different length-to-diameter ratios. This means that the frequencies obtained by the nonlocal 
integral Timoshenko beam are smaller than those given by local integral Timoshenko beam, 
indicating that the inclusion of effects of small scale lead to a reduction in the vibration 
frequencies. This under prediction of frequency values is amplified for higher vibration modes and 
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Fig. 2 The values of ratio 𝜒ே of armchair (8,8) carbon nanotube with respect to length–to-diameter ratio ௅ௗ 
for different mode numbers (N) in the case of without thermal effect (𝜃் = 0) with 𝑒଴𝑎 = 1 𝑛𝑚

 
 

Fig. 3 Relation between the values of ratio 𝜒ே and the mode numbers (N) for different aspect ratios ௅ௗ of 
armchair (8,8) carbon nanotube in the case of without thermal effect (𝜃 = 0) With 𝑒଴𝑎 = 1 𝑛𝑚 

 
 

for small length-to-diameter ratios. This fact is clearly shown in Fig. 2. For the fundamental mode 𝑁 = 1, the frequency ratio approaches unity (i.e., the nonlocal integral Timoshenko and local 
integral Timoshenko results become close to each other) for long tubes. For frequencies 
corresponding to higher modes, say 𝑁 = 48, the frequency ratios are significantly smaller than 
unity, especially at small values of ௅ௗ. 

For example, the frequency ratios at ௅ௗ = 5 are 0.6521, 0.1434 and 0.0362 for the N = 2, N = 

12 and N = 48, respectively. With the increase of ௅ௗ (i.e., ௅ௗ > 80), the effects of the small scale 
on the vibration frequencies become negligible as can be observed from the curves associated with 
the N = 1, N = 2 and N = 6 in Fig. 2. However, it is worth noting that even for slender CNTs with ௅ௗ as large as 130, the small scale still have an appreciable effect on the frequency associated with 
high vibration modes (see results for the N = 24 and N = 48 in Fig. 2). 
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Fig. 3 illustrate relationship between the frequency ratios 𝜒ே and vibration mode numbers (N) 
of armchair (8,8) carbon nanotube at different values length–to-diameter ratio ௅ௗ in the case of 
without thermal effect (𝜃் = 0). It can be seen in Fig. 3 that the frequency ratios 𝜒ே decreases 
with increasing the value N. In addition, we observe that  increasing the ratio ௅ௗ results in 
increasing in the ratio 𝜒ே. It is also observed from Fig. 3 that the frequency ratios 𝜒ே are less 
than unity. However, for the length-to-diameter ratios 𝐿/𝑑 > 80 , the frequency ratio is seen to 
virtually approach unit. For short CNTs, say 𝐿/𝑑 = 5, the frequency ratios are smaller than unity 
especially at higher modes N. This result indicates that the effects of small scale lead to a 
reduction of the vibration frequencies and the reduction is amplified at higher vibration modes and 
for small length-to-diameter ratios. So, when the length-to-diameter ratios are small and when 
considering high vibration modes, nonlocal integral Timoshenko beam should be employed for a 
better prediction of the frequencies instead of local integral Timoshenko beam model which 
neglects the effects of small scale. 

The relation between the values of ratio 𝜒ே  and the small-scale effect 𝑒଴𝑎 for different 
values of ௅ௗ of zigzag (21,0) carbon nanotube with 𝑁 = 2 and 𝜃் = 0 is shown in Fig. 4. It is 

clear that the small scale effect is  significant for short CNTs (௅ௗ ≤ 15). Conversely, for a slender 
CNT of  L/d = 90, the frequency for the nonlocal integral Timoshenko beam  is close to that 
furnished by the local beam model, indicating the negligible effect of small scale in long CNTs. 

The variation in the ratios 𝜒ே with the nonlocal parameter 𝑒଴𝑎 for various aspect ratios ௅ௗis 
shown in Fig. 5. The obtained results show that the frequency ratios 𝜒ே exhibit a dependence on 
the nonlocal parameter. For example, the frequency ratios at ௅ௗ = 4 are 0,9610; 0,8669; 0,6562 
and 0,5710 for the 𝑒଴𝑎 = 1, 𝑒଴𝑎 = 2, 𝑒଴𝑎 = 4 and 𝑒଴𝑎 = 5, respectively. It is found from Fig. 
5 that the vibrational characteristics for the SWCNT are related to the nonlocal parameter𝑒଴𝑎. On 
the other hand, the effect of small scale parameter on the frequency ratio is seen to be very small 
and is negligible for ௅ௗ > 50 In addition, it is clearly seen from Figure that the frequency ratios 𝜒ே are less than unity for different small-scale parameter. This means that the application of the 

 
 

Fig. 4 The values of ratio 𝜒ே of armchair (8,8) carbon nanotube with respect to length–to-diameter ratio ௅ௗ 
for different mode numbers(N) in the case of without thermal effect (𝜃 = 0); with 𝑒଴𝑎 = 1 𝑛𝑚
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Fig. 5 Relation between the values of ratio 𝜒ே and the aspect ratios ௅ௗ for different small-scale effect 𝑒଴𝑎 
of chiral (30,8) carbon nanotube in the case of without thermal effect (𝜃் = 0) with N = 1 

 
 

local integral Timoshenko beam model for CNT analysis would lead to an overprediction of the 
frequency if the small length scale effect between the individual carbon atoms in CNTs is 
neglected. 

The values of ratio 𝜒ே of armchair (8,8) SWCNTs with different mode numbers N for ௅ௗ = 20 
based on the non-local integral Timoshenko beam model are listed in Table 2. From the table, it 
can be noted that the ratio 𝜒ே is in inverse relation with the mode numbers N and scale 

 
 

Table 2 Values of frequency ratios 𝜒ே for different mode numbers N, nonlocal parameter 𝑒଴𝑎 and aspect 
ratio ௅ௗ of armchair (8,8) SWCNT 

N 
𝑳𝒅 = 𝟐𝟎 

𝑳𝒅 = 𝟒𝟎 𝒆𝟎𝒂 = 𝟏 𝒏𝒎 𝒆𝟎𝒂 = 𝟏. 𝟓 𝒏𝒎 𝒆𝟎𝒂 = 𝟐 𝒏𝒎 𝒆𝟎𝒂 = 𝟏 𝒏𝒎 𝒆𝟎𝒂 = 𝟏. 𝟓 𝒏𝒎 𝒆𝟎𝒂 = 𝟐 𝒏𝒎
1 0,98957 0,97698 0,96014 0,99736 0,99409 0,98957 
2 0,96014 0,91643 0,86418 0,98957 0,97698 0,96014 
3 0,91643 0,83651 0,75318 0,97698 0,95033 0,91643 
4 0,86418 0,75318 0,65148 0,96014 0,91643 0,86418 
5 0,80853 0,67545 0,56624 0,93971 0,87774 0,80853 
6 0,75318 0,60675 0,49683 0,91643 0,83651 0,75318 
7 0,70044 0,5475 0,44052 0,89102 0,79455 0,70044 
8 0,65148 0,49683 0,39453 0,86418 0,75318 0,65148 
9 0,60675 0,45353 0,35657 0,83651 0,7133 0,60675 

10 0,56624 0,4164 0,32486 0,80853 0,67545 0,56624 
11 0,52971 0,38437 0,29807 0,78064 0,6399 0,52971 
12 0,49683 0,35657 0,27519 0,75318 0,60675 0,49683 
16 0,39453 0,27519 0,2099 0,65148 0,49683 0,39453 
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parameters 𝑒଴𝑎. It can be concluded also that the biggest values of the ratio 𝜒ே are obtained for 
slender armchair (8,8) SWCNT. 

Figs. 6 and 7 are presented to show variations of the frequency ratio 𝜒ே against the ratio ௅ௗ at 
different chirality and different armchair of SWCNTs in the case (𝜃் = 0) with the nonlocal 
parameter 𝑒଴𝑎 = 1𝑛𝑚 and 𝑁 = 2. However, for CNTs with larger values of diameter, this 
dependence becomes very weak. The reason for this phenomenon is that a carbon nanotube with 
smaller diameter 𝑑 has a larger curvature, which results in a more significant distortion of 𝐶 − 𝐶 
bonds. 

The relationship between the frequency ratios 𝜒ே and the vibrational mode number N for 
different chirality of SWCNTs with ௅ௗ = 10, 𝑒଴𝑎 = 1 𝑛𝑚 and 𝜃் = 0 𝐾 are shown in Figs. 8 
and 9. it is clearly seen in Fig. 9 that the distributions of ratio 𝜒ே for different chiralities of 

 
 

Fig. 6 The effect of aspect ratios ௅ௗ on the frequency ratio 𝜒ே for different chirality of SWCNTs with 𝑁 = 2 and 𝑒଴𝑎 = 1 𝑛𝑚 in the case (𝜃் = 0) 
 
 

Fig. 7 The effect of aspect ratios ௅ௗ on the frequency ratio 𝜒ே for different armchair of SWCNTs with 𝑁 = 2 and 𝑒଴𝑎 = 1 𝑛𝑚 in the case (𝜃் = 0) 
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Fig. 8 The effect of vibrational mode number N on the frequency ratio 𝜒ே for different chirality of 
SWCNTs with 𝑁 = 2 and 𝑒଴𝑎 = 1 𝑛𝑚 in the case (𝜃் = 0)

 
 

Fig. 9 The effect of vibrational mode number N on the frequency ratio 𝜒ே for different chirality of 
SWCNTs with the same radius are identical, 𝑁 = 2 and 𝑒଴𝑎 = 1 𝑛𝑚 in the case (𝜃் = 0) 

 
 

SWCNT with the same radius are identical. Comparing Figs. 8 and 9, the distributions of ratio 𝜒ே 
are independent of the chirality vector of CNTs, but are dependent on the radius of CNTs. 

The relationship among the ratios 𝜒௧௛ (i.e., ratio of the frequency 𝜔௧௛ of the nonlocal integral 
Timoshenko beam including thermal effect to the corresponding nonlocal integral Timoshenko 
beam without thermal effect 𝜔௧௛଴ ), the vibrational mode number N, and the temperature change 𝜃் on the vibration frequencies of chiral (30.8) carbon nanotube for both cases of low and high 
temperatures are shown in Figs. 10 and 11. The relationship among the ratio 𝜒௧௛, the aspect ratio ௅ௗ, and the temperature change 𝜃 are shown in Figs. 12 and 13. 

In the case of room or low temperature, it is clearly seen from Figs. 10 and 12 that the 
frequency ratios 𝜒௧௛  are more than unity. This means that the values of frequencies 𝜔ே் 
obtained by the nonlocal integral Timoshenko beam considering the thermal effect are larger than 
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Fig. 10 Relation between the values of ratio 𝜒௧ℎ and the with the aspect ratio ௅ௗ for different various 
temperature 𝜃் of chiral (30.8) carbon nanotube in the case of low or room temperature. The 
value of 𝑒଴𝑎 = 3 𝑛𝑚 and 𝑁 = 3 

 
 

 
Fig. 11 Relation between the values of ratio 𝜒௧ℎ and the with the aspect ratio ௅ௗ for different various 

temperature 𝜃் of chiral (30.8) carbon nanotube in the case of high temperature. The value of 𝑒଴𝑎 = 3 𝑛𝑚 and 𝑁 = 3 
 
 

those given by local integral Timoshenko beam ignoring the influence of temperature change. 
Conversely in the case of high temperature, it can be seen from Figs. 11 and 13 that the frequency 
ratios 𝜒௧௛ are less than unity. This means that the values of frequencies 𝜔ே் obtained by 
thenonlocal integral Timoshenko beam considering the thermal effect are smaller than those 
excluding the influence of temperature change. In addition, we observe that in the case of room or 
low temperature, the thermal effect on the frequency diminishes with increasing the aspect ratio ௅ௗ 
and becomes more significant with the increase of the number N and temperature change 𝜃். 
Conversely to the case of high temperature, the thermal effect on the frequency becomes less 
significant with the increase of the vibrational mode number N and increases with increasing the 
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Fig. 12 Relation between the values of ratio 𝜒௧ℎ and the with the aspect ratio 𝑁 for different various 
temperature 𝜃் of chiral (30.8) carbon nanotube in the case of low or room temperature. 
With 𝑒଴𝑎 = 3 𝑛𝑚 and ௅ௗ = 20 

 
 

Fig. 13 Relation between the values of ratio 𝜒௧ℎ and the with the aspect ratio 𝑁 for different various 
temperature 𝜃் of chiral (30.8) carbon nanotube in the case of high temperature. 
With 𝑒଴𝑎 = 3 𝑛𝑚 and ௅ௗ = 20 

 
 

aspect ratio ௅ௗ and temperature change 𝜃். 
In the case of room or low temperature, the relationship between the values of ratio 𝜒௧௛ and 

the temperature 𝜃் of chiral (30.8) carbon nanotube for different mode numbers (N) with 𝑒଴𝑎 =3𝑛𝑚 and ௅ௗ = 5 is shown in Fig. 14, for different small-scale effect 𝑒଴𝑎 with 𝑁 = 3 and ௅ௗ =5 is presented in Fig. 15. From these figures, it can be clearly observed that frequency ratios 𝜒௧௛ 
vary linearly with the temperature change. It can be seen that the ratio 𝜒௧௛  increases 
monotonically as the temperature 𝜃் increases, indicating that the effect of temperature change 
leads to an increase of the fundamental frequency. It is clearly seen from these figures that the 
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Fig. 14 Relationship between the values of ratio 𝜒௧ℎ and the temperature 𝜃் for different mode numbers 
(N) of chiral (30.8) carbon nanotube in the case of low or room temperature. The value of 𝑒଴𝑎 =3 𝑛𝑚 and ௅ௗ = 5 

 
 

Fig. 15 Relationship between the values of ratio 𝜒௧ℎ and the temperature 𝜃் for different small-scale 
effect 𝑒଴𝑎 of chiral (30.8) carbon nanotube in the case of low or room temperature. The value of 𝑁 = 3 and ௅ௗ = 5 

 
 

frequency ratios 𝜒௧௛ are greater than unity. Therefore, we observe that the frequency ratios 𝜒௧௛ 
becomes more significant with increasing the vibrational mode number N and the nonlocal 
parameter 𝑒଴𝑎. 

 
 

5. Conclusions 
 
This work investigates the thermal vibration response of SWCNTs based on Eringen’s nonlocal 

elasticity theory and the integral Timoshenko beam theory. Theoretical formulations include the 
shear deformation and nonlocal parameter effects. The nonlocal governing equations with 
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appropriate boundary conditions for SWCNTs were derived and solved via Hamilton’s principle 
and Navier’s procedure. According to the study, the results showed the dependence of the 
frequency ratios on the chirality of carbon nanotube, the vibrational mode number, the aspect ratio, 
nonlocal parameter effect and the temperature change. From the results presented herein, it can be 
clearly seen that the small scale effect reduces of the vibrational characteristic and the reduction is 
amplified at higher values of vibration modes and for small length-to-diameter ratios. The 
influence of temperature change on the vibration frequencies of the single walled carbon 
nanotubes for both cases of low and high temperatures is also discussed. It was concluded that at 
low or room temperature the frequency ratios 𝜒௧௛ are more than unity, whereas the frequency 
ratios 𝜒௧ℎ are less than unity for the case of high temperature. It can be detected that at low or 
room temperature, the frequency ratios for the SWCNT increase as the temperature change 
increases. Conversely to the case of high temperature, it can be noted that the thermal effect on the 
frequency becomes less significant with the increase temperature change. It is also shown that the 
values of frequency accounting for the thermal effect are larger than those ignoring the influence 
of temperature change for the case of room or low temperature, whereas the values of frequency 
with the thermal effect are smaller than those excluding the thermal effect for the case of high 
temperature. This work is expected to be useful in the design and analyze the thermal vibration 
properties of nano scale physical devices. The developed formulations can be extend to examine 
the response of the others type of materials (Kar et al. 2016, Katariya et al. 2017, Al-Maliki et al. 
2020, Benferhat et al. 2020, Tayeb and Daouadji 2020, Ahmed et al. 2020b, Hadji and Bernard 
2020, Rostami and Mohammadimehr 2020, Mahesh and Harursampath 2020, Civalek and Avcar 
2020, Tayeb et al. 2020, Abed and Majeed 2020, Benferhat et al. 2021, Hashim and Sadiq 2021, 
Pourmoayed et al. 2021). 
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