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Abstract.  In this paper, the dynamic analysis of single-layer rectangular armchair graphene nanoplates has been 
considered. The theory of nonlocal elasticity for small scale effects and the Kirchhoff’s theory for plates have been used 
to obtain the dynamic equation of graphene nanoplates.  Discrete Least Squares Meshless (DLSM) method has been 
used to examine the response of single-layer graphene nanoplates with various boundary conditions. The validation of 
the results has also been carried out using dynamic analysis of single-layer rectangular armchair graphene nanoplates 
under stationary loads. Results revealed that DLSM method is an efficient mean to solve the problems of structural 
mechanics in nano-dimensions. In addition, in nanostructures, the small scale effects have considerable impacts that 
should be considered as well. An increase in nonlocal coefficient increases the deflection. Higher nonlocal coefficient 
leads to higher deflection intensity and vibration amplitude. 
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1. Introduction 

 
Nanotechnology is a modern and very functional science in all fields of engineering so that it has 

been significantly developed in recent decades. Nanostructured materials have interesting physical, 
electrical, and chemical properties. 

Graphene plates are nano-layers which are created through putting carbon atoms together on a 
plate and in a crystal lattice with hexagonal structures. Due to the strong covalent force between 
carbon atoms, despite very low thickness, it has a tensile strength 200 times greater than steel. 

Carbon nanoplates are divided into two categories of single-layer and multi-layer; in the multi-
layer graphene nanoplates, there is a weak van der Waals bond force between each layer. 

Single-layer plates are superior to graphene layers on many cases and applications, but in cases 
where the purpose is to increase the flexural strength, graphene multi-layers can be used. In terms 
of rolling, graphene nanoplates are divided into three categories of armchair, zigzag and chiral 
(asymmetrical) each of which gives unique structural properties to these graphene plates. 

Graphene plates have many applications in different types of nano-actuators, nano-sensors, 
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electrical batteries, nano-micro-electromechanical systems, atomic force microscopes, and high 
strength composites (Geim and Novoselov 2007, Pumera et al. 2010, Geim 2009, Katsnelson 2007, 
Rao et al. 2009, Heyrovska 2008, Choi et al. 2010, Geim and Kim 2008, Chen et al. 2008, 
Kuzmenko et al. 2008). 

Interesting properties and characteristics of the graphene nanoplates have attracted the 
researchers. Researchers have tried to understand these properties with various theoretical and 
experimental methods. However, experimental investigations have many problems such as hard 
work, being time consuming and costly, but the theoretical and numerical methods have led to saving 
time and cost, and favorable results (Martel et al. 1998). 

To study the mechanical properties of graphene plates, and in general, investigating materials on 
a small scale, the theory of classic continuous environments cannot take into consideration the empty 
spaces between atoms and atomic forces among particles at nanodimensions, and that is why this 
theory is not efficient to be used for studying the mechanical properties of the nanoplates. 

In large structures, the strain creates stress in a point, but in nano-structures, the resultant stress 
depends on the strain field of the space around that point. Therefore, other methods must be used, 
of which, the experimental observations and molecular dynamics method can be mentioned (Eringen 
1972, 1983, 2002, Eringen and Edelen 1972). But these methods are so costly, time consuming, and 
limited to a few number of atoms in the structure. Thus, for larger systems, different theories have 
been proposed, including the theories of strain gradient (Hutchinson and Fleck 1997), modified 
couple stress (Yang et al. 2002), micropolar (Wang et al. 2006) and nonlocal elasticity (Eringen 
1983). 

In the nonlocal theory of elasticity, the internal characteristic length (the way of bonding in the 
molecular network, particle size, etc.) and the external characteristic length (crack length, 
wavelength, etc.) of the nanostructure can be introduced in the equations. This method give rises to 
acceptable results which are close to atomic and molecular dynamics method (Wang et al. 2006, 
Wang and Varadan 2006). 

Among the studies conducted on graphene plates, Ansari et al. (2010b), presented the vibration 
analysis of single-layer graphene plates using the equation of nonlocal elasticity, theory of classic 
plate, and considering the fourth order general differential equations. They studied the effects of 
surface stress on free vibration behavior of nanoplates, and concluded that for non-classic plate 
models, the effects of surface stress can be ignored for lower values of mode number and higher 
aspect ratios of dimensions. 

Pradhan and Phadikar (2009) obtained equations of the theory of nonlocal elasticity using the 
theory of classical plates and the first order shear deformation theory, and obtained vibration of 
graphene plates. Bouadi et al. (2018) studied the new nonlocal higher order shear deformation for 
analysis of stability of single layer grapheme sheet by employing the nonlocal differential 
constitutive relations of Eringen. 

Liu et al. (2016) presented the nonlocal static bending, buckling, free and forced vibrations of 
graphene nanosheets using the Kirchhoff plate theory and Taylor expansion approach. Ansari et al. 
(2010a) studied the vibration of multi-layer graphene plates with different boundary conditions in 
an elastic material, using the finite element method. Recently, several studies have been carried out 
on bending, buckling, and vibration of single-layer and multi-layer graphene plates by Sobhy (2014a, 
b), Alzahrani et al. (2013). 

Fattahi et al. (2019) reviewed the application of nonlocal elasticity to determin vibration behavior 
of functionally graded nanoplate. Using the fourth order differential method, the elastic buckling 
behaviors of small-scale orthotropic plates were studied under biaxial stress by Murmu and Pradhan 
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(2009a ,b). Malekzadeh et al. (2011a, b), have studied the vibrational behavior and temperature 
buckling of arbitrary quadrilateral orthotropic nano-plates. Sakhaee-Pour et al. (2008) modeled 
vibrational behavior of zigzag and armchair single-layer graphene plates with various boundary 
conditions using molecular structural mechanics. 

Duan and Wang (2009) reviewed the nonlinear bending and stretching of a circular graphene 
under a point load at the center, using simulation of molecular mechanics. Aghababaei and Reddy 
(2009) formulated the third order shear deformation of plate theory for the problem of bending and 
vibration using the theory of Eringen nonlocal elasticity. 

Using nonlocal continuum mechanics, Babaei and Shahidi (2011) studied the elastic buckling 
behavior of quadrilateral single-layer graphene plates under biaxial pressure using Galerkin method. 
Wang et al. (2016) evaluated the nonlocal effect on the nonlinear dynamic characteristics of buckled 
parametric double-layered nanoplates. 

Jomehzadeh and Saidi (2011) analyzed the three-dimensional vibration of graphene plates by 
decoupling the nonlocal elasticity equations. Wang et al. (2015b) investigated the homoclinic 
behaviors and chaotic motions of double layered viscoelastic nanoplates based on nonlocal theory 
and extended Melnikov method. 

Murmu and Pradhan (2009a) employed nonlocal Timoshenko beam theory and the fourth-order 
differential method for stability analysis of monolayer carbon nanotubes embedded in the elastic 
medium. 

Peddieson et al. (2003) studied the small-scale effects on nanoscale structures by using the 
nonlocal elasticity theory. They showed that the nonlocal continuum mechanics has a high potential 
to be used in nanotechnology applications. In another work, Behfar et al. (2006) examined and 
calculated the flexural modulus of two-layer graphene plates using analytical methods. 

Sakhaee-Pour (2009) studied the elastic properties of single-layer graphene plates. Using 
analytical methods, he could obtain the Young's modulus, shear modulus, and Poisson’s ratio for 
various arrangements of carbon atoms in these plates. They showed that the effect of small scale is 
quite scientific and should be considered. 

Reddy (2010) obtained nonlinear bending for nanotubes using beam relations; and also for 
orthotropic plates using the classic theory and the theory of first order shear and considering the 
nonlocal effects. Shen et al. (2010) investigated nonlinear vibration of single-layer graphene placed 
on the thermal environment for orthotropic rectangular plates with simple boundary conditions. In 
another work, Shen (2011) conducted a nonlinear analysis on thin films located on the elastic 
foundations and in thermal environment, with plates’ nonlocal model. 

Pouresmaeeli et al. (2012) evaluated free vibrations of rectangular two-layer nano-plates placed 
in polymer environment. Dehshahri et al. (2020) analyzed the free vibrations of the nanoplates made 
of three-directional functionally graded material and reviewed small-scale effects on natural 
frequency. 

Using semi-Galerkin technique, Ghannadpour and Moradi (2019) have conducted nonlocal 
nonlinear analysis of nano-graphene sheets under compression. Wang et al. (2019) studied the 
nonlocal nonlinear chaotic and homoclinic analysis of double layered forced viscoelastic nanoplates. 

Farajpour et al. (2012) investigated the buckling of graphene single-layer plates under a variety 
of in-plane linear loads by nonlocal theory and squared differential method. To validate the results, 
they also solved the equations using power series and showed that the results of the two methods are 
in good agreement. 

Zhang et al. (2015) investigated and analyzed the vibration of single-layer graphene plate based 
on continuous nonlocal model, using meshless method. Arash and Wang (2011) analyzed the 
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vibration of single-layer and multi-layer graphene plates using analytical method. Using Galerkin 
meshless analysis, Naderi and Baradaran (2013) performed the static analysis of microscale 
nanoplates based on the theory of nonlocal plate with various boundary conditions. Alwar and Reddy 
(1979) carried out the static and dynamic analyses of plates with great displacements. 

Rouhi et al. (2016) studied the effects of size on the free vibration analysis of nanoshells based 
on flat stress elasticity with various boundary conditions, and evaluated the effects of properties 
associated with surface. They concluded that the flat stress has a significant effect on frequency 
intensification of the nano-shells. 

Using different time scale methods, Wu and Li (2017) conducted three-dimensional vibration 
analyses on single-layer graphene nanoplates and graphene plates surrounded by a material. Wang 
et al. (2015a) have conducted a nonlinear vibrational analysis on two-layer nanoplates with different 
boundary conditions. 

Meshless discrete least squares method is also a new method based on moving least square (MLS) 
method; one of the advantages of which is elimination of integration. Point weighted discrete least 
squares meshless method was proposed by Firoozjaee and Afshar to solve the equations of elliptic 
type, and the impact of point weights was studied in improving the accuracy and convergence rate 
(2009). Using discrete squares meshless (DLSM) method, Ebrahimi and Firoozjaee (2020) reviewed 
numerical solution of bed load transport equations. 

The main motivation of this study is to use numerical method DLSM for the first time to know 
Static and dynamic behavior of graphene nanoplates 

The main motivation of this study is to use DLSM method for the first time to know the dynamic 
behavior of graphene nanoplates.  For dynamic analysis of armchair graphene nanoplates, the theory 
of nonlocal elasticity was used in this study, assuming that the thickness of the nanoplates is very 
insignificant compared to other dimensions, and it is also assumed that displacements are small, and 
hence, the Kirchhoff's theory has been used to create dynamic equation of nanoplates; moreover, 
because of the difficulty of solving mechanical problems of nanostructures with complex boundary 
conditions, the numerical method of discrete meshless least squares has been applied using moving 
least square approximation to approximate shape functions; this method has not been used so far for 
mechanical analysis of nano-structures, but it has been used successfully here; the results of which 
may help well to understand the functional properties of this structure. 

 
 

2. Theory of nonlocal elasticity 
 
In the theory of nonlocal elasticity, stress at a point 𝑥 of a continuous body is a function of strain 

in all 𝑥 ′ points of the body (Eringen 1983), so nonlocal stress can be expressed as 
 𝜎௜௝ = න 𝜆(ห𝑥 − 𝑥 ′ห௏ )𝐶௜௝௞௟𝜀௞௟𝑑𝑣(𝑥 ′) (1)

 
where 𝜎௜௝ is the nonlocal stress, 𝜆 is the kernel function describing strain effects in 𝑥 ′ for stress 
given in 𝑥. 𝜀௞௟ and 𝐶௜௝௞௟ are the strain and elasticity tensor, respectively. 

Using the Eq. (1) in the equation of motion, we have 
 𝜎௜௝,௝ + 𝑓௜ = 𝜌 𝑑ଶ𝑢௜𝑑𝑡ଶ  (2)
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𝑓௜, 𝑢௜, 𝑡 and 𝜌 are body force, displacement component, time and mass density, respectively. 
Nonlocal constitutive relation is expressed as 

 

(3)
 

where 𝛤 is the derivative operator. Therefore, the equation of motion can be written as follows. 
 (𝐶௜௝௞௟𝜀௞௟) + 𝛤(𝑓௜ − 𝜌 𝑑ଶ𝑢௜𝑑𝑡ଶ ) = 0 (4)
 
Eq. (4) is a partial differential equation which is a simple form of partial integral equations, so, 

this form is used in nonlocal theory of elasticity. 
In two-dimensional problems, we have 
 

(5)
 

Where 
 

(6)
 

where 
 

(7)
 𝛻ଶ is the Laplacian operator, 𝑘଴ is Bessel function, 𝑎଴ and 𝐿 are the internal and external 

characteristic lengths, respectively, and 𝜇 = (𝑒଴𝑎଴)ଶ is given where 𝑒଴ is estimated by the models 
of elasticity theory. 

Using Eqs. (3) to (7), the differential form of the nonlocal elasticity takes the form 
 

(8)

 
which finally leads to the following expression (Analooei et al. 2013, Bouadi et al. 2018) 

 

(9)
 (1 − (𝑒଴𝑎଴)ଶ𝛻ଶ)𝜎௜௝ = 𝜎௅ (10)
 
 

3. Equilibrium equation 
 
Assuming a thin orthotropic rectangular plate with length of 𝑎, width of 𝑏, thickness of ℎ, and 

vertical load of 𝑝(𝑥, 𝑦), according to Kirchhoff plate theory, the strain-displacement relationship of 
the plate in Cartesian coordinate system is written as 

 ൝ 𝜀௫𝜀௬𝛾௫௬ൡ = ൝ −𝑧𝑤,௫௫−𝑧𝑤,௬௬−2𝑧𝑤,௫௬ൡ (11)

ij ijkl klCσ εΓ =
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where 𝑤is the vertical displacement of the mid-plate, and z is the axis in the direction of the plate 
thickness. Equations pertaining to an orthotropic plate are 

 ൝ 𝜎௫𝜎௬𝜏௫௬ൡ − (𝑒଴𝑎଴)ଶ𝛻ଶ ൝ 𝜎௫𝜎௬𝜎௫௬ൡ = ቎𝑄ሜଵଵ 𝑄ሜଵଶ 𝑄ሜଵ଺𝑄ሜଵଶ 𝑄ሜଶଶ 𝑄ሜଶ଺𝑄ሜଵ଺ 𝑄ሜଶ଺ 𝑄ሜ଺଺቏ ൝ 𝜀௫𝜀௬𝛾௫௬ൡ (12)

 
where 𝑄ሜఎ(𝑖, 𝑗 = 1,2,6) (Naderi and Baradaran 2013) are 

 

⎩⎪⎪⎨
⎪⎪⎧𝑄ሜଵଵ𝑄ሜଵଶ𝑄ሜଵ଺𝑄ሜଶଶ𝑄ሜଶ଺𝑄ሜ଺଺⎭⎪⎪⎬

⎪⎪⎫ =
⎣⎢⎢
⎢⎢⎢
⎡ 𝑐ସ 2𝑐ଶ𝑠ଶ 𝑠ସ 4𝑐ଶ𝑠ଶ𝑐ଶ𝑠ଶ 𝑐ସ + 𝑠ସ 𝑐ଶ𝑠ଶ −4𝑐ଶ𝑠ଶ𝑐ଷ𝑠 𝑐𝑠ଷ − 𝑐ଷ𝑠 −𝑐𝑠ଷ −2𝑐𝑠(𝑐ଶ − 𝑠ଶ)𝑠ସ 𝑐ଶ𝑠ଶ 𝑐ସ 4𝑐ଶ𝑠ଶ𝑐𝑠ଷ 𝑐ଷ𝑠 − 𝑐𝑠ଷ −𝑐ଷ𝑠 2𝑐𝑠(𝑐ଶ − 𝑠ଶ)𝑐ଶ𝑠ଶ −2𝑐ଶ𝑠ଶ 𝑐ଶ𝑠ଶ (𝑐ଶ − 𝑠ଶ)ଶ ⎦⎥⎥

⎥⎥⎥
⎤ ൞𝑄ଵଵ𝑄ଶଶ𝑄ଵଶ𝑄଺଺ൢ (13)

 
and 𝑠 = 𝑠𝑖𝑛 𝜃 , 𝑐 = 𝑐𝑜𝑠 𝜃  where 𝜃  is the off-axis angle which is 0∘  for armchair graphene 
nanoplates. 𝑄௜௝ can be expressed in terms of engineering constants as 

 𝑄ଵଵ = 𝐸ଵ(1-vଵଶ𝑣ଶଵ),     𝑄ଶଶ = 𝐸ଶ(1-vଵଶ𝑣ଶଵ), 𝑄ଵଶ = 𝑣ଵଶ𝐸ଵ(1-vଵଶ𝑣ଶଵ), 𝑄଺଺ = 𝐺ଵଶ (14)
 𝐺ଵଶ, 𝜐ଵଶ, 𝐸ଵ, 𝐸ଶ are respectively shear modulus, Poisson’s ratio, modulus of elasticity in the 

directions of x and y. Using the principle of virtual work, the plate equilibrium equation is obtained 
as 𝜕ଶ𝑀௫𝜕𝑥ଶ + 2 𝜕ଶ𝑀௫௬𝜕𝑥𝜕𝑦 + 𝜕ଶ𝑀௬𝜕𝑦ଶ + 𝑝(𝑥, 𝑦) = 𝜌ℎ𝑤ሷ − 𝜌ℎଷ12 (𝑤ሷ ,௫௫ + 𝑤ሷ ,௬௬) (15)

 𝑤ሷ  is the second derivative with respect to time. 
Here, nonlocal moments 𝑀௫, 𝑀௬, and 𝑀௫௬ are satisfying 
 ቐ 𝑀௫𝑀௬𝑀௫௬ቑ − (𝑒଴𝑎଴)ଶ𝛻ଶ ቐ 𝑀௫𝑀௬𝑀௫௬ቑ = ቐ 𝑀௫௅𝑀௬௅𝑀௫௬௅ ቑ (16)

 
where 𝑀௫௅, 𝑀௬௅, and 𝑀௫௬௅  are the results of local moments and are defined as 

 ቐ 𝑀௫௅𝑀௬௅𝑀௫௬௅ ቑ = ൥𝐷ଵଵ 𝐷ଵଶ 𝐷ଵ଺𝐷ଵଶ 𝐷ଶଶ 𝐷ଶ଺𝐷ଵ଺ 𝐷ଶ଺ 𝐷଺଺൩ ቐ𝑊,௫௫𝑊,௬௬𝑊,௫௬ቑ (17)

 

where 𝐷௜௝ = ׬ 𝑧ଶ𝑄ሜ௜௝𝑑𝑧(𝑖, 𝑗 = 1,2,6)ℎ/ଶିℎ/ଶ . 
Using Eqs. (15)-(16), we have 
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Fig. 1 Different boundary conditions of graphene nanoplates
 
 𝜕ଶ𝑀௫௅𝜕𝑥ଶ + 2 𝜕ଶ𝑀௫௬௅𝜕𝑥𝜕𝑦 + 𝜕ଶ𝑀௬௅𝜕𝑦ଶ =(1 − (𝑒଴𝑎଴)ଶ𝛻ଶ) ቈ−𝑝(𝑥, 𝑦, 𝑡) + 𝜌ℎ𝑤ሷ − 𝜌ℎଷ12 (𝜕ଶ𝑤ሷ𝜕𝑥ଶ + 𝜕ଶ𝑤ሷ𝜕𝑦ଶ )቉ 

(18)

 

Assuming small displacements, according to Kirchhoff’s plate theory, డమ௪ሷడ௫మ  , డమ௪ሷడ௬మ   and higher 
order derivatives can be ignored (Love 1888), and Eq. (18) is rewritten as 𝜕ଶ𝑀௫௅𝜕𝑥ଶ + 2 𝜕ଶ𝑀௫௬௅𝜕𝑥𝜕𝑦 + 𝜕ଶ𝑀௬௅𝜕𝑦ଶ = (1 − (𝑒଴𝑎଴)ଶ𝛻ଶ)[−𝑝(𝑥, 𝑦, 𝑡)] + 𝜌ℎ𝑤ሷ  (19)

 
Boundary conditions on each side of the plate are expressed as 
 𝑆𝑖𝑚𝑝𝑙𝑦 𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑒𝑑 ∶ 𝑊 = 𝑀௡ = 0𝐶𝑙𝑎𝑚𝑝𝑒𝑑 𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑒𝑑 ∶ 𝑊 = 𝑊,௡ = 0 (20)

 
Here, 𝑛 is the normal vector in boundary (Lu et al. 2007). 
So, for dynamic analysis of plates with various boundary conditions, using DLSM (Discrete least 

squares meshless) method, Eq. (17) and Eq. (19) will be solved by combining the boundary 
conditions (20) according to Fig. 1. 

 
 

4. Moving Least Square (MLS) shape functions 
 
In discrete least squares meshless method, these functions are produced using MLS. 

Approximation using MLS has two prominent features causing its popularity: (1) the approximate 
field function is continuous and soft in the whole range of the problem; and (2) it has the ability to 
approximate with an arbitrary order of adaptation (GR 2003) where 𝜙(𝑋)  is the approximated 
function at point 𝑋 = [𝑥, 𝑦] 
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𝜙(𝑋) = ෍ 𝑝௜(𝑋)𝑎௜(𝑋)௠௣
௜ୀଵ = 𝑃்(𝑋)𝑎(𝑋) (21)

 𝑝௜( 𝑋) is the vector of polynomial basic functions, and 𝑚𝑝 is the number of terms in the basic 
functions, and 𝑎(𝑋) is the vector of coefficients. First and second order polynomial basic functions 
in one-dimensional and two-dimensional modes are as follows: the first order basic function in one-
dimensional mode is 𝑃் = [1 𝑥], the first order basic function in two-dimensional mode is 𝑃் =[1 𝑥 𝑦], the second order basic function in one-dimensional mode is 𝑃் = [1 𝑥 𝑥ଶ], and the 
second order basic function in two-dimensional mode is 𝑃் = [1 𝑥 𝑦 𝑥ଶ 𝑥𝑦 𝑦ଶ], in which 𝑥 and 𝑦 indicate the first and second components of the spatial coordinates, respectively. It should 
be noted that 𝑎(𝑋) in Eq. (21) is a function of 𝑋 and is obtained using minimization of function 𝐽(𝑋), which has been shown as 

 𝐽(𝑋) = ෍ 𝑤(𝑋 − 𝑋௝)(௡
௝ୀଵ 𝑃்(𝑋௝)𝑎(𝑋) − 𝜙௝ℎ)ଶ (22)

 𝑤(𝑋 − 𝑋௝) is the weight function, which is of the characteristics of the meshless method. Cubic 
spline weight function has been used here 

 𝑤(𝑋 − 𝑋௝) = 𝑤(𝑑ሜ) = ቐ 2/3 − 4𝑑ሜଶ + 4𝑑ሜଷ 𝑑ሜ ≤ 1/24/3 − 4𝑑ሜ + 4𝑑ሜଶ − 4/3𝑑ሜଷ 1/2 ≤ 𝑑ሜ ≤ 10 𝑑ሜ > 1  (23)

 𝑑ሜ = ห𝑋 − 𝑋௝ห/𝑑𝑤௝  and 𝑑𝑤௝  are the radius of the impact of point 𝑋௝ . Minimizing the 𝐽 
function, we have 

 𝜙(𝑋) = 𝑃்(𝑋)𝐴ିଵ(𝑋)𝐵(𝑋)𝜑ℎ (24)
 

where 𝜑௛ is the nodal parameters vector, and 𝐴(𝑋),𝐵(𝑋) is as follows 
 𝐴(𝑋) = ෍ 𝑤(𝑋 − 𝑋௝)௡

௝ୀଵ 𝑃(𝑋௝)𝑃்(𝑋௝) (25)

 𝐵(𝑋) = [𝑤(𝑋 − 𝑋ଵ)𝑃(𝑋ଵ),𝑤(𝑋 − 𝑋ଶ)𝑃(𝑋ଶ), . . . , 𝑤(𝑋 − 𝑋௡)𝑃(𝑋௡)] (26)
 
According to Eq. (24), it can be written as follows 
 𝜙(𝑋) = 𝑁்(𝑋)𝜑ℎ (27)
 𝑁்(𝑋) = 𝑃்(𝑋)𝐴ିଵ(𝑋)𝐵(𝑋) (28)
 
Where, 𝑁்(𝑋) represents the nodal shape function vector at point 𝑋, which is called the MLS 

shape function. 
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5. Discrete least squares meshless (DLSM) method 
 
To provide a method of DLSM, the general form of the following differential equations is used 

to create the system of discrete equations. Partial differential equations and their boundary 
conditions are written as follows 

 
ℑ(𝜙) + 𝑓 = 0 𝑖𝑛 𝛺 (29)

 𝜙 − 𝜙ሜ = 0 𝑖𝑛 𝛤ଶ (30)
 

ℵ(𝜙) + 𝑡̄ = 0 𝑖𝑛 𝛤ଵ (31)
 𝛺  is the problem domain, 𝛤ଵ  and 𝛤ଶ  are Dirichlet and Neumann boundary conditions, 

respectively, ℑ and ℵare partial differential operators, 𝑓shows the external forces or the source 
term in the problem domain. The residue of the differential equation at a regular point of 𝐾 is as 
follows 𝑅ఆ(𝑋௞) = ℑ(𝜙(𝑋௞)) + 𝑓(𝑋௞) = ෍ ℑ(𝑁௝(𝑋௞))𝜙௝ + 𝑓௡

௝ୀଵ (𝑋௞) (32)

 𝐾 = 1, . . . , 𝑚 (33)
 
The residue of Neumann boundary conditions at a regular point of 𝐾 can be written as follows 
 𝑅ଵ(𝑋௞) = ℵ(𝜙) − 𝑡̄(𝑋௞) = ෍ℵ(𝑁௝(𝑋௞))𝜙௝ − 𝑡̄(𝑋௞)௡

௝ୀଵ  (34)

 𝐾 = 1, . . . , 𝑚ଵ (35)
 

and finally, the residue of Dirichlet boundary conditions at a regular point of 𝐾 can be expressed 
as 𝑅ଶ(𝑋௞) = 𝜙 − 𝜙ሜ (𝑋௞) = ෍ 𝑁௝(𝑋௞)𝜙௝ − 𝜙ሜ (𝑋௞)௡

௝ୀଵ  (36)

 𝐾 = 1, . . . , 𝑚ଶ (37)
 
n is the number of nodal points, m is the number of sampling points in the domain, while m1 and 

m2 represent the number of sample points chosen on Dirichlet and Neumann boundaries. m1 and m2 
are typically independent of the number of sample points of m. However, the higher number of these 
sample points, creates a better match to satisfy the boundary conditions. A penalty method is used 
in order to create the whole residue of the problem as follows (Firoozjaee and Afshar 2009, Ebrahimi 
and Firoozjaee 2020) 
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𝐼 = ෍ 𝑅ఆଶ௠
௞ୀଵ (𝑋௞) + 𝛼ଵ ෍ 𝑅ଵଶ௠భ

௞ୀଵ (𝑋௞) + 𝛼ଶ ෍ 𝑅ଶଶ௠మ
௞ୀଵ (𝑋௞) (38)

 
Where 𝛼ଵ  and 𝛼ଶ  are the penalty coefficients for the Dirichlet and Neumann boundaries, 

respectively. Combining the above relations, the following relation is obtained 
 𝐼 = ෍ ቌ෍ℑ(𝑁௝(𝑋௞))𝜙௝ + 𝑓௡

௝ୀଵ (𝑋௞)ቍଶ௠
௞ୀଵ + 𝛼ଵ ෍ ቌ෍ℵ(𝑁௝(𝑋௞))𝜙௝ − 𝑡̄(𝑋௞)௡

௝ୀଵ ቍ௠భ
௞ୀଵ

ଶ 
       +𝛼ଶ ෍ ቌ෍ 𝑁௝(𝑋௞)𝜙௝ − 𝜙ሜ (𝑋௞)௡

௝ୀଵ ቍ௠మ
௞ୀଵ

ଶ
 

(39)

 
Minimizing the function (39), and taking into account the nodal parameters of (𝜙௝, 𝑗 =1,2,3, . . . , 𝑛), and substituting in the Eq. (40), Eq. (41) and Eq. (42) are obtained. 
 𝑘𝜙 = 𝐹 (40)
 𝑘௜௝ = ෍ ℑ(𝑁௜(𝑋௞))௠

௞ୀଵ ℑ(𝑁௝(𝑋௞)) + 𝛼ଵ ෍ ℵ(𝑁௜(𝑋௞))௠భ
௞ୀଵ ℵ(𝑁௝(𝑋௞)) 

+𝛼ଶ ෍ 𝑁௜(𝑋௞)𝑁௝(𝑋௞)௠మ
௞ୀଵ  

(41)

 𝐹௜ = − ෍ ℑ(𝑁௜(𝑋௞))௠
௞ୀଵ 𝑓(𝑋௞) + 𝛼ଵ ෍ ℵ(𝑁௜(𝑋௞))𝑡̄(𝑋௞)௠భ

௞ୀଵ + 𝛼ଶ ෍ 𝑁௜(𝑋௞)௠మ
௞ୀଵ 𝜙ሜ (𝑋௞) (42)

 
The stiffness matrix of 𝑘 is symmetric and can be easily used to solve the problem (Firoozjaee 

and Afshar 2009, Ebrahimi and Firoozjaee 2020). 
Now, the mass matrix is obtained using the following equation (GR 2003) 
 𝑀𝑀௜௝ = න (𝜌𝑁௜(𝑋௞)𝑁௝(𝑋௞)ℎ+஺௥ 𝑁௜,௫(𝑋௞)𝑁௝,௫(𝑋௞)𝜛 + 𝑁௜,௬(𝑋௞)𝑁௝,௬(𝑋௞)𝜛)𝑑𝐴௣ (43)

 
where 𝐴௣ is the plate surface area, and 𝜛 is as 

 𝜛 = 𝜌ℎଷ12  (44)

 
and using mass and stiffness matrices regardless of damping, and employing the Newmark method, 
we have addressed the dynamic analysis of graphene nanoplates using the DLSM method. 
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6. Dynamic analysis of graphene nanoplate under static loading 
 
In this section, the meshless DLSM method is implemented for dynamic analysis of single-layer 

rectangular armchair graphene nanoplates with various boundary conditions under static loading. 
The exact analytical deflection of a thin graphene plate with dimensions of a and b and thickness of 
h under static loading is compared with the deflections from DLSM numerical method. Comparison 
revealed reliable results for DLSM method of the dynamic analysis. 

Let 𝑝(𝑥, 𝑦, 𝑡) = 𝑝ఒఓ 𝑠𝑖𝑛( 𝜁ఒ𝑥) 𝑠𝑖𝑛( 𝜂ఓ𝑦) (45)
 

where, 𝜁ఒ = 𝜋/𝑎 and 𝜂ఓ = 𝜋/𝑏. 
As given in Eq. (45), the loading on the structure is of trigonometric type. This type of loading 

which is frequently used in dynamic analysis of structures, can be employed for defining any 
arbitrary loading pattern. Any arbitrary loading can be expressed in terms of Fourier expressions. 
Thus, the selected type of loading is of general type and application. 

For a simply supported nanoplate, the accurate deflection equation is obtained using Eqs. (17)-
(18) with respect to the static equations (𝑤ሷ = 0) as follows (Naderi and Baradaran 2013) 

  𝑤௘௫௔௖௧(𝑥, 𝑦) = (1 + (𝑒଴𝑎଴)ଶ(𝜁ఒଶ + 𝜂ఓଶ))(𝐷ଵଵ𝜁ఒସ + 2(𝐷ଵଶ + 2𝐷଺଺)𝜁ఒଶ𝜂ఓଶ + 𝐷ଶଶ𝜂ఓସ × 𝑃ఒఓ 𝑠𝑖𝑛( 𝜁ఒ𝑥) 𝑠𝑖𝑛( 𝜂ఓ𝑦) (46)
 
Specifications necessary to solve the problem of single-layer rectangular armchair graphene 

nanoplate dynamically and statically under static loading (45) with various boundary conditions, are: 
(Naderi and Baradaran 2013) 

 𝑎 = 9.519𝑛𝑚,          𝑏 = 4.844𝑛𝑚,          ℎ = 0.129𝑛𝑚 𝑒଴𝑎଴ = 0.67𝑛𝑚,      𝐸ଵ = 2434𝐺𝑃𝑎,       𝐸ଶ = 2473𝐺𝑃𝑎 𝜐ଵଶ = 0.197,            𝐺ଵଶ = 1039𝐺𝑃𝑎,       𝜌 = 6316 𝑘𝑔𝑚ଷ 
 

The output results are provided in Table 1 using the Eq. (46) and DLSM method. Here S is the 
number of sampling points between each two main nodes and 𝑁𝑥 and 𝑁𝑦 are the number of main 
nodes in the direction of x and y coordinates 

 
 

Table 1 Static analysis of the central node deflection in exact and approximate responses with different 
boundary conditions 

Boundary 
conditions 

𝒘𝒆𝒙𝒂𝒄𝒕 (𝒂/𝟐, 𝒃/𝟐), 𝒏𝒎 
(Naderi and 
Baradaran 
2013) 

(𝑒଴𝑎଴ = 0.67𝑛𝑚,𝑁𝑥 = 𝑁𝑦 = 31, 𝑆 = 3) 
EFG 

(Naderi and 
Baradaran 

2013) 𝒘(𝒂/𝟐,𝒃/𝟐), 𝒏𝒎
Error analysis 

𝛼ଵ 𝛼ଶ 
DLSM 𝒘(𝒂/𝟐, 𝒃/𝟐),𝒏𝒎 

ቤ𝑊஽௅ௌெ − 𝑊௘௫௔௖௧𝑊஽௅ௌெ ቤ ฬ𝑊஽௅ௌெ − 𝑊ாிீ𝑊஽௅ௌெ ฬ
SSSS −9.5914 10଻ 10଴ −9.5338 −9.8817 0.006 0.036 
CCCC - 10ଵସ 10ଵସ −2.7227 −2.9229 - 0.074 
CCSS - 10ଵ଴ 10ଵ଴ −8.0697 −8.5005 - 0.053 
SSCC - 10ଵଵ 10ଵଵ −2.5993 −2.9831 - 0.148 
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Fig. 2 Regular distribution of sampling points
 
 
 

Fig. 3 Regular distribution of nodal points
 
 
 

 
Fig. 4 Evaluation of the effect of increased number of nodal points on deflection of graphene nanoplates 

with SSSS boundary conditions (𝑒଴𝑎଴ = 0.67𝑛𝑚, 𝑆 = 3, 𝛼ଵ = 10଻, 𝛼ଶ = 10଴, 𝑑𝑡 = 1𝑛𝑠) 
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Fig. 5 Evaluation of the effect of increased number of sample points on deflection-time graphe of 

graphene nanoplates with SSSS boundary conditions (𝑒଴𝑎଴ = 0.67𝑛𝑚, 𝑁௫ = 𝑁௬ = 31,𝛼ଵ = 10଻, 𝛼ଶ = 10଴, 𝑑𝑡 = 1𝑛𝑠)
 
 
Figs. 2 and 3 respectively indicate the sampling points and nodal points spread on a regular basis 

in the rectangular computational domain. A regular grid of sampling points is used to analyze the 
problem. 

Also, the output results of dynamic analysis of nanoplates with the aforementioned characteristics 
are presented graphically. Fig. 4 shows the deflection-time graph, in which increased nodal points 
of the graph with fixed sampling points, deflection values approach the exact solution but with 
further increase in these points, the responses approach the more accurate response, and that is why 
the number of suitable nodal points for solution is 𝑁𝑥 = 𝑁𝑦 = 31, because with these nodal points, 
deflection value with SSSS boundary conditions converge to the deflection value exact solution. It 
should be noted that 𝑑𝑡 is indicative of the time step for dynamic solution of graphene nanoplates. 

Fig. 5 shows the effect of increased sampling points with fixed node points on the deflection-
time graph with SSSS boundary conditions, in which the rate of approaching more accurate results 
increases by increasing the sampling points. 

 
 

 
Fig. 6 Effect of increasing the nonlocal factor 𝑒଴𝑎଴ on deflection of graphene nanoplates with SSSS 

boundary conditions (𝑁௫ = 𝑁௬ = 31, 𝑆 = 3, 𝛼ଵ = 10଻, 𝛼ଶ = 10଴, 𝑑𝑡 = 1𝑛𝑠) 
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Fig. 7 Comparison of increased nanoplate thickness on deflection-time graph of the nanoplates with SSSS 

boundary conditions (𝑒଴𝑎଴ = 0.67𝑛𝑚, 𝑁௫ = 𝑁௬ = 31, 𝑆 = 3, 𝛼ଵ = 10଻, 𝛼ଶ = 10଴, 𝑑𝑡 = 1𝑛𝑠) 
 
 

 
Fig. 8 Effect of increased nanoplate density on deflection-time graph for SSSS boundary conditions (𝑒଴𝑎଴ = 0.67𝑛𝑚, 𝑁௫ = 𝑁௬ = 31, 𝑆 = 3, 𝛼ଵ = 10଻, 𝛼ଶ = 10଴, 𝑑𝑡 = 1𝑛𝑠) 

 
 
Fig. 6 shows the effects of nonlocal factors on the deflection-time graph, in which the deflection 

increases by increasing the nonlocal coefficient. Increasing the effect of nonlocal coefficients in 
nano problems has had a significant impact on the deflection-time graph. While in the macro 
problems, due to insignificance of these nonlocal effects on the responses, the coefficients are 
ignored. 

According to Fig. 7, assuming that all the specifications of graphene nanoplate are constant, only 
its thickness increase will cause the final deflection to be drastically reduced. 

In Fig. 8, increasing the nanoplates density, the amount of deflection has not changed, but its 
oscillation has been increased. 

Figs. 9 to 11 show the stress-time and deflection-time graphs for dynamic analysis of graphene 
nanoplates with various specifications and different boundary conditions with static loading, solved 
by DLSM method. 
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(I)

 

 
(II)

Fig. 9 (I) Stress-time graph and (II) deflection-time graph of the middle point of the graphene nanoplates 
with CCCC boundary conditions (𝑒଴𝑎଴ = 0.67𝑛𝑚, 𝑁௫ = 𝑁௬ = 31, 𝑆 = 3, 𝛼ଵ = 10ଵସ, 𝛼ଶ = 10ଵସ,𝑑𝑡 = 1𝑛𝑠) 

 
 

 
(I)

Fig. 10 (I) Stress-time graph and (II) deflection-time graph of the middle point of the graphene nanoplates
with CCSS boundary conditions (𝒆𝟎𝒂𝟎 = 𝟎. 𝟔𝟕𝒏𝒎, 𝑵𝒙 = 𝑵𝒚 = 𝟑𝟏, 𝑺 = 𝟑, 𝜶𝟏 = 𝟏𝟎𝟏𝟎, 𝜶𝟐 =𝟏𝟎𝟏𝟎, 𝒅𝒕 = 𝟏𝒏𝒔) 
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(II)

Fig. 10 Continued
 
 

 
(I)

 

 
(II)

Fig. 11 (I) Stress-time graph and (II) deflection-time graph of the middle point of the graphene nanoplates 
with SSCC boundary conditions (𝑒଴𝑎଴ = 0.67𝑛𝑚, 𝑁௫ = 𝑁௬ = 31, 𝑆 = 3, 𝛼ଵ = 10ଵଵ, 𝛼ଶ = 10ଵଵ,𝑑𝑡 = 1𝑛𝑠) 
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7. Dynamic analysis of graphene nanoplate under dynamic loading 
 
In this section, the DLSM method is implemented for dynamic analysis of armchair single-layer 

rectangular graphene nanoplates with simply and clamped boundary conditions with dynamic 
loading ൝𝑝(𝑥, 𝑦, 𝑡) = 𝑝ఒఓ 𝑠𝑖𝑛( 𝜁ఒ𝑥) 𝑠𝑖𝑛( 𝜂ఓ𝑦) 𝑠𝑖𝑛( 𝑡𝜋60) 𝑡 ≤ 600 𝑡 > 60 (47)

 
where, t is time and its unit is picosecond (ps), 𝜁ఒ = 𝜋/𝑎, 𝜂ఓ = 𝜋/𝑏and 𝑝ఒఓ = 1𝑛𝑁/𝑛𝑚ଶ. 

Specifications necessary to solve the problem of armchair single-layer rectangular graphene 
nanoplates dynamically under dynamic loading with SSSS and CCCC boundary conditions, are 

 
 

 
Fig. 12 Evaluation of the effect of time step(dt) on deflection-time graph of graphene nanoplates with SSSS 

boundary conditions (𝑒଴𝑎଴ = 0.67𝑛𝑚, 𝑁௫ = 𝑁௬ = 31, 𝛼ଵ = 10଻, 𝛼ଶ = 10଴, 𝑑𝑡 = 0.001𝑛𝑠) 
 
 

 
Fig. 13 Effect of increasing the nonlocal factor 𝑒଴𝑎଴ on deflection of graphene nanoplates with SSSS 

boundary conditions (𝑁௫ = 𝑁௬ = 31, 𝛼ଵ = 10଻, 𝛼ଶ = 10଴, 𝑑𝑡 = 0.001𝑛𝑠) 
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Fig. 14 Effect of increasing the nonlocal factor 𝑒଴𝑎଴ on deflection of graphene nanoplates with CCCC 

boundary conditions (𝑁௫ = 𝑁௬ = 31, 𝛼ଵ = 10ଵସ, 𝛼ଶ = 10ଵସ, 𝑑𝑡 = 0.001𝑛𝑠) 
 
 𝑎 = 9.519𝑛𝑚,           𝑏 = 4.844𝑛𝑚,            ℎ = 0.129𝑛𝑚 𝑒଴𝑎଴ = 0.67𝑛𝑚,       𝐸ଵ = 2434𝐺𝑃𝑎,         𝐸ଶ = 2473𝐺𝑃𝑎 𝜐ଵଶ = 0.197,             𝐺ଵଶ = 1039𝐺𝑃𝑎,       𝜌 = 6316 𝑘𝑔𝑚ଷ 
 
The output results using the DLSM method are depicted in Figs. 12 to 14. According to Fig. 12, 

the best time step is dt = 0.001 ns; for smaller steps, results change negligibly. So according to this 
time step, and with SSSS and CCCC boundary conditions, the results were obtained. 

Figs. 13 and 14 show the effects of nonlocal factors on the deflection-time graph. These effects 
include increased amplitude in the forced and free vibration. 

 
 

8. Conclusions 
 
According to the results extracted, the meshless DLSM method is an appropriate method to solve 

the dynamic problems at nano dimensions. Also, there is no need for integration to solve the 
problems, and it provides fairly accurate solution to all boundary conditions mentioned in the article. 
In addition, the increased nonlocal coefficient increases the deflection, and higher nonlocal 
coefficient leads to higher deflection intensity and amplitude vibration. Therefore, these factors are 
introduced in differential equations in nanoscale problems, while in the macro-scale problems, the 
impact of these factors are not significant, because they do not have considerable effect on the 
problem solutions. Increasing the thickness of nanoplates reduces deflection, and the rate of final 
deflection reduction is also increased, and an increase in the density of the nanoplates increases 
vibration, but does not make a difference in its deflection. Moreover, increased number of sampling 
points and nodes makes the nanoplates deflection closer to its real value, but if the number of points 
is more than a certain value, it approaches less to the exact response. 
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