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Abstract.  In this paper hyperbolic shear deformation plate theory is presented for bending and the free vibration of 
functionally graded plates with considering porosities that may possibly occur inside the functionally graded 
materials (FGMs) during their fabrication. Four different porosity types are used for functionally graded plates. 
Equations of motion are derived from Hamilton’s principle. In the solution of the governing equations, the Navier 
procedure is implemented. In the numerical examples, the effects of the porosity parameters, porosity types and 
geometry parameters on the bending and free vibration of the functionally graded plates are investigated. It was 
found that the distribution form of porosity significantly influence the mechanical behavior of FG plates, in terms of 
deflection, normal, shear stress and frequency. 
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1. Introduction 

 
Functionally graded materials (FGMs) are a novel class of engineering materials which have 

been developed by combining dissimilar materials to possess smooth variation of material 
properties along the desired direction(s). FGMs have great potential for improving 
material/structural performance in many engineering applications precisely because of their 
spatially graded heterogeneous micro structure. 

 In the production stage of the functionally graded materials, micro-voids and porosities could 
occur due to production or technical errors. With porosity, the mechanical behavior of functionally 
graded materials changes considerably. Thus, the effect of the porosity on the functionally graded 
materials is an important problem and must be investigated in order to safe design of this 

 
∗Corresponding author, Ph.D., E-mail: had_laz@yahoo.fr 

115



 
 
 
 
 
 

Lazreg Hadji, Fabrice Bernard, Abdelkader Safa and Abdelouahed Tounsi 

composites. 
 In last years, lots of researchers focus on investigation of porous functionally graded materials; 

Wattanasakulpong and Ungbhakorn (2014) studied vibration characteristics of FGM porous beams 
by using differential transformation method with different kinds of elastic supports. Akbaş (2015) 
investigated wave propagation of a functionally graded beam in thermal environments. Ebrahimi et 
al. (2017) investigated the thermo-mechanical vibration analysis of functionally graded 
micro/nanoscale beams with porosities based on modified couple stress theory. Akbaş (2017a, b, c, 
d) examined the static, buckling and vibration of functionally graded beams with porosity. Akbaş 
(2017e) used generalized differantial quadrature method for stability of a non-homogenous porous 
plate. Jouneghani et al. (2018) studied analytically the structural response of porous FGM nonlocal 
nanobeams under hygro-thermo-mechanical loadings. Wu et al. (2018) performed a finite element 
analysis to study the free and forced vibration FGM porous beam using both Euler-Bernoulli and 
Timoshenko beam theories. Akbaş (2018a) examined forced vibration analysis of functionally 
graded porous deep beams. Akbaş (2018b) developed geometrically nonlinear analysis of 
functionally graded porous beams. Hadj et al. (2019) studied the influence of the distribution 
shape of porosity on the bending FGM new plate model resting on elastic foundations. Avcar 
(2019) examined the free vibration of functionally graded beams with porosity with different 
porosity distribution models. Bourada et al. (2019) investigated the dynamic of porous 
functionally graded beam using a sinusoidal shear deformation theory. Akbaş (2019a, b) developed 
hygro-thermal post-buckling and Hygro-thermal nonlinear analysis of a functionally graded beam. 
Akbaş (2019c) studied buckling analysis of a fiber reinforced laminated composite plate with 
porosity. Akbaş (2019d) analyzed longitudinal forced vibration of porous a nanorod. Xu et al. 
(2019) studied buckling analysis of functionally graded porous plates with laminated face sheets 
by using finite element method based on first order shear deformation theory. Zhao et al. (2019) 
investigated vibration behavior of the FGM porous curved thick beam, doubly-curved panels and 
shells of revolution by using a semi-analytical method. Ramteke et al. (2019) studied effects of the 
porosity on the eigen characteristics of functionally graded structures with different types of 
porosity and material distributions. Akbaş (2020a) analyze dynamic of thick beams with 
functionally graded porous layers and viscoelastic support. Akbaş (2020b) studied dynamic 
analysis of viscoelastic functionally graded porous thick beams under pulse load. Trinh et al. (2019) 
studied the effects of porosity and thermomechanical loading on free vibration and nonlinear 
dynamic response of functionally graded sandwich shells with double curvature. Trinh et al. (2020) 
used a semi-analytical stochastic buckling quantification of porous functionally graded plates. 
Nguyen et al. (2020) investigated nonlinear buckling and post-buckling analysis of shear 
deformable stiffened truncated conical sandwich shells with functionally graded face sheets and a 
functionally graded porous core. 

This work aims to use a hyperbolique shear deformation theort to study the effect of the 
distribution form of porosity on bending and free vibration behavior of FGM plates. The effect due 
to porosity is included using a modified mixture law covering the porosity phases proposed by 
Wattanasakulpong et al. (2012), Demirhan and Taskin (2019) and Younsi et al. (2018). The 
distinctive feature of this study from published papers in the literature is to investigate the porous 
functionally graded plates with four porosity types and higher-order shear deformation plate theory. 
The effects of the porosity parameters, porosity types and aspect ratio of plates on the normal 
stress, shear stress, static deflections and frequency are presented and discussed. 
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2. Geometric configuration and material properties 
 
Consider a FG rectangular plate occupying the region r from the coordinate system (x; y; z) as 

shown in Fig. 1. This plate is made of an isotropic material with material properties varying 
smoothly in the z (thickness) direction only. We assume that the composition is varied from the 
bottom to the top surfaces, i.e., the bottom surface (𝑧 = −ℎ/2) of the plate is metal rich whereas 
the top surface (𝑧 = +ℎ/2) is ceramic-rich. 

In this study, we consider an imperfect FGM plate with a volume fraction of porosity α(𝛼 ≺≺ 1) with different form of distribution between the metal and the ceramic. The modified 
mixture rule proposed by Wattanasakulpong and Ungbhakornb (2014) is 

 𝑃(𝑧) = 𝑃௠ ቀ𝑉௠ − 𝛼2ቁ + 𝑃௖ ቀ𝑉௖ − 𝛼2ቁ (1)
 
The power law of the volume fraction of the ceramic is assumed as 
 𝑉௖ = ൬𝑧

ℎ
+ 12൰௞

 (2)

 
The modified mixture rule becomes 
 𝑃(𝑧) = (𝑃௖ − 𝑃௠) ൬𝑧

ℎ
+ 12൰௞ + 𝑃௠ − (𝑃௖ + 𝑃௠) 𝛼2 (3)

 
Where, 𝑘 is the power law index that takes values greater than or equals to zero. The FGM 

plaque becomes a fully ceramic beam when 𝑘 is set to zero and fully metal for large value of 𝑘. 
The mechanical properties of FGM such as Young’s modulus 𝐸 and mass density 𝜌 of the 

imperfect FG can be written as a functions of thickness coordinate z (middle surface), as follows 
(Atmane et al. 2015, Daouadji and Benferhat 2016, Hadji and Adda Bedia 2015). 

 𝐸(𝑧) = (𝐸௖ − 𝐸௠) ൬𝑧
ℎ

+ 12൰௞ + 𝐸௠ − (𝐸௖ + 𝐸௠) 𝛼2 (4b)

 𝜌(𝑧) = (𝜌௖ − 𝜌௠) ൬𝑧
ℎ

+ 12൰௞ + 𝐸௠ − (𝜌௖ + 𝜌௠) 𝛼2 (4a)

 
 

Fig. 1 Geometry of rectangular FG plate and coordinates
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Table 1 Different distribution forms of porosity (Hadj et al. 2019) 
Distribution forms 

of porosity Elastic modulus expression Schema 

Homogeneous shape 𝐸(𝑧) = (𝐸௖ − 𝐸௠) ൬𝑧
ℎ

+ 12൰௞ + 𝐸௠ − (𝐸௖ + 𝐸௠) 𝛼2 

Form “O” shape 𝐸(𝑧) = (𝐸௖ − 𝐸௠) ൬𝑧
ℎ

+ 12൰௞ + 𝐸௠ − (𝐸௖ + 𝐸௠) 𝛼2 ቆ1 − 2 |𝑧|
ℎ

ቇ 

Form “X” shape 𝐸(𝑧) = (𝐸௖ − 𝐸௠) ൬𝑧
ℎ

+ 12൰௞ + 𝐸௠ − (𝐸௖ + 𝐸௠) 𝛼2 ቀ2 𝑧
ℎቁ 

Form “V” shape 𝐸(𝑧) = (𝐸௖ − 𝐸௠) ൬𝑧
ℎ

+ 12൰௞ + 𝐸௠ − (𝐸௖ + 𝐸௠) 𝛼2 ൬12 + 𝑧
ℎ

൰ 

 
 
The material properties of a perfect FGM plate can be obtained when the volume fraction of 

porosity 𝛼 is set to zero. Due to the small variations of the Poisson ratio 𝜈, it is assumed to be 
constant. Several porosity distributions have been studied in the present work, such as “O”, “V” 
and X” (Table 1). 

 
 

3. Kinematic, strain and stress relations 
 
The displacement field, taking into account the shear deformation effect, is presented for FGM 

structures as Hadji et al. (2011) 
 𝑈(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢଴(𝑥, 𝑦, 𝑡) − 𝑧 𝜕𝑤௕𝜕𝑥 − 𝑓(𝑧) 𝜕𝑤௦𝜕𝑥𝑉(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣଴(𝑥, 𝑦, 𝑡) − 𝑧 𝜕𝑤௕𝜕𝑦 − 𝑓(𝑧) 𝜕𝑤௦𝜕𝑦𝑊(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤௕(𝑥, 𝑦, 𝑡) + 𝑤௦(𝑥, 𝑦, 𝑡) 

(5)

 
where 𝑢଴  and 𝑣଴  are the mid-plane displacements of the plate in the 𝑥  and 𝑦 directions, 
respectively; 𝑤௕  and 𝑤௦  are the bending and shear components of transverse displacement, 
respectively. It should be noted that unlike the FSDT, this theory does not require shear correction 
factors. 

The shape function proposed by Akavci (HSDPT) (Akavci 2010) based on the hyperbolic 
function is used in this work. 

 𝑓(𝑧) = 𝑧 ቈ1 + 3𝜋2 𝑠𝑒𝑐 ℎ ൬12൰ଶ቉ − 3𝜋2 ℎ 𝑡𝑎𝑛ℎ ቀ𝑧
ℎ

ቁ (6)
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It can be seen that the displacement field in Eq. (5) introduces only four unknowns (𝑢଴, 𝑣଴, 𝑤௕ and 𝑤௦). The nonzero strains associated with the displacement field in Eq. (4) are 
 ቄ𝛾௬௭𝛾௫௭ቅ = 𝑔(𝑧) ൜𝛾௬௭௦𝛾௫௭௦ ൠ,      ൝ 𝜀௫𝜀௬𝛾௫௬ൡ = ቐ 𝜀௫଴𝜀௬଴𝛾௫௬଴ ቑ + 𝑧 ቐ 𝑘௫௕𝑘௬௕𝑘௫௬௕ ቑ + 𝑓(𝑧) ቐ 𝑘௫௦𝑘௬௦𝑘௫௬௦ ቑ (7)

 

where 
 

ቐ 𝜀௫଴𝜀௬଴𝛾௫௬଴ ቑ =
⎩⎪⎪⎨
⎪⎪⎧ 𝜕𝑢଴𝜕𝑥𝜕𝑣଴𝜕𝑥𝜕𝑢଴𝜕𝑦 + 𝜕𝑣଴𝜕𝑥 ⎭⎪⎪⎬

⎪⎪⎫,       ቐ 𝑘௫௕𝑘௬௕𝑘௫௬௕ ቑ =
⎩⎪⎪⎨
⎪⎪⎧ − 𝜕ଶ𝑤௕𝜕𝑥ଶ− 𝜕ଶ𝑤௕𝜕𝑦ଶ−2 𝜕ଶ𝑤௕𝜕𝑥𝜕𝑦⎭⎪⎪⎬

⎪⎪⎫ , 

ቐ 𝑘௫௦𝑘௬௦𝑘௫௬௦ ቑ =
⎩⎪⎪⎨
⎪⎪⎧ − 𝜕ଶ𝑤௦𝜕𝑥ଶ− 𝜕ଶ𝑤௦𝜕𝑦ଶ−2 𝜕ଶ𝑤௦𝜕𝑥𝜕𝑦⎭⎪⎪⎬

⎪⎪⎫,         ൜𝛾௬௭௦𝛾௫௭௦ ൠ = ⎩⎨
⎧𝜕𝑤௦𝜕𝑦𝜕𝑤௦𝜕𝑥 ⎭⎬

⎫
 

(8a)

 

and 
 𝑔(𝑧) = 1 − 𝑑𝑓(𝑧)𝑑𝑧  (8b)

 
The linear constitutive relations of a FG plate can be written as 
 ൝ 𝜎௫𝜎௬𝜏௫௬ൡ = ൥𝑄ଵଵ 𝑄ଵଶ 0𝑄ଵଶ 𝑄ଶଶ 00 0 𝑄଺଺൩ ൝ 𝜀௫𝜀௬𝛾௫௬ൡ and ቄ𝜏௬௭𝜏௭௫ቅ = ൤𝑄ସସ 00 𝑄ହହ൨ ቄ𝛾௬௭𝛾௭௫ቅ (9)

 

where 
 𝑄ଵଵ = 𝑄ଶଶ = 𝐸(𝑧)1 − 𝜈ଶ ,          𝑄ଵଶ = 𝜈 𝐸(𝑧)1 − 𝜈ଶ , 𝑄ସସ = 𝑄ହହ = 𝑄଺଺ = 𝐸(𝑧)2(1 + 𝜈) (10)

 
 

4. Equations of motion 
 
Hamilton’s principle is herein utilized to determine the equations of motion 
 0 = න (𝛿 𝑈 + 𝛿 𝑉 − 𝛿 𝑇) 𝑑𝑡௧

଴  (11)

 
where 𝛿 𝑈 is the variation of strain energy; 𝛿 𝑇 is the variation of kinetic energy; and 𝛿 𝑉 is the 
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variation of work done. 
The variation of strain energy of the plate is given by 
 𝛿 𝑈 = න ൣ𝜎௫𝛿 𝜀௫ + 𝜎௬𝛿 𝜀௬ + 𝜏௫௬𝛿 𝛾௫௬ + 𝜏௬௭𝛿 𝛾௬௭ + 𝜏௫௭𝛿 𝛾௫௭൧௏ 𝑑𝑉        = න ൣ𝑁௫𝛿 𝜀௫଴ + 𝑁௬𝛿 𝜀௬଴ + 𝑁௫௬𝛿 𝛾௫௬଴ + 𝑀௫௕𝛿 𝑘௫௕ + 𝑀௬௕𝛿 𝑘௬௕ + 𝑀௫௬௕ 𝛿 𝑘௫௬௕஺              + 𝑀௫௦𝛿 𝑘௫௦ + 𝑀௬௦𝛿 𝑘௬௦ + 𝑀௫௬௦ 𝛿 𝑘௫௬௦ + 𝑆௬௭௦ 𝛿 𝛾௬௭௦ + 𝑆௫௭௦ 𝛿 𝛾௫௭௦ ൧ 𝑑𝐴 = 0 

(12)

 
where 𝐴 is the top surface and the stress resultants 𝑁, 𝑀, and 𝑆 are defined by 

 ൫𝑁௜, 𝑀௜௕, 𝑀௜௦൯ = න (1, 𝑧, 𝑓)𝜎௜𝑑𝑧௛ଶି௛ଶ    (𝑖 = 𝑥, 𝑦, 𝑥𝑦) and ൫𝑆௫௭௦ , 𝑆௬௭௦ ൯ = න 𝑔൫𝜏௫௭, 𝜏௬௭൯𝑑𝑧ℎ/ଶ
ିℎ/ଶ  (13)

 
The variation of kinetic energy of the plate can be expressed as 
 𝛿 𝑇 = න න ሾ𝑢ሶ 𝛿 𝑢ሶ + 𝑣ሶ𝛿 𝑣ሶ + 𝑤ሶ 𝛿 𝑤ሶ ሿ 𝜌(𝑧)ఆ

ℎଶି
ℎଶ 𝑑𝛺 𝑑𝑧

= න ሼ𝐼଴ሾ𝑢ሶ ଴𝛿𝑢ሶ ଴ + 𝑣ሶ଴𝛿𝑣ሶ଴ + (𝑤ሶ ௕ + 𝑤ሶ ௦)(𝛿𝑤ሶ ௕ + 𝛿𝑤ሶ ௦)ሿ஺  −𝐼ଵ ൬𝑢ሶ ଴ 𝜕𝛿𝑤ሶ ௕𝜕𝑥 + 𝜕𝑤ሶ ௕𝜕𝑥 𝛿 𝑢ሶ ଴ + 𝑣ሶ଴ 𝜕𝛿𝑤ሶ ௕𝜕𝑦 + 𝜕𝑤ሶ ௕𝜕𝑦 𝛿 𝑣ሶ଴൰ −𝐼ଶ ൬𝑢ሶ ଴ 𝜕𝛿𝑤ሶ ௦𝜕𝑥 + 𝜕𝑤ሶ ௦𝜕𝑥 𝛿 𝑢ሶ ଴ + 𝑣ሶ଴ 𝜕𝛿𝑤ሶ ௦𝜕𝑦 + 𝜕𝑤ሶ ௦𝜕𝑦 𝛿 𝑣ሶ଴൰ +𝐽ଵ ൬𝜕𝑤ሶ ௕𝜕𝑥 𝜕𝛿 𝑤ሶ ௕𝜕𝑥 + 𝜕𝑤ሶ ௕𝜕𝑦 𝜕𝛿 𝑤ሶ ௕𝜕𝑦 ൰ + 𝐾ଶ ൬𝜕𝑤ሶ ௦𝜕𝑥 𝜕𝛿 𝑤ሶ ௦𝜕𝑥 + 𝜕𝑤ሶ ௦𝜕𝑦 𝜕𝛿 𝑤ሶ ௦𝜕𝑦 ൰ +𝐽ଶ ൬𝜕𝑤ሶ ௕𝜕𝑥 𝜕𝛿 𝑤ሶ ௦𝜕𝑥 + 𝜕𝑤ሶ ௦𝜕𝑥 𝜕𝛿 𝑤ሶ ௕𝜕𝑥 + 𝜕𝑤ሶ ௕𝜕𝑦 𝜕𝛿 𝑤ሶ ௦𝜕𝑦 + 𝜕𝑤ሶ ௦𝜕𝑦 𝜕𝛿 𝑤ሶ ௕𝜕𝑦 ൰ൠ 𝑑𝛺 

(14)

 
Where dot-superscript convention indicates the differentiation with respect to the time variable 𝑡; 𝜌(𝑧) is the mass density given by Eq. (4b); and (𝐼௜, 𝐽௜, 𝐾௜) are mass inertias expressed by 
 (𝐼଴, 𝐼ଵ, 𝐼ଶ) = න (1, 𝑧, 𝑧ଶ)𝜌(𝑧)𝑑𝑧ℎ/ଶ

ିℎ/ଶ  (15a)

 (𝐽ଵ, 𝐽ଶ, 𝐾ଶ) = න (𝑓, 𝑧 𝑓, 𝑓ଶ)𝜌(𝑧)𝑑𝑧ℎ/ଶ
ିℎ/ଶ  (15b)

 
The variation of work done can be expressed as 
 𝛿𝑉 = − න 𝑞𝛿𝑊஺ 𝑑𝐴 (16)
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By substituting Eqs. (12), (14) and (16) into Eq. (11), the following can be derived: 
 𝛿 𝑢଴:   𝜕𝑁௫𝜕𝑥 + 𝜕𝑁௫௬𝜕𝑦 = 𝐼଴𝑢ሷ ଴ − 𝐼ଵ 𝜕𝑤ሷ ௕𝜕𝑥 − 𝐽ଵ 𝜕𝑤ሷ ௦𝜕𝑥𝛿 𝑣଴:   𝜕𝑁௫௬𝜕𝑥 + 𝜕𝑁௬𝜕𝑦 = 𝐼଴𝑣ሷ଴ − 𝐼ଵ 𝜕𝑤ሷ ௕𝜕𝑦 − 𝐽ଵ 𝜕𝑤ሷ ௦𝜕𝑦  𝛿 𝑤௕:   𝜕ଶ𝑀௫௕𝜕𝑥ଶ + 2 𝜕ଶ𝑀௫௬௕𝜕𝑥𝜕𝑦 + 𝜕ଶ𝑀௬௕𝜕𝑦ଶ + 𝑞               = 𝐼଴(𝑤ሷ ௕ + 𝑤ሷ ௦) + 𝐼ଵ ൬𝜕𝑢ሷ ଴𝜕𝑥 + 𝜕𝑣ሷ଴𝜕𝑦 ൰ − 𝐼ଶ𝛻ଶ𝑤ሷ ௕ − 𝐽ଶ𝛻ଶ𝑤ሷ ௦ 𝛿 𝑤௦:   𝜕ଶ𝑀௫௦𝜕𝑥ଶ + 2 𝜕ଶ𝑀௫௬௦𝜕𝑥𝜕𝑦 + 𝜕ଶ𝑀௬௦𝜕𝑦ଶ + 𝜕𝑆௫௭௦𝜕𝑥 + 𝜕𝑆௬௭௦𝜕𝑦 + 𝑞            = 𝐼଴(𝑤ሷ ௕ + 𝑤ሷ ௦) + 𝐽ଵ ൬𝜕𝑢ሷ ଴𝜕𝑥 + 𝜕𝑣ሷ଴𝜕𝑦 ൰ − 𝐽ଶ𝛻ଶ𝑤ሷ ௕ − 𝐾ଶ𝛻ଶ𝑤ሷ ௦ 

(17)

 
Substituting Eq. (7) into Eq. (9) and the subsequent results into Eq. (13), the stress resultants 

are obtained in terms of strains as following compact form: 
 ൝ 𝑁𝑀௕𝑀௦ ൡ = ൥ 𝐴 𝐵 𝐵௦𝐵 𝐷 𝐷௦𝐵௦ 𝐷௦ 𝐻௦൩ ቊ 𝜀𝑘௕𝑘௦ ቋ , 𝑆 = 𝐴௦𝛾, (18)
 

in which 
 𝑁 = ൛𝑁௫, 𝑁௬, 𝑁௫௬ൟ௧,     𝑀௕ = ൛𝑀௫௕, 𝑀௬௕, 𝑀௫௬௕ ൟ௧, 𝑀௦ = ൛𝑀௫௦, 𝑀௬௦, 𝑀௫௬௦ ൟ௧, (19a)
 𝜀 = ൛𝜀௫଴, 𝜀௬଴, 𝛾௫௬଴ ൟ௧,     𝑘௕ = ൛𝑘௫௕, 𝑘௬௕, 𝑘௫௬௕ ൟ௧, 𝑘௦ = ൛𝑘௫௦ , 𝑘௬௦ , 𝑘௫௬௦ ൟ௧, (19b)
 𝐴 = ൥𝐴ଵଵ 𝐴ଵଶ 0𝐴ଵଶ 𝐴ଶଶ 00 0 𝐴଺଺൩ ,     𝐵 = ൥𝐵ଵଵ 𝐵ଵଶ 0𝐵ଵଶ 𝐵ଶଶ 00 0 𝐵଺଺൩ , 𝐷 = ൥𝐷ଵଵ 𝐷ଵଶ 0𝐷ଵଶ 𝐷ଶଶ 00 0 𝐷଺଺൩, (19c)

 𝐵௦ = ቎𝐵ଵଵ௦ 𝐵ଵଶ௦ 0𝐵ଵଶ௦ 𝐵ଶଶ௦ 00 0 𝐵଺଺௦ ቏,     𝐷௦ = ቎𝐷ଵଵ௦ 𝐷ଵଶ௦ 0𝐷ଵଶ௦ 𝐷ଶଶ௦ 00 0 𝐷଺଺௦ ቏, 𝐻௦ = ቎𝐻ଵଵ௦ 𝐻ଵଶ௦ 0𝐻ଵଶ௦ 𝐻ଶଶ௦ 00 0 𝐻଺଺௦ ቏, (19d)

 𝑆 = ൛𝑆௫௭௦ , 𝑆௬௭௦ ൟ௧,        𝛾 = ൛𝛾௫௭௦ , 𝛾௬௭௦ ൟ௧, 𝐴௦ = ൤𝐴ସସ௦ 00 𝐴ହହ௦ ൨, (19e)

 
and stiffness components are given as 

 

ቐ𝐴ଵଵ 𝐵ଵଵ 𝐷ଵଵ 𝐵ଵଵ௦ 𝐷ଵଵ௦ 𝐻ଵଵ௦𝐴ଵଶ 𝐵ଵଶ 𝐷ଵଶ 𝐵ଵଶ௦ 𝐷ଵଶ௦ 𝐻ଵଶ௦𝐴଺଺ 𝐵଺଺ 𝐷଺଺ 𝐵଺଺௦ 𝐷଺଺௦ 𝐻଺଺௦ ቑ = න 𝑄ଵଵ(1, 𝑧, 𝑧ଶ, 𝑓(𝑧), 𝑧 𝑓(𝑧), 𝑓ଶ(𝑧))ℎ/ଶ
ିℎ/ଶ ൞ 1𝜈1 − 𝜈2 ൢ 𝑑𝑧 (20a)
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(𝐴ଶଶ, 𝐵ଶଶ, 𝐷ଶଶ, 𝐵ଶଶ௦ , 𝐷ଶଶ௦ , 𝐻ଶଶ௦ ) = (𝐴ଵଵ, 𝐵ଵଵ, 𝐷ଵଵ, 𝐵ଵଵ௦ , 𝐷ଵଵ௦ , 𝐻ଵଵ௦ ) (20b)
 𝐴ସସ௦ = 𝐴ହହ௦ = න 𝑄ସସሾ𝑔(𝑧)ሿଶ𝑑𝑧ℎ/ଶ

ିℎ/ଶ , (20c)

 
Introducing Eq. (18) into Eq. (17), the equations of motion can be expressed in terms of 

displacements (𝑢଴, 𝑣଴, 𝑤௕, 𝑤௦) and the appropriate equations take the form 
 (𝐴ଵଶ + 𝐴଺଺) 𝜕ଶ𝑢𝜕𝑥𝜕𝑦 + 𝐴଺଺ 𝜕ଶ𝑣𝜕𝑥ଶ + 𝐴ଶଶ 𝜕ଶ𝑣𝜕𝑦ଶ − (𝐵ଵଶ + 2𝐵଺଺) 𝜕ଷ𝑤௕𝜕𝑥ଶ𝜕𝑦 − 𝐵ଶଶ 𝜕ଷ𝑤௕𝜕𝑦ଷ  −𝐵ଶଶ௦ 𝜕ଷ𝑤௦𝜕𝑦ଷ − (𝐵ଵଶ௦ + 2𝐵଺଺௦ ) 𝜕ଷ𝑤௦𝜕𝑥ଶ𝜕𝑦 = 𝐼଴𝑣ሷ଴ − 𝐼ଵ 𝜕𝑤ሷ ௕𝜕𝑦 − 𝐽ଵ 𝜕𝑤ሷ ௦𝜕𝑦  

(21a)

 (𝐴ଵଶ + 𝐴଺଺) 𝜕ଶ𝑢𝜕𝑥𝜕𝑦 + 𝐴଺଺ 𝜕ଶ𝑣𝜕𝑥ଶ + 𝐴ଶଶ 𝜕ଶ𝑣𝜕𝑦ଶ − (𝐵ଵଶ + 2𝐵଺଺) 𝜕ଷ𝑤௕𝜕𝑥ଶ𝜕𝑦 − 𝐵ଶଶ 𝜕ଷ𝑤௕𝜕𝑦ଷ  −𝐵ଶଶ௦ 𝜕ଷ𝑤௦𝜕𝑦ଷ − (𝐵ଵଶ௦ + 2𝐵଺଺௦ ) 𝜕ଷ𝑤௦𝜕𝑥ଶ𝜕𝑦 = 𝐼଴𝑣ሷ଴ − 𝐼ଵ 𝜕𝑤ሷ ௕𝜕𝑦 − 𝐽ଵ 𝜕𝑤ሷ ௦𝜕𝑦  
(21b)

 𝐵ଵଵ 𝜕ଷ𝑢𝜕𝑥ଷ + (𝐵ଵଶ + 2𝐵଺଺) 𝜕ଷ𝑢𝜕𝑥𝜕𝑦ଶ + (𝐵ଵଶ + 2𝐵଺଺) 𝜕ଷ𝑣𝜕𝑥ଶ𝜕𝑦 + 𝐵ଶଶ 𝜕ଷ𝑣𝜕𝑦ଷ − 𝐷ଵଵ 𝜕ସ𝑤௕𝜕𝑥ସ  −2(𝐷ଵଶ + 2𝐷଺଺) 𝜕ସ𝑤௕𝜕𝑥ଶ𝜕𝑦ଶ − 𝐷ଶଶ 𝜕ସ𝑤௕𝜕𝑦ସ − 𝐷ଵଵ௦ 𝜕ସ𝑤௦𝜕𝑥ସ − 2(𝐷ଵଶ௦ + 2𝐷଺଺௦ ) 𝜕ସ𝑤௦𝜕𝑥ଶ𝜕𝑦ଶ −𝐷ଶଶ௦ 𝜕ସ𝑤௦𝜕𝑦ସ + 𝑞 = 𝐼଴(𝑤ሷ ௕ + 𝑤ሷ ௦) + 𝐼ଵ ൬𝜕𝑢ሷ ଴𝜕𝑥 + 𝜕𝑣ሷ଴𝜕𝑦 ൰ − 𝐼ଶ𝛻ଶ𝑤ሷ ௕ − 𝐽ଶ𝛻ଶ𝑤ሷ ௦, (21c)

 𝐵ଵଵ௦ 𝜕ଷ𝑢𝜕𝑥ଷ + (𝐵ଵଶ௦ + 2𝐵଺଺௦ ) 𝜕ଷ𝑢𝜕𝑥𝜕𝑦ଶ + (𝐵ଵଶ௦ + 2𝐵଺଺௦ ) 𝜕ଷ𝑣𝜕𝑥ଶ𝜕𝑦 + 𝐵ଶଶ௦ 𝜕ଷ𝑣𝜕𝑦ଷ − 𝐷ଵଵ௦ 𝜕ସ𝑤௕𝜕𝑥ସ  −2(𝐷ଵଶ௦ + 2𝐷଺଺௦ ) 𝜕ସ𝑤௕𝜕𝑥ଶ𝜕𝑦ଶ  − 𝐷ଶଶ௦ 𝜕ସ𝑤௕𝜕𝑦ସ − 𝐻ଵଵ௦ 𝜕ସ𝑤௦𝜕𝑥ସ − 2(𝐻ଵଶ௦ + 2𝐻଺଺௦ ) 𝜕ସ𝑤௦𝜕𝑥ଶ𝜕𝑦ଶ −𝐻ଶଶ௦ 𝜕ସ𝑤௦𝜕𝑦ସ + 𝐴ହହ௦ 𝜕ଶ𝑤௦𝜕𝑥ଶ + 𝐴ସସ௦ 𝜕ଶ𝑤௦𝜕𝑦ଶ + 𝑞 = 𝐼଴(𝑤ሷ ௕ + 𝑤ሷ ௦) + 𝐽ଵ ൬𝜕𝑢ሷ ଴𝜕𝑥 + 𝜕𝑣ሷ଴𝜕𝑦 ൰ − 𝐽ଶ𝛻ଶ𝑤ሷ ௕ − 𝐾ଶ𝛻ଶ𝑤ሷ ௦ 

(21d)

 
Clearly, when the effect of transverse shear deformation is neglected 𝑤௦, Eq. (20) yields the 

equations of motion of FG plate based on the CPT. 
 
 

5. Navier solution for simply supported rectangular plates 
 
The Navier solution method is employed to determine the analytical solutions for which the 

displacement variables are written as product of arbitrary parameters and known trigonometric 
functions to respect the equations of motion and boundary conditions. 
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൞𝑢଴𝑣଴𝑤௕𝑤௦ ൢ = ෍ ෍ ⎩⎪⎨
⎪⎧ 𝑈௠௡𝑒௜ఠ ௧ 𝑐𝑜𝑠( 𝜆 𝑥) 𝑠𝑖𝑛( 𝜇 𝑦)𝑉௠௡𝑒௜ఠ ௧ 𝑠𝑖𝑛( 𝜆 𝑥) 𝑐𝑜𝑠( 𝜇 𝑦)𝑊௕௠௡𝑒௜ఠ ௧ 𝑠𝑖𝑛( 𝜆 𝑥) 𝑠𝑖𝑛( 𝜇 𝑦)𝑊௦௠௡𝑒௜ఠ ௧ 𝑠𝑖𝑛( 𝜆 𝑥) 𝑠𝑖𝑛( 𝜇 𝑦)⎭⎪⎬

⎪⎫∞

௡ୀଵ
∞

௠ୀଵ  (22)

 
where 𝑈௠௡ ; 𝑉௠௡ ; 𝑊௕௠௡ ; and 𝑊௦௠௡  are arbitrary parameters to be determined, 𝜔  is the 
eigenfrequency associated with the (m, n)th eigenmode, and 𝜆 = 𝑚𝜋/𝑎 and 𝜇 = 𝑛𝜋/𝑏. 

The transverse load 𝑞 is also expanded in the double-Fourier sine series as 
 𝑞(𝑥, 𝑦) = ෍ ෍ 𝑞௠௡∞

௡ୀଵ
∞

௠ୀଵ 𝑠𝑖𝑛(𝜆𝑥) 𝑠𝑖𝑛(𝜇𝑦) (23)

 
For the case of a sinusoidally distributed load, we have 
 𝑚 = 𝑛 = 1 and 𝑞ଵଵ = 𝑞଴ (24)
 

where 𝑞଴ represents the intensity of the load at plate centre. 
Substituting Eqs. (22) and (23) into Eq. (21), the following problem is obtained: 
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where 
 

⎩⎪⎪
⎪⎪⎪
⎪⎪⎨
⎪⎪⎪
⎪⎪⎪
⎪⎧𝑆ଵଵ = 𝐴ଵଵ𝜆ଶ + 𝐴଺଺𝜇ଶ,𝑆ଵଶ = 𝜆𝜇(𝐴ଵଶ + 𝐴଺଺)𝑆ଵଷ = −𝜆(𝐵ଵଵ𝜆ଶ + (𝐵ଵଶ + 2𝐵଺଺)𝜇ଶ),𝑆ଵସ = −𝜆(𝐵ଵଵ௦ 𝜆ଶ + (𝐵ଵଶ௦ + 2𝐵଺଺௦ )𝜇ଶ),𝑆ଶଶ = 𝐴଺଺𝜆ଶ + 𝐴ଶଶ𝜇ଶ,𝑆ଶଷ = −𝜇൫(𝐵ଵଶ + 2𝐵଺଺)𝜆ଶ + 𝐵ଶଶ𝜇ଶ൯,𝑆ଶସ = −𝜇൫(𝐵ଵଶ௦ + 2𝐵଺଺௦ )𝜆ଶ + 𝐵ଶଶ௦ 𝜇ଶ൯,𝑆ଷଷ = 𝐷ଵଵ𝜆ସ + 2(𝐷ଵଶ + 2𝐷଺଺)𝜆ଶ𝜇ଶ + 𝐷ଶଶ𝜇ସ,𝑆ଷସ = 𝐷ଵଵ௦ 𝜆ସ + 2(𝐷ଵଶ௦ + 2𝐷଺଺௦ )𝜆ଶ𝜇ଶ + 𝐷ଶଶ௦ 𝜇ସ,𝑆ସସ = 𝐻ଵଵ௦ 𝜆ସ + 2(𝐻ଵଶ௦ + 2𝐻଺଺௦ )𝜆ଶ𝜇ଶ + 𝐻ଶଶ௦ 𝜇ସ + 𝐴ହହ௦ 𝜆ଶ + 𝐴ସସ௦ 𝜇ଶ,𝑚ଵଵ = 𝑚ଶଶ = 𝐼ଵ,𝑚ଷଷ = 𝐼଴ + 𝐼ଶ(𝜆ଶ + 𝜇ଶ),𝑚ଷସ = 𝐼଴ + 𝐽ଶ(𝜆ଶ + 𝜇ଶ),𝑚ସସ = 𝐼଴ + 𝐾ଶ(𝜆ଶ + 𝜇ଶ),

 (26)
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6. Results and discussion 
 
In this study, the bending and free vibration analysis of FG plates by the new hyperbolic shear 

deformation plate theory is suggested for investigation, the effect of the distribution form of 
porosity is also studied; the Poisson’s ratio is fixed at 𝜈 = 0.3. Comparisons are made with the 
solutions available in the literature in order to verify the accuracy of this analysis. 

 
6.1 Static analysis 
 
For static analysis the plates are subjected to a sinusoidal distributed transverse load given by 
 𝑞(𝑥, 𝑦) = 𝑞ଵଵ 𝑠𝑖𝑛(𝜆𝑥) 𝑠𝑖𝑛(𝜇𝑦) (27)
 
A functionally graded material consisting of Aluminum- Alumina is considered. The following 

material properties are used in computing the numerical values. 
 
Metal (Aluminum, Al)     𝐸௠ = 70𝐺𝑃𝑎,    Poisson’s ratio (𝜈) = 0.3. 
Ceramic (Alumina, Al2O3)  𝐸௖ = 380𝐺𝑃𝑎, Poisson’s ratio (𝜈) = 0.3. 
 
Results are tabulated in Tables 2 and 3. The tables contain the non dimensionalised deflections 

and stresses respectively. 
In order to prove the validity of the presented higher-order shear deformation plate theory, 

some comparisons are made between the results obtained from this theory and those obtained by a 
generalized shear deformation theory developed by Zenkour (2006), the Zeroth order Shear 
Deformation Theory (ZSDT) (Dharan et al. 2010) and the results obtained by the model of 
Reddy’s based on the HSDT (Reddy 2000). The uniform distribution shape of porosity are 
considered. The following non dimensionalised quantities are reported. 

 𝑊 = 10 𝐸஼ℎଷ𝑞଴𝑎ସ 𝑤 ൬𝑎2 , 𝑏2൰,     𝑈 = 100 𝐸஼ℎଷ𝑞଴𝑎ସ 𝑢 ൬0, 𝑏2 , −ℎ4 ൰,     𝑉 = 100 𝐸஼ℎଷ𝑞଴𝑎ସ 𝑣 ൬𝑎2 , 0, −ℎ6 ൰ , 𝜎௫ = ℎℎ𝑞଴ 𝜎௫ ൬𝑎2 , 𝑏2 , ℎ2൰,       𝜎௬ = ℎℎ𝑞଴ 𝜎௬ ൬𝑎2 , 𝑏2 , ℎ3൰,              𝜏௫௬ = ℎ
ℎ𝑞଴ 𝜏௫௬ ൬0,0, − ℎ3൰ , 𝜏௫௭ = ℎℎ𝑞଴ 𝜏௫௭ ൬0, 𝑏2 , 0൰,     𝜏௬௭ = ℎ

ℎ𝑞଴ 𝜏௬௭ ൬𝑎2 , 0, ℎ6൰, 
 
 

Table 2 Effects of Volume fraction exponent on the dimensionless displacements of a FGM square plate 
subjected to sinusoidal loading (a/h = 10) 

k Model 𝛼 𝑈 𝑉 𝑊 

Ceramic 

ZSDT (Dharan et al. 2010) 𝛼 = 0 0.21805 0.14493 0.29423 
GSDT (Zenkour 2006) 𝛼 = 0 0.23090 0.15390 0.29600 
HSDT (Reddy 2000) 𝛼 = 0 0.21805 0.14493 0.29423 

Present 
𝛼 = 0 0.21816 0.14489 0.29604 𝛼 = 0.1 0.23189 0.15400 0.31468 𝛼 = 0.2 0.24746 0.16435 0.33581 
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Table 2 Continued 
k Model 𝛼 𝑈 𝑉 𝑊 

0.2 

ZSDT (Dharan et al. 2010) 𝛼 = 0 0.2818 0.1985 0.33672 
GSDT (Zenkour 2006) 𝛼 = 0 - - - 
HSDT (Reddy 2000) 𝛼 = 0 0.28172 0.19820 0.33767 

Present 
𝛼 = 0 0.30479 0.21539 0.35988 𝛼 = 0.1 0.33202 0.23552 0.38827 𝛼 = 0.2 0.36454 0.25971 0.42162 

0.5 

ZSDT (Dharan et al. 2010) 𝛼 = 0 0.42135 0.31096 0.44387 
GSDT (Zenkour 2006) 𝛼 = 0 - - - 
HSDT (Reddy 2000) 𝛼 = 0 0.42131 0.31034 0.44407 

Present 
𝛼 = 0 0.43859 0.32549 0.45369 𝛼 = 0.1 0.49628 0.37089 0.50253 𝛼 = 0.2 0.57114 0.43023 0.56405 

1 

ZSDT (Dharan et al. 2010) 𝛼 = 0 0.64258 0.49673 0.59059 
GSDT (Zenkour 2006) 𝛼 = 0 0.6626 0.5093 0.5889 
HSDT (Reddy 2000) 𝛼 = 0 0.64137 0.49438 0.58895 

Present 
𝛼 = 0 0.64112 0.49408 0.58893 𝛼 = 0.1 0.77156 0.60065 0.68318 𝛼 = 0.2 0.96748 0.76194 0.81924 

2 

ZSDT (Dharan et al. 2010) 𝛼 = 0 0.9022 0.71613 0.76697 
GSDT (Zenkour 2006) 𝛼 = 0 0.92810 0.73110 0.75730 
HSDT (Reddy 2000) 𝛼 = 0 0.89858 0.71035 0.75747 

Present 
𝛼 = 0 0.89793 0.70968 0.75733 𝛼 = 0.1 1.18383 0.94886 0.94196 𝛼 = 0.2 1.73521 1.41394 1.28005 

5 

ZSDT (Dharan et al. 2010) 𝛼 = 0 1.06786 0.84942 0.94325 
GSDT (Zenkour 2006) 𝛼 = 0 1.11580 0.87920 0.91180 
HSDT (Reddy 2000) 𝛼 = 0 1.06297 0.84129 0.90951 

Present 
𝛼 = 0 1.06620 0.84399 0.91171 𝛼 = 0.1 1.52547 1.23283 1.19970 𝛼 = 0.2 2.70313 2.24280 1.87542 

Metallic 

ZSDT (Dharan et al. 2010) 𝛼 = 0 1.18373 0.78677 1.59724 
GSDT (Zenkour 2006) 𝛼 = 0 1.25340 0.83560 1.6070 
HSDT (Reddy 2000) 𝛼 = 0 1.18373 0.78677 1.59724 

Present 
𝛼 = 0 1.18429 0.78652 1.60709 𝛼 = 0.1 1.74527 1.15909 2.36835 𝛼 = 0.2 3.31601 2.20227 4.49987 
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Table 3 Effects of Volume fraction exponent on the dimensionless stresses of a FGM square plate subjected 
to sinusoidal loading (a/h = 10) 

k Model 𝛼 𝜎௫ 𝜎௬ 𝜏௫௬ 𝜏௫௭ 𝜏௬௭ 

Ceramic 

ZSDT (Dharan et al. 2010) 𝛼 = 0 1.98915 1.31035 0.70557 0.23778 0.23778 
GSDT (Zenkour 2006) 𝛼 = 0 1.9955 1.3121 0.7065 0.2462 0.2132 
HSDT (Reddy 2000) 𝛼 = 0 1.98915 1.31035 0.70557 0.23778 0.19051 

Present 
𝛼 = 0 1.99515 1.31219 0.70656 0.24406 0.21289 𝛼 = 0.1 1.99515 1.31219 0.70656 0.24406 0.21289 𝛼 = 0.2 1.99515 1.31219 0.70656 0.24406 0.21289 

0.2 

ZSDT (Dharan et al. 2010) 𝛼 = 0 2.1227 1.30962 0.6678 0.22557 0.2256 
GSDT (Zenkour 2006) 𝛼 = 0 - - - - - 
HSDT (Reddy 2000) 𝛼 = 0 2.12671 1.30958 0.66757 0.22532 0.18045 

Present 
𝛼 = 0 2.26003 1.38706 0.72053 0.24805 0.22655 𝛼 = 0.1 2.28168 1.39323 0.72174 0.24836 0.22755 𝛼 = 0.2 2.30723 1.40051 0.72317 0.24872 0.22871 

0.5 

ZSDT (Dharan et al. 2010) 𝛼 = 0 2.60436 1.47175 0.66709 0.23909 0.23869 
GSDT (Zenkour 2006) 𝛼 = 0 - - - - - 
HSDT (Reddy 2000) 𝛼 = 0 2.61051 1.47147 0.66668 0.23817 0.19071 

Present 
𝛼 = 0 2.61929 1.45863 0.69119 0.24945 0.24311 𝛼 = 0.1 2.68941 1.47532 0.68966 0.24997 0.24577 𝛼 = 0.2 2.77837 1.49653 0.68775 0.25061 0.24896 

1 

ZSDT (Dharan et al. 2010) 𝛼 = 0 3.07011 1.48935 0.61395 0.22705 0.23919 
GSDT (Zenkour 2006) 𝛼 = 0 3.087 1.4894 0.611 0.2462 0.2622 
HSDT (Reddy 2000) 𝛼 = 0 3.08501 1.4898 0.61111 0.23817 0.19071 

Present 
𝛼 = 0 3.08640 1.4895 0.61106 0.24406 0.26178 𝛼 = 0.1 3.26288 1.5185 0.59549 0.24406 0.26721 𝛼 = 0.2 3.51847 1.5604 0.57289 0.24406 0.27399 

2 

ZSDT (Dharan et al. 2010) 𝛼 = 0 3.58089 1.3968 0.54947 0.22705 0.22719 
GSDT (Zenkour 2006) 𝛼 = 0 3.6094 1.3954 0.5441 0.2265 0.2763 
HSDT (Reddy 2000) 𝛼 = 0 3.60664 1.39575 0.54434 0.22568 0.1807 

Present 
𝛼 = 0 3.60856 1.39561 0.54413 0.22427 0.27558 𝛼 = 0.1 3.96831 1.41036 0.50721 0.22074 0.28539 𝛼 = 0.2 4.61670 1.43564 0.44023 0.21543 0.29843 

5 

ZSDT (Dharan et al. 2010) 𝛼 = 0 4.19547 1.1087 0.57811 0.21792 0.21813 
GSDT (Zenkour 2006) 𝛼 = 0 4.2488 1.1029 0.5755 0.2017 0.2429 
HSDT (Reddy 2000) 𝛼 = 0 4.24293 1.10539 0.57368 0.21609 0.17307 

Present 
𝛼 = 0 4.24758 1.10329 0.57553 0.19919 0.24164 𝛼 = 0.1 4.74916 1.03851 0.55112 0.18612 0.25074 𝛼 = 0.2 5.78994 0.88676 0.50484 0.16142 0.26720 
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Table 3 Continued 
k Model 𝛼 𝜎௫ 𝜎௬ 𝜏௫௬ 𝜏௫௭ 𝜏௬௭ 

Metallic 

ZSDT (Dharan et al. 2010) 𝛼 = 0 1.98915 1.31035 0.70557 0.23778 0.23778 
GSDT (Zenkour 2006) 𝛼 = 0 1.9955 1.3121 0.7065 0.2462 0.2132 
HSDT (Reddy 2000) 𝛼 = 0 1.98915 1.31035 0.70557 0.23778 0.19051 

Present 
𝛼 = 0 1.99515 1.31219 0.70656 0.24406 0.21289 𝛼 = 0.1 1.99515 1.31219 0.70656 0.24406 0.21289 𝛼 = 0.2 1.99515 1.31219 0.70656 0.24406 0.21289 

 
 
As we can see on Tables 2 and 3, close agreements were obtained between the results of the 

present theory and those of literature (when 𝛼 = 0; perfect plate). The tables shows the effect of 
volume fraction exponent ൫𝑉௙൯ on the stresses and displacements of a functionally graded square 
plate with 𝑎/ℎ = 10. It can be observed that as the plate becomes more and more metallic the 
deflection 𝑊  and normal stress 𝜎௫  increases but normal stress 𝜎௬  decreases. It is very 
interesting to note that the stresses for a fully ceramic plate are the same as that of a fully metal 
plate. This is due to the fact that in these two cases the plate is fully homogeneous and stresses do 
not depend on the modulus of elasticity. By introducing the volume fraction of porosity (𝛼), it can 
be noted that the increase of this factor induces an increase in dimensionless deflections, 
displacements and stresses which shows that the porosity has a significant influence on the 
displacements and stress of FGM plates. 

Fig. 2 indicates the effect the aspect ratio a/b and the shape of porosity distribution on the 
dimensionless deflections of FGM plates, made with Al/Al2O3. The porosity coefficient 𝛼 = 0.2. 
As we can seen on Fig. 3, the dimensionless deflections decrease in increasing the aspect ratio a/b. 
The deflections for plate with uniform porosity distribution model are higher than that for the other 
models of imperfect FGM plates. The highest values of dimensionless deflections were obtained 
for the homogeneous shape of porosity distribution while the lowest ones correspond to the “X” 
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Fig. 2 Effect of the shape of porosity distribution on the dimensionless deflections versus 
aspect ratio (a/b) of an Al/Al2O3 FGM plate (k = 1; α = 0.2)
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Fig. 3 Effect of the shape of porosity distribution on the dimensionless deflections versus 
side-to-thickness ratio (a/h) of an Al/Al2O3 FGM square plate (k = 1; α = 0.2) 
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Fig. 4 Effect of porosity coefficient on center deflection FGM square plate (k = 1) 
 
 

shape of porosity distribution. The “V” and the “O” shape of porosity distribution gives almost the 
same values of the dimensionless deflections. Another result of Fig. 2 is that the difference among 
of porosity distributions decrease significantly by increasing the ratio of a/b. 

In Fig. 3, we present the effect of the distribution shape of porosity on the dimensionless 
deflections of FGM square plate for different side to thikness ratio a/h, made with Al/Al2O3. It 
should be noted that the effect of the distribution shape of porosity on the dimensionless deflection 
is very significant by increasing thickness ratio (as the plate becomes thinner). According to these 
figures, it is clear that the deflections is maximum for “H” distribution shape of porosity and it is 
minimal for “X” distribution shape of porosity. The “V” and the “O” shape of porosity distribution 
give almost the same values of the dimensionless deflections. 

The variation of porosity coefficient 𝛼 on the central deflection is illustrated in Fig. 4. The 
porosity coefficient has an important effect on the deflections mainly for the homogeneous shape 
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Fig. 5 Effect of the shape of porosity distribution on the normal stress 𝜎௫௫ across the thickness 
an Al/Al2O3 FGM square plate (a/h = 10; 𝛼 = 0.2)
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Fig. 6 Effect of the shape of porosity distribution on the normal stress 𝜎௬௬ across the thickness 
an Al/Al2O3 FGM square plate (a/h = 10; 𝛼 = 0.2) 

 
 
 

of porosity distribution where the increasing of porosity coefficient increases the central 
deflections. With increasing of the porosity parameters, the difference among of porosity 
distributions increases considerably. 

Figs. 5 and 6 shows the influence of distribution shape of porosity on the axial stress with 
porosity coefficient α = 0.2. According to these figures, it is clear that the longitudinal stress is 
maximum for “H” distribution shape of porosity and it is minimal for “X” distribution shape of 
porosity. 

Figs. 7 to 9 shows the influence of distribution shape of porosity on the shear stress with 
porosity coefficient α = 0.2. It’s clear that the distributions are not parabolic. Also, the shear stress 
is maximum for H distribution shape of porosity and it is minimal for “X” shape of porosity 
distribution. 
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6.2 Dynamic analysis 
 
The accuracy of the present theory is also investigated through free vibration analysis of FGM 

porous plates. The material properties used in the present study are 
 
Metal (Aluminum, Al):     𝐸௠ = 70𝑥10ଽ𝑁/𝑚ଶ,     𝜈 = 0.3,     𝜌௠ = 2702𝐾𝑔/𝑚ଷ. 
Ceramic (Zirconia, ZrO2):   𝐸௖ = 200𝑥10ଽ𝑁/𝑚ଶ,   𝜈 = 0.3,     𝜌௖ = 5700𝐾𝑔/𝑚ଷ. 
 
In order to validate proposed theory, a comparison study is performed. Several parameters are 

varied and their dynamic behavior is studied. In the validation study, the first three natural 
frequencies for the fundamental vibration mode of 𝑚 = 𝑛 = 1 with different side to thikness 
ratio a/h are presented and compared with the results obtained from this theory and those obtained 
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Fig. 7 Effect of the shape of porosity distribution on the shear stress 𝜏௫௬ across the thickness 
an Al/Al2O3 FGM square plate (a/h = 10; 𝛼 = 0.2)
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Fig. 8 Effect of the shape of porosity distribution on the shear stress 𝜏௫௭ across the thickness 
an Al/Al2O3 FGM square plate (a/h = 10; 𝛼 = 0.2)
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Fig. 9 Effect of the shape of porosity distribution on the shear stress 𝜏௫௭ across the thickness 
an Al/Al2O3 FGM square plate (a/h = 10; 𝛼 = 0.2)

 
 
 
 
 

Table 4 Comparison of First Three natural frequencies of Al/ZrO2 FG square plates for various a/h ratio 𝜔 = ൬𝜔 ቀ௔మ
ℎ

ቁ ටఘ೘ா೘൰, k = 1 

𝑎/ℎ Theory 𝛼 
Mode No. 

1 2 3 

5 

ZSDT (Dharan et al. 2010) 𝛼 = 0 5.6554 15.2996 25.9247 
HSDT (Reddy 2000) 𝛼 = 0 5.6914 15.3408 25.9257 

HSDT2 (Nguyen et al. 2008) 𝛼 = 0 5.7123 15.339 25.776 

Present 
𝛼 = 0 5.6777 15.3438 25.776 𝛼 = 0.1 5.9337 16.1738 27.1444 𝛼 = 0.2 6.2278 17.1549 28.7561 

10 

ZSDT 𝛼 = 0 6.18 30.6643 51.8649 
HSDT (Reddy 2000) 𝛼 = 0 6.1863 30.6861 51.8665 

HSDT2 (Nguyen et al. 2008) 𝛼 = 0 6.1932 30.685 51.795 

Present 
𝛼 = 0 6.1813 30.6876 51.7915 𝛼 = 0.1 6.4985 32.3475 54.5798 𝛼 = 0.2 6.8700 34.3097 57.8731 

20 

ZSDT 𝛼 = 0 6.3359 61.3633 103.7394 
HSDT (Reddy 2000) 𝛼 = 0 6.3371 61.3744 103.7404 

HSDT2 (Nguyen et al. 2008) 𝛼 = 0 6.339 61.374 103.71 

Present 
𝛼 = 0 6.3358 61.3751 103.7029 𝛼 = 0.1 6.6738 64.6951 109.3058 𝛼 = 0.2 7.0724 68.6195 115.9276 
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by the results of the Zeroth order Shear Deformation Theory (ZSDT) (Dharan et al. 2010), the 
model of Reddy’s based on the HSDT, and the First order shear deformation plate models 
develloped by Nguyen et al. (2008). It is seen from Table 4, a good agreement between the results 
of the present theory with other theories. Close agreements were obtained between the results of 
the present theory and those of literature (when; perfect plate). By introducing the volume fraction 
of porosity (𝛼), it can be noted that the increase of this factor induces an increase in natural 
frequencies which shows that the porosity has a significant influence on the frequency of FGM 
plates. 

In Fig. 10, the relationship between side-to-thickness a/h and fundamental frequency is 
presented for different porosity models for different schemes of layers for k = 2 and 𝛼 = 0.2. It is 
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Fig. 10 Effect of the shape of porosity distribution on the dimensionless fundamental frequency 𝜔 
versus side-to-thickness a/h of an FGM square plate (k = 2)
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Fig. 11 Effect of porosity coefficient on the dimensionless fundamental frequency 𝜔 of FGM plate (k = 2)
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seen from Fig. 10 that the difference among the porosity models increases with increasing of a/h 
ratio. In higher values of a/h, the porosity distributions play important role on the free vibration 
behavior of FGM porous plates. The fundamental frequency of homogeneous shape of porosity 
distribution are biggest values. The “V” and “O” porosity model gives almost the same frequency 
values. Also, the result of the X porosity model gives lowest values of fundamental frequency. The 
reason of this situation is that the void more stack in the X porosity distribution, and so the rigidity 
of the plates is lowest in the X porosity model. As a result, X porosity model gives lowest the 
fundamental frequency in contrast with other porosity models. 

Fig. 11 shows the effects of porosity coefficient (𝛼) on the dimensionless fundamental 
frequencies for k = 2 and a/h = 10. As seen from Fig. 11, increasing the porosity coefficient yields 
to increase the difference among of porosity models, significantly and the results of V and O 
porosity models are very close. 

 
 

7. Conclusions 
 
The study was focused on the effect of the distribution shape of porosity on bending and free 

vibration of FGM plate by using hyperbolic shear deformation theory. Four type porosity models 
are used. In the solution of the problem, the Navier method is used. Effects of porosity coefficient, 
porosity models, FGM distribution parameter, side-to-thickness ratio on the bending and free 
vibration of FGM plates are investigated. It is obtained from the numerical results the side-to-
thickness ratio is very influences on the porosity effects for FGM plates. Also, it can be concluded 
that distribution shape of porosity has a significant effect on the deflections of FGM plates as well 
as on the normal and shear stress developed in the plate. 

Finally, it is up to the researchers and manufacturer to choose wisely the material combinations 
that gives rise to a fgm plate offers rigidity, strength and most of all less greedy in terms of cost. In 
view of this research, it is very important to study the effect of boundary conditions, and to see 
how these boundary conditions can affect the stability of this type of porous plate. 

 
 

Acknowledgments 
 
This research was supported by the Algerian Ministry of Higher Education and Scientific 

Research (MESRS) as part of the grant for the PRFU research project n° 
A01L02UN140120180001 and by the University of Tiaret, in Algeria 

 
 

References 
 
Akavci, S.S. (2010), “Two new hyperbolic shear displacement models for orthotropic laminated composite 

plates”, Mech. Compos. Mater., 46, 215-226. https://doi.org/10.1007/s11029-010-9140-3 
Akbaş, Ş.D. (2015), “Wave propagation of a functionally graded beam in thermal environments”, Steel 

Compos. Struct., Int. J., 19(6), 1421-1447. https://doi.org/10.12989/scs.2015.19.6.1421 
Akbaş, Ş.D. (2017a), “Vibration and static analysis of functionally graded porous plates”, J. Appl. Computat. 

Mech., 3(3), 199-207. https://doi.org/10.22055/JACM.2017.21540.1107 
Akbaş, Ş.D. (2017b), “Thermal effects on the vibration of functionally graded deep beams with porosity”, 

Int. J. Appl. Mech., 9(5), 1750076. https://doi.org/10.1142/S1758825117500764 

133



 
 
 
 
 
 

Lazreg Hadji, Fabrice Bernard, Abdelkader Safa and Abdelouahed Tounsi 

Akbaş, Ş.D. (2017c), “Post-buckling responses of functionally graded beams with porosities”, Steel Compos. 
Struct., Int. J., 24(5), 579-589. https://doi.org/10.12989/scs.2017.24.5.579 

Akbaş, Ş.D. (2017d), “Nonlinear static analysis of functionally graded porous beams under thermal effect”, 
Coupl. Syst. Mech., Int. J., 6(4), 399-415. https://doi.org/10.12989/csm.2017.6.4.399 

Akbaş, Ş.D. (2017e) “Stability of a non-homogenous porous plate by using generalized differantial 
quadrature method”, Int. J. Eng. Appl. Sci., 9(2), 147-155. https://doi.org/10.24107/ijeas.322375 

Akbaş, Ş.D. (2018a), “Forced vibration analysis of functionally graded porous deep beams”, Compos. 
Struct., 186, 293-302. https://doi.org/10.1016/j.compstruct.2017.12.013 

Akbaş, Ş.D. (2018b), “Geometrically nonlinear analysis of functionally graded porous beams”, Wind Struct., 
Int. J., 27(1), 59-70. https://doi.org/10.12989/was.2018.27.1.059 

Akbaş, Ş.D. (2019a), “Hygro-thermal post-buckling analysis of a functionally graded beam”, Coupl. Syst. 
Mech., Int. J., 8(5), 459-471. https://doi.org/10.12989/csm.2019.8.5.459 

Akbaş, Ş.D. (2019b), “Hygro-thermal nonlinear analysis of a functionally graded beam”, J. Appl. Computat. 
Mech., 5(2), 477-485. https://doi.org/10.22055/JACM.2018.26819.1360 

Akbaş, Ş.D. (2019c), “Buckling analysis of a fiber reinforced laminated composite plate with porosity”, J. 
Computat. Appl. Mech., 50(2), 375-380. https://doi.org/10.22059/JCAMECH.2019.291967.448 

Akbaş, Ş.D. (2019d), “Longitudinal forced vibration analysis of porous a nanorod”, Mühendislik Bilimleri ve 
Tasarım Dergisi, 7(4), 736-743. https://doi.org/10.21923/jesd.553328 

Akbaş, Ş.D. (2020a), “Dynamic analysis of thick beams with functionally graded porous layers and 
viscoelastic support”, J. Vib. Control, 27(13-14), 1644-1655. https://doi.org/10.1177/1077546320947302 

Akbaş, Ş.D. (2020b), “Dynamic analysis of viscoelastic functionally graded porous thick beams under pulse 
load”, Eng. Comput. https://doi.org/10.1007/s00366-020-01070-3 

Al-Furjan, M.S.H., Habibi, M., won Jung, D., Sadeghi, S., Safarpour, H., Tounsi, A. and Chen, G. (2020a), 
“A computational framework for propagated waves in a sandwich doubly curved nanocomposite panel”, 
Eng. Comput. https://doi.org/10.1007/s00366-020-01130-8 

Atmane, H.A., Tounsi, A. and Bernard, F. (2015), “Effect of thickness stretching and porosity on 
mechanical response of a functionally graded beams resting on elastic foundations”, Int. J. Mech. Mater., 
13(1), 71-84. https://doi.org/10.1007/s10999-015-9318-x 

Avcar, M. (2019), “Free vibration of imperfect sigmoid and power law functionally graded beams”, Steel 
Compos. Struct., Int. J., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603 

Bourada, F., Bousahla, A.A., Bourada, M., Azzaz, A., Zinata, A. and Tounsi, A. (2019), “Dynamic 
investigation of porous functionally graded beam using a sinusoidal shear deformation theory”, Wind 
Struct., Int. J., 28(1), 19-30. https://doi.org/10.12989/was.2019.28.1.019 

Daouadji, T.H. and Benferhat, R. (2016), “Bending analysis of an imperfect FGM plates under hygro-
thermo-mechanical loading with analytical validation”, Adv. Mater. Res., Int. J., 5(1), 35-53. 
https://doi.org/10.12989/amr.2016.5.1.035 

Demirhan, P.A. and Taskin, V. (2019), “Bending and free vibration analysis of Levy-type porous 
functionally graded plate using state space approach”, Compos. B Eng., 160, 661-676. 
https://doi.org/10.1016/j.compositesb.2018.12.020 

Dharan, S., Syam Prakash, V. and Savithri, S. (2010), “A higher order shear deformation model for 
functionally graded plates”, Proceedings of International Conference on Technological Trends (ICTT-
2010), Trivandrum, India, November. 

Ebrahimi, F., Mahmoodi, F. and Barati, M.R. (2017), “Thermo-mechanical vibration analysis of functionally 
graded micro/nanoscale beams with porosities based on modified couple stress theory”, Adv. Mater. Res., 
Int. J., 6(3), 279-301. https://doi.org/10.12989/amr.2017.6.3.279 

Hadji, L. and Adda Bedia, E.A. (2015), “Influence of the porosities on the free vibration of FGM beams”, 
Wind Struct., Int. J., 21(3), 273-287. https://doi.org/10.12989/was.2015.21.3.273 

Hadji, L., Atmane, H.A., Tounsi, A., Mechab, I. and Bedia, E.A. (2011), “Free vibration of functionally 
graded sandwich plates using four-variable refined plate theory”, Appl. Mathe. Mech., 32(7), 925-942. 
https://doi.org/10.1007/s10483-011-1470-9 

Hadj, B., Rabia, B. and Daouadji, T.H. (2019), “Influence of the distribution shape of porosity on the 

134



 
 
 
 
 
 

Bending and free vibration analysis for FGM plates containing various … 

bending FGM new plate model resting on elastic foundations”, Struct. Eng. Mech., Int. J., 72(1), 823-832. 
https://doi.org/10.12989/sem.2019.72.1.061 

Hussain, M., Naeem, M.N., Khan, M.S. and Tounsi, A. (2020), “Computer-aided approach for modelling of 
FG cylindrical shell sandwich with ring supports”, Comput. Concrete, Int. J., 25(5), 411-425. 
https://doi.org/10.12989/cac.2020.25.5.411 

Jouneghani, F.Z., Dimitri, R. and Tornabene, F. (2018), “Structural response of porous FG nanobeams under 
hygro-thermo-mechanical loadings”, Compos. Part B: Eng., 152, 71-78. 
https://doi.org/10.1016/j.compositesb.2018.06.023 

Nguyen, T.K., Sab, K. and Bonnet, G. (2008), “First order shear deformation plate models for functionally 
graded materials”, Compos. Struct., 83, 25-36. https://doi.org/10.1016/j.compstruct.2007.03.004 

Nguyen, D.D., Kim, S.E. and Nguyen, D.K. (2020), “Nonlinear buckling and post-buckling analysis of shear 
deformable stiffened truncated conical sandwich shells with functionally graded face sheets and a 
functionally graded porous core”, J. Sandw. Struct. Mater. https://doi.org/10.1177/1099636220906821 

Ramteke, P.M., Panda, S.K. and Sharma, N. (2019), “Effect of grading pattern and porosity on the eigen 
characteristics of porous functionally graded structure”, Steel Compos. Struct., Int. J., 33(6), 865-875. 
https://doi.org/10.12989/scs.2019.33.6.865 

Reddy, J.N. (2000), “Analysis of functionally graded plates”, Int. J. Numer. Method. Eng., 47(1-3), 663-684. 
https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8 

Trinh, C.M., Nguyen, D.D. and Kim, S.E. (2019), “Effects of porosity and thermomechanical loading on 
free vibration and nonlinear dynamic response of functionally graded sandwich shells with double 
curvature”, Aerosp. Sci. Technol., 87, 119-132. https://doi.org/10.1016/j.ast.2019.02.010 

Trinh, M.C., Mukhopadhyay, T. and Kim, S.E. (2020), “A semi-analytical stochastic buckling quantification 
of porous functionally graded plates”, Aerosp. Sci. Technol., 105, 105928. 
https://doi.org/10.1016/j.ast.2020.105928 

Wattanasakulponga, N. and Ungbhakornb, V. (2014), “Linear and non linear vibration analysis of elastically 
restrained ends FGM beams with porosities”, Aero. Sci. Technol., 32(1), 111-120. 
https://doi.org/10.1016/j.ast.2013.12.002 

Wattanasakulpong, N., Prusty, B.G., Kelly, D.W. and Hoffman, M. (2012), “Free vibration analysis of 
layered functionally graded beams with experimental validation”, Mater. Des., 36, 182-190. 
https://doi.org/10.1016/j.matdes.2011.10.049 

Wu, D., Liu, A., Huang, Y., Huang, Y., Pi, Y. and Gao, W. (2018), “Dynamic analysis of functionally 
graded porous structures through finite element analysis”, Eng. Struct., 165, 287-301. 
https://doi.org/10.1016/j.engstruct.2018.03.023 

Xu, K., Yuan, Y. and Li, M. (2019), “Buckling behavior of functionally graded porous plates integrated with 
laminated composite faces sheets”, Steel Compos. Struct., Int. J., 32(5), 633-642. 
https://doi.org/10.12989/scs.2019.32.5.633 

Younsi, A., Tounsi, A., Zaoui, F.Z., Bousahla, A.A. and Mahmoud, S.R. (2018), “Novel quasi-3D and 2D 
shear deformation theories for bending and free vibration analysis of FGM plates”, Geomech. Eng., Int. J., 
14(6), 519-532. https://doi.org/10.12989/gae.2018.14.6.519 

Zenkour, A.M. (2006), “Generalised shear deformation theory for bending analysis of functionally graded 
plates”, Appl. Mathe. Modell., 30, 67-84. https://doi.org/10.1016/j.apm.2005.03.009 

Zhao, J., Xie, F., Wang, A., Shuai, C., Tang, J. and Wang, Q. (2019), “Vibration behavior of the functionally 
graded porous (FGP) doubly-curved panels and shells of revolution by using a semi-analytical method”, 
Compos. Part B: Eng., 157, 219-238. https://doi.org/10.1016/j.compositesb.2018.08.087 

 
CC 
 
 
 

135




