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Abstract. Results of isothermal torsional oscillation tests are reported on melts of linear low density
polyethylene and isotactic polypropylene. Prior to rheological tests, specimens were annealed at various
temperatures ranging from T

a
 = 180 to 310oC for various amounts of time (from 30 to 120 min). Thermal

treatment induced degradation of the melts and caused pronounced decreases in their molecular weights.
With reference to the concept of transient networks, constitutive equations are developed for the viscoelastic
response of polymer melts. A melt is treated as an equivalent network of strands bridged by junctions
(entanglements and physical cross-links). The time-dependent response of the network is modelled as
separation of active strands from and merging of dangling strands with temporary nodes. The stress-strain
relations involve three adjustable parameters (the instantaneous shear modulus, the average activation energy
for detachment of active strands, and the standard deviation of activation energies) that are determined by
matching the dependencies of storage and loss moduli on frequency of oscillations. Good agreement is
demonstrated between the experimental data and the results of numerical simulation. The study focuses on
the effect of molecular weight of polymer melts on the material constants in the constitutive equations.

Keywords: thermal properties; isotactic polypropylene; linear low-density polyethylene; molecular
weight; viscoelasticity; thermal degradation 

1. Introduction

This paper is concerned with the effects of the mass-average molecular weight and the

microstructure of chains on the viscoelastic behavior of polyolefins in conventional shear oscillation

tests. The choice of iPP for the experimental analysis is explained by numerous industrial

applications of this semicrystalline polymer (oriented films for packaging, reinforcing fibres, non-

woven fabrics, pipes, etc.).

The experimental part focuses on the response of injection-molded isotactic polypropylene (iPP)

and linear low-density polyethylene (LLDPE). The choice of these polymers for the investigation is

explained by (1) their numerous industrial applications and (2) the variety of their molecular

architectures (corresponding to the same structure of backbones), ranging from highly branched

chains with helix conformation in iPP to linear chains with short branches and planar conformation

in LLDPE (Kim 2000). The difference in the chain structure of these polyolefins is reflected by the
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difference in their crystalline morphology below the melting temperature. Crystalline phase in

isotactic polypropylene contains mainly monoclinic polymorphs and “smectic” mesophase (Lijima

2000), whereas crystalline regions in linear low-density polyethylene are formed by orthorhombic

crystallites. A unique feature of iPP is the lamellar cross-hatching: development of transverse

lamellae oriented in the direction perpendicular to the direction of radial lamellae (Lijima 2000),

while the characteristic feature of LLDPE is that the average size of lamellae and their curvature are

strongly affected by molecular weight and the degree of branching of chains (Matsuda 2001).

The effect of molecular weight and chain structure on the crystalline morphology and thermal and

rheological properties of polyolefins has attracted substantial attention in the past decade. It was

demonstrated that branching of chains (1) results in reductions in the glass transition Tg and melting

Tm temperatures (Mäder 2000), (2) implies a growth of free-volume holes and a decrease in the

density of packing of chains (Dlubek 2002) and (3) increases the melt viscosity, storage modulus,

strength of polymer melts (Gao 2002), and the activation energy for thermo-activated processes

(Combs 1969). An increase in the molecular weight results in the growth of melting temperature

(Tiemblo 2002), a decrease in the degree of crystallinity, an increase in the yield stress and brittle-

ductile transition in the fracture mode (Pérez 2003).

The influence of molecular weight on the time-dependent behavior of polymer melts in

conventional shear oscillation tests has been investigated in (Barakos 1996, Wang 1996, Carrot

1996, Berzin 2001, Fujiyama 2002, Drozdov 2005). It was found that the growth of mass-average

molecular weight induces (1) an increase in storage and loss moduli (Carrot 1996, Berzin 2001,

Drozdov 2005), (2) a pronounced growth of the average relaxation time (Berzin 2001), an increase

in the crossover frequency (the frequency at which storage and loss moduli coincide) (Baraos 1996),

a reduction in the critical shear rate (Combs 1969), and the growth of the first normal difference of

stresses (Baraos 1996).

Five approaches are conventionally employed for the modification of polymer melts: (1) oxidative

degradation with peroxide (Baraos 1996, Wang 1996, Carrot 1996, Berzin 2001), (2) radiative

degradation that causes cross-linking of chains and formation of a network structure (Gao 2002), (3)

mechanical degradation by severe shear flow that induces disentanglement of chains (Van 1994, Kim

1998), (4) controlled metallocene catalysis (Eckstein 1997, Fujiyama 2002) and (5) addition of small

amounts of chains with high molecular weight to a low-molecular-weight melt (Sugimoto 2001). In

this study, we use thermal degradation of melts (annealing at elevated temperatures) as a means for

changes in molecular weight. This method does not require special equipment (like controlled

polymerization and radiative degradation), but ensures a noticeable decrease in the molecular weight

(unlike mechanical degradation, which preserves the distribution of molecular weights practically

unchanged (Prooyen 1994)). An advantage of thermal degradation compared to chemical modification

with peroxide is that the evolution of molecular weight occurs relatively slowly (with the characteristic

time of tens of minutes versus seconds), which implies that the kinetics of degradation can be studied

in detail. However, we do not dwell on this issue in the present work: the kinetics of thermal and

thermo-oxidative degradation have been recently studied in (Fayolle 2002, Gao 2003) for

polypropylene and in (Rangarajan 1998, Kumar 2002) for polyethylene. 

The objective of this study is three-fold: (1) to report experimental data in torsional oscillation tests

on LLDPE and iPP annealed at various temperatures Ta for various amounts of time ta, (2) to develop

constitutive equations for the viscoelastic response of a polymer melt and to find material constants

in the stress-strain relations by fitting the observations and (3) to compare the effects of molecular

weight on the adjustable parameters for two polyolefins with different architectures of chains. 
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To make the model tractable from the mathematical standpoint, we adopt the homogenization

hypothesis. According to it, a complicated micro-structure of a polymer melt is replaced by an

equivalent phase, whose response captures essential features of the mechanical behavior. With

reference to (Green 1946, Yamamoto 1956, Lodge 1968, Tanaka 1992), a transient network of

strands bridged by temporary junctions (entanglements and physical cross-links) is chosen as the

equivalent phase. According to the concept of transient networks, active strands separate from

their junctions at random times being excited by thermal fluctuations, and dangling strands merge

with the network. Following (Drozdov 2003), we assume the network to be strongly

heterogeneous in the sense that different junctions have different activation energies for

detachment of strands. The concept of temporary networks was employed to describe the time-

dependent behavior of polypropylene in (Drozdov 2003, Sweeney 1999) and that of polyethylene

in (Drozdov 2003). The previous studies did not, however, pay much attention to the effect of

molecular weight on material parameters in the constitutive equations. The aim of this work is to

evaluate the influence of mass-average molecular weight on (1) the concentration of active

strands in an equivalent network and (2) the distribution function for temporary junctions with

various activation energies. 

The exposition is organized as follows. First, experimental data in torsional oscillation tests are

reported on annealed specimens, and their mass-average molecular weights are determined by using

observations for complex viscosity. We proceed with the derivation of stress-strain relations for an

heterogeneous transient network at three-dimensional deformations with small strains. The

constitutive equations involve three material constants that are found by matching the data for the

storage and loss moduli as functions of the frequency of oscillations. Finally, we establish

correlations between the adjustable parameters in the stress-strain relations and mass average

molecular weights of the melts and discuss the physical meaning of these relationships. 

2. Experimental procedure 

Linear low-density polyethylene Petrothene GA 584 (density 0.929 g/cm3, melt flow rate 105 g/

10 min) was supplied by Equistar Chemicals. Isotactic polypropylene PP 1012 (density 0.906 g/cm3,

melt flow rate 1.2 g/10 min) was purchased from BP Amoco Polymers, Inc. 

Granules were dried overnight at the temperature T = 100oC. Circular plates with diameter 64 mm

and thickness 3 mm were molded in injection-molding machine Battenfeld 1000/315 CDC

(Battenfeld). Circular specimens for rheological tests (with diameter 30 mm) were cut from the plates. 

To evaluate the melting temperature Tm, DSC (differential scanning calorimetry) measurements

were performed by using DSC 910S apparatus (TA Instruments). The calorimeter was calibrated

with indium as a standard. Two specimens of each polyolefin with weights of approximately 15 mg

were tested with a heating rate of 10 K/min from room temperature to 200oC under nitrogen. The

melting temperatures Tm = 131 (LLDPE) and Tm = 172oC (iPP) were determined as the points

corresponding to the peaks on the melting curves. 

Rheological tests were performed by using RMS-800 rheometric mechanical spectrometer with

parallel disks (diameter 25 mm, gap length 2 mm) at the temperatures T = 140 (LLDPE) and T =

230oC (iPP) that exceed the melting temperatures of the polymers under investigation. The shear

storage modulus G', the shear loss modulus G" and the modulus of complex viscosity η were

measured in oscillation tests (the frequency-sweep mode) with the amplitude of 15% and various
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frequencies ω ranging from 1.0 to 100 (LLDPE) and from 0.1 to 100 rad/s (iPP). The choice of the

amplitude of oscillations was driven by the following requirements: (1) mechanical tests were

performed in the region of linear viscoelasticity and (2) the torque was less than its ultimate value

0.2 N.m. The limitation on the minimum frequency of oscillations was imposed by the condition

that the torque exceeded its minimum value 2.0×104 N.m. To check that the storage and loss
moduli were not affected by the strain amplitude, several tests were repeated with the amplitude of

5%; no changes in dynamic moduli were observed. The temperature in the chamber was controlled

with a standard thermocouple that showed that the temperature of specimens remained practically

constant (with the accuracy of ±0.5oC).
Prior to oscillatory tests, LLDPE samples were annealed in the spectrometer at the temperatures

Ta = 180 and 200
oC for ta = 60 min, and at the temperatures Ta = 220, 240 and 260

oC for ta =

30 min. After thermal treatment of each specimen (with the gap length of 3 mm), the temperature

was decreased to the test temperature T = 140oC, the specimen was thermally equilibrated (during

5 min), the gap length was reduced to 2 mm, an extraneous material was carefully removed, and the

storage and loss moduli and the complex viscosity were measured at various frequencies ω starting

from the lowest one. Each test was performed on a new specimen. 

The same procedure of testing was used for iPP samples (with the test temperature T = 230oC)

annealed at Ta = 190
oC for ta = 30, 60, 90 and 120 min and annealed at Ta = 250, 270, 290 and

310oC for ta = 60 min. 

We suppose that squeezing of samples between plates of the spectrometer and removal of the

extraneous material substantially reduced the effect of thermo-oxidative degradation (compared to

that ofthermal degradation) on the mechanical response, because the major part of the material

where oxidative degradation occurred was taken away (about one third of the initial mass of each

specimen). However, we cannot exclude entirely the effect of diffusion of oxygen to the central

Fig. 1 The storage modulus G' versus frequency ω. Circles: experimental data in torsional oscillation tests at
the temperature T = 140oC on LLDPE annealed at temperature T

a
 oC for ta min: Ta = 140, ta = 0; Ta =

180, t
a 
= 60; T

a
 = 200, t

a
 = 60; T

a
 = 220, t

a
 = 30; T

a
 = 240, t

a
 = 30; T

a
 = 260, t

a
 = 30, from top to

bottom, respectively. Solid lines: results on numerical simulation 
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parts of the samples, in particular, at the highest temperatures (Ta = 290 and 310
oC) used in the

experiments (Drozdov 2003). 

The storage G' and loss G" moduli, as well as the modulus of complex viscosity η are depicted

versus the logarithm (log = log10) of frequency ω in Figs. 1 to 3 for LLDPE and in Figs. 4 to 9 for

Fig. 2 The loss modulus G" versus frequency ω. Circles: experimental data in torsional oscillation tests at
the temperature T = 140oC on LLDPE annealed at temperature T

a
 oC for t

a
 min: T

a 
= 140, t

a
 = 0; T

a 
=

180, t
a
 = 60; T

a 
= 200, t

a
 = 60; T

a 
= 220, t

a
 = 30; T

a 
= 240, t

a
 = 30; T

a 
= 260, t

a
 = 30, from top to

bottom, respectively. Solid lines: results on numerical simulation 

Fig. 3 The complex viscosity η versus frequency ω.. Circles: experimental data in torsional oscillation tests
at the temperature T = 140oC on LLDPE annealed at T

a
°C for t

a
 min: T

a 
= 140, t

a
 = 0; T

a 
= 180, t

a
 =

60; T
a 
= 200, t

a
 = 60; T

a 
= 220, t

a
 = 30; T

a 
= 240, t

a
 = 30; T

a 
= 260, t

a
 = 30, from top to bottom,

respectively. Solid lines: results on numerical simulation 
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iPP. Conventional semi-logarithmic plots are used to characterize changes in these quantities with

frequency. 

According to Figs. 1 to 9, the dependencies of storage and loss moduli on frequency of

oscillations have similar shapes for both polymers, whereas the shapes of the graphs η(ω)

substantially differ from each other. Given an annealing time ta and an annealing temperature Ta, the

Fig. 4 The storage modulus G' versus frequency ω. Circles: experimental data in torsional oscillation tests at
the temperature T = 230oC on iPP annealed at T

a 
= 190oC for t

a
 = 0, 30, 60, 90 and 120 min, from top

to bottom, respectively. Solid lines: results on numerical simulation 

Fig. 5 The loss modulus G" versus frequency ω. Circles: experimental data in torsional oscillation tests at
the temperature T = 230oC on iPP annealed at T

a
= 190oC for t

a
 = 0, 30, 60, 90 and 120 min, from top

to bottom, respectively. Solid lines: results on numerical simulation 
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storage modulus G' and the loss modulus G" strongly increase with frequency, whereas the complex

viscosity η slightly decreases with ω for LLDPE and it is strongly reduced for iPP. For a fixed

frequency ω, the dynamic moduli and the modulus of complex viscosity decrease with annealing

temperature Ta and annealing time ta. The reduction in G' and G" is quite comparable for LLDPE,

whereas the relative decrease in G' substantially exceeds that in G" for iPP. 

Fig. 6 The complex viscosity η versus frequency ω. Circles: experimental data in torsional oscillation tests at
the temperature T = 230oC on iPP annealed at T

a
= 190oC for t

a
 = 0, 30, 60, 90 and 120 min, from top

to bottom, respectively. Solid lines: results on numerical simulation 

Fig. 7 The storage modulus G' versus frequency ω. Circles: experimental data in torsional oscillation tests at
the temperature T = 230oC on iPP annealed for t

a
 = 60 min at T

a
= 250, 270, 290 and 310oC, from top

to bottom, respectively. Solid lines: results on numerical simulation 
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3. Theory

3.1 Evaluation of molecular weight 

To assess changes in molecular weight induced by thermal degradation of the polymer melts, the

Fig. 8 The loss modulus G" versus frequency ω. Circles: experimental data in torsional oscillation tests at
the temperature T = 230oC on iPP annealed for t

a
 = 60 min at T

a 
= 250, 270, 290 and 310oC, from top

to bottom, respectively. Solid lines: results on numerical simulation 

Fig. 9 The complex viscosity η versus frequency ω. Circles: experimental data in torsional oscillation tests at
the temperature T = 230oC on iPP annealed for t

a
 = 60 min at T

a 
= 250, 270, 290 and 310oC, from top

to bottom, respectively. Solid lines: results on numerical simulation 
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observations for η(ω) depicted in Figs. 3, 6 and 9 are approximated by the Cross model 

. (1)

Here  is the high-frequency complex viscosity,  is the zero-freqency complex viscosity,

, and α and T are adjustable parameters.

Each curve  is fitted separately. To find the constants  and τ in Eq. (1), we fix

some intervals [0, αmax] and [0, τmax], where the “best-fit” parameters α and τ are assumed to be

located, and divide these intervals into J subintervals by the points α(i) = i∆α and τ(j) = j∆τ(i,j = 1,

... ,J-1) with ∆α = αmax / J and ∆τ = τmax/J. For any pair {α(i) , T(j)}, the coefficients  and  in

Eq. (1) are found by the least-squares method from the condition of minimum of the function. 

,

where the sum is calculated over all experimental points  depicted in Figs. 3, 6 and 9,  is

the complex viscosity measured in a test, and  is given by Eq. (1). The “best-fit” parameters α

and τ are determined from the condition of minimum of the function F on the set {α(i), τ(j)}. After finding

the “best-fit” values α(i)and τ(j), this procedure is repeated twice for the new intervals [α(i-1), α(i+1)]

and [τ(j-1), τ(j+1)], to ensure an acceptable accuracy of fitting. Figs. 3, 6 and 9 demonstrate good

agreement between the experimental data and the results of numerical simulation. 

After finding the zero-frequency viscosity η0, the mass-average molecular weight Mw is

determined by the conventional equation (Horrocks 1994)

(2)

where  and  are the zero-frequency viscosity and the mass-average molecular weight of a

reference (not subjected to thermal treatment) specimen. The ratio of mass-average molecular

weights 

is found from Eq. (2) by using the experimental data for η0. This method of determining the ratio of

mass-average molecular weights of polypropylene was previously used in (Sugimoto 2001).

For each annealing time ta and annealing temperature τa, we (1) calculate the material constants α

and τ in Eq. (1) by matching the observations depicted in Figs. 3, 6 and 9, (2) find the ratio of

mass-average molecular weights dw from Eqs. (1) and (2) and (3) plot the adjustable parameters α

and τ versus dw in Figs. 10 to 13. The experimental data for the dimensionless exponent α are

approximated by the linear function.

, (3)

where the coefficients  are found by the least-squares technique. Figs. 10 and 11 show

that Eq. (3) provides reasonable quality of matching the observations. To evaluate the influence of

mass-average molecular weight dw on the exponent α, it is convenient to present Eq. (3) in the form 

,
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where  and . We calculate the coefficient  by using the experimental

data presented in Figs. 10 and 11 and obtain  = 4.41 for LLDPE and  = 1.16 for iPP. This

implies that the influence of molecular weight on α is noticeably more pronounced for linear low-

density polyethylene than for isotactic polypropylene. 

The experimental data for the characteristic time τ are fitted by the phenomenological relation

α0 α * 1 z
α

+( )= α1 α *zα= z
α

z
α

z
α

Fig. 10 The dimensionless exponent α versus the ratio of mass-average molecular weights d
w
. Circles:

treatment of observations in torsional oscillation tests on LLDPE. Solid line: approximation of the
experimental data by Eq. (3) with α0 = 3.14 and α1 = 2.56 

Fig. 11 The dimensionless exponent α versus the ratio of mass-average molecular weights d
w
. Circles:

treatment of observations in torsional oscillation tests on iPP. Solid line: approximation of the
experimental data by Eq. (3) with α0 = 0.89 and α1 = 0.48 
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, (4)

where the coefficients  are determined by the least-squares method. Figs. 12 and 13

demonstrate that Eq. (4) ensures an acceptable approximation of the observations. These figures

reveal quite a different behavior of τ: It strongly decreases with molecular weight for LLDPE and

τlog τ0 τ1dw+=

τi i 0 1,=( )

Fig. 12 The characteristic time τ versus the ratio of mass-average molecular weights d
w
. Circles: treatment of

observations in torsional oscillation tests on LLDPE. Solid line: approximation of the experimental
data by Eq. (4) with τ0 = 5.94 and τ1 = -9.19 

Fig. 13 The characteristic time τ versus the ratio of mass-average molecular weights d
w
. Circles: treatment of

observations in torsional oscillation tests on iPP. Solid line: approximation of the experimental data by
Eq. (4) with τ0 = -2.95 and τ1 = 3.06 
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exponentially increases with Mw for iPP. The characteristic time τ for iPP substantially exceeds that

for LLDPE, which explains the difference between the shapes of the curves depicted in Fig. 3, on

the one hand, and in Figs. 6 and 9, on the other.

3.2 Constitutive equations 

Our aim now is to approximate the experimental data for storage and loss moduli of the melts

annealed at various temperatures Ta for various amounts of time ta. For this purpose, we derive

constitutive equations for the viscoelastic response of a polymer melt at three-dimensional deformations

with small strains, simplify these equations for steady shear oscillations, and find adjustable parameters

in the stress-strain relations by matching the observations depicted in Figs. 1, 2, 4, 5, 7 and 8. 

Our analysis is based on the assumption that the characteristic time for thermal degradation (of the

order of a few hours) substantially exceeds that for relaxation of stresses in a polymer melt (of the order

of a few seconds), which implies that degradation of the melts during the rheological tests is disregarded. 

A polymer melt is modelled as an equivalent network of strands bridged by temporary junctions

(entanglements and physical cross-links whose life-times do not exceed the characteristic time of the

rheological tests). A strand whose ends are linked to contiguous junctions is treated as an active

one. When an end of an active strand separates from a junction, the strand is transformed into the

dangling state. When a free end of a dangling strand captures a nearby junction, the strand returns

into the active state. Separation of active strands from their junctions and merging of dangling

strands with the network occur at random times when the strands are excited by thermal

fluctuations. According to the theory of thermally-activated processes, the rate of detachment of

strands from temporary junctions  is governed by the equation 

,

where  is the attempt rate (the number of separation events per strand per unit time), kB is

Boltzmann's constant, T is the absolute temperature, and  is the activation energy for

separation of an active strand. The coefficient  is independent of the activation energy  and is

determined by the current temperature T only. Confining ourselves to isothermal processes at a

reference temperature Tref and introducing the dimensionless activation energy , we

present the Eyring equation in the form 

. (5)

With reference to (Drozdov 2003), we assume that different junctions are characterized by

different dimensionless activation energies v. The distribution of active strands in a transient

network is determined by the number of active strands per unit mass Na and the distribution

function p(v). The quantity NaP(v)dv equals the number of active strands per unit mass linked to

junctions with the dimensionless activation energies u belonging to the interval [v, v + dv].

Separation of active strands from temporary junctions and merging of dangling strands with the

network are entirely described by the function n(t, τ, v) that equals the number (per unit mass) of

active strands at time t ≥ 0 linked to temporary junctions with activation energy v which have last
merged with the network before instant .

The quantity n(t, t, v) equals the number of active strands (per unit mass) with the activation

energy v at time t, 

Γ

Γ Γ0

v

kBT
--------–⎝ ⎠

⎛ ⎞exp=

Γ0

v 0≥
Γ0 v

v v kBT
ref( )⁄=

Γ v( ) Γ0 v–( )exp=

τ 0 t,[ ]∈
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. (6)

The function

(7)

determines the rate of reformation for dangling chains: the amount  equals the number of

dangling strands (per unit mass) that merge with temporary junctions with activation energy v

within the interval [τ,τ + dτ]. The quantity 

is the number of these strands that have not separated from their junctions during the interval [τ, t].

The amount 

is the number of active strands (per unit mass) that detach (for the first time) from the network

within the interval [t, t + dt], while the quantity

equals the number of strands (per unit mass) that have last merged with the network within the

interval [τ, τ + dτ] and separate from the network (for the first time after their attachment) during

the interval [t, t + dt]. 

The rate of detachment  is defined as the ratio of the number of active strands that separate from

temporary junctions per unit time to the total number of active strands. Applying this definition to

active strands that were connected with the network at the initial instant t = 0, and to those that merged

with the network within the interval [τ,τ + dτ], we arrive at the differential equations 

. (8)

Integration of Eq. (8) with initial conditions Eqs. (6) (where we set t=0) and (7) implies that 

. (9)

To exclude the function γ (t,v) from Eq. (9), we use the identity

. (10)

Substitution of expressions Eqs. (6) and (9) into Eq. (10) results in 

.

The solution of this equation reads . Combining this expression with Eq. (9),
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we find that 

(11)

We adopt the conventional assumptions that (1) the excluded-volume effect and other multi-chain

effects are screened for individual strands by surrounding macromolecules, (2) the energy of

interaction between strands can be taken into account with the help of the incompressibility

condition and (3) thermal oscillations of junctions can be disregarded, and the strain tensor for the

motion of junctions at the microlevel coincides with the strain tensor for macro-deformation. 

At isothermal deformation with small strains, a strand is treated as an isotropic incompressible

medium. The strain energy of an active strand w0 is determined by the conventional formula 

,

where µ is an average elastic modulus of a strand,  is the strain tensor for transition from the

reference (stress-free) state of the strand to its deformed state, the prime stands for the deviatoric

component of a tensor, and the colon denotes convolution of two tensors. 

According to the affinity hypothesis, the strain energy  of an active strand that has not

separated from the network during the interval [0, t] reads 

,

where  is the strain tensor for transition from the initial (stress-free) state of the network to its

deformed state at time t. With reference to (Lodge 1968), we suppose that stress in a dangling

strand totally relaxes before this strand captures a new junction. This implies that the stress-free

state of an active strand that merges with the network at time  coincides with the deformed

state of the network at that instant. The mechanical energy of an active strand that has last merged

with the network at time  is given by 

.

Multiplying the strain energy per strand by the number of active strands per unit mass and

summing the mechanical energies of active strands linked to temporary junctions with various

activation energies, we find the strain energy per unit mass of an equivalent network 

. (12)

Differentiating Eq. (12) with respect to time t and using Eqs. (9) to (11), we arrive at the formula 

,  (13)

Where

, (14)

. (15)
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For isothermal deformation of an incompressible medium, the Clausius-Duhem inequality reads

,

where ρ is density, Q is internal dissipation per unit mass, and  stands for the stress tensor.

Substitution of Eq. (13) into this equation implies that 

. (16)

As the function B(t) is non-negative, see Eq. (15), the dissipation inequality Eq. (16) is satisfied,

provided that the expression in the square brackets vanishes. This assertion together with Eq. (14)

results in the constitutive equation 

, (17)

where P(t) is pressure,  is the unit tensor, and  is an analog of the shear modulus.

Formula Eq. (17) describes the time-dependent response of an equivalent network at arbitrary three-

dimensional deformations with small strains. In what follows, we confine ourselves to shear tests

with 

,

where  is the shear strain, and εm (m = 1,2,3) are unit vectors of a Cartesian frame. According

to Eq. (17), the shear stress σ (t) is given by 

. (18)

It follows from Eq. (18) that in a shear oscillation test with

,

where  and ω are the amplitude and frequency of oscillations, and , the transient

complex modulus  is determined by the formula

,

where s = t – τ. The steady-state complex modulus  is given by

.

This equality together with Eq. (5) implies that the steady-state storage G'(ω) and loss G"(ω)

shear moduli read 

. (19)

To fit the experimental data, we adopt the random energy model (Ferry 1980) with the quasi-

Gaussian distribution function p(v),
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Î G ρµNa=

  
ˆ
t( )   t( )e1e2=

  t( )

σ t( ) 2G   t( )   τ( ) τ Γ v( ) Γ v( ) t τ–( )–[ ] p v( ) vd( )exp
0

∞

∫d
0

t

∫–
⎩ ⎭
⎨ ⎬
⎧ ⎫

=

  t( )   0 iωt( )exp=

  0 i 1–=

G∗ t ω,( ) σ t( ) 2  t( )( )⁄=

G∗ t ω,( ) G 1 Γ v( )p v( ) v Γ v( ) iω+( )s–[ ]exp sd
0

t

∫d
0

∞

∫–
⎩ ⎭
⎨ ⎬
⎧ ⎫

=

G∗ ω( ) limt ∞→
G∗ t ω,( )=

G∗ ω( ) G
iω

Γ v( ) iω+
----------------------p v( ) vd

0

∞

∫=

G' ω( ) G
ω

2

Γ0

2
2v–( ) ω

2
+exp

----------------------------------------p v( ) v  G″ ω( ),d
0

∞

∫ G
Γ0 v–( )ωexp

Γ0

2
2v–( ) ω

2
+exp

----------------------------------------p v( ) vd
0

∞

∫= =



260 A.D. Drozdov, A. Al-Mulla and R.K. Gupta

(20)

where V and  are adjustable parameters (the apparent average activation energy and the apparent

standard deviation of activation energies, respectively), and the constant p0 is found from the

normalization condition 

. (21)

Governing Eqs. (19) and (20) involve four material constants: (1) the instantaneous shear modulus

G, (2) the attempt rate for rearrangement of strands , (3) an analog of the average activation

energy for rearrangement of strands in a network V and (4) an analog of the standard deviation of

activation energies . When the dimensionless ratio ξ = / V is small compared to unity (it will

be shown later that this condition is satisfied for our experimental data), the number of these

parameters may be reduced to three. Assuming that 

, (22)

we can employ the first equality in Eq. (20) for an arbitrary (positive and negative) v. Replacing the

lower limit of integration in Eq. (19) by , we obtain 

,

, (23)

where . To exclude the attempt rate  from the consideration, we introduce the

notation 

,

where  is a given value (in what follows, we set , which corresponds to the

characteristic relaxation rate at the monomeric scale (Derrida 1980)), and v0 = In / .

Substituting this expression into Eq. (23) and introducing the new variable v' = v – v0, we find that 

,

,

where V' = V − v0. Omitting the primes for the sake of simplicity and replacing the lower limits of

integration by zero, we return to Eq. (19), where the unknown attempt rate  is replaced by .

This implies that each set of observations for the storage and loss shear moduli, G' (ω) and G" (ω),

is entirely determined by three quantities: G, V and . For a polymer melt subjected to thermal pre-

treatment, these parameters are functions of annealing temperature Ta and annealing time ta. 
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3.3 Fitting of observations 

The constants G, V and  are found by matching separately each set of observations for G'(ω)

and G"(ω) reported in Figs. 1, 2, 4, 5, 7 and 8. We fix some intervals [0, Vmax] and [0, max], where

the “best-fit” parameters V and  are assumed to be located, and divide these intervals into J

subintervals by the points V(i) = i∆V and (j) = j∆ (i, j = 1, ... , J-1) with ∆V = Vmax/J and ∆  =

max/J. For any pair {V
(i), (j)}, the coefficient p0 in Eq. (20) is calculated from Eq. (21), where the

integral is evaluated numerically by Simpson's method with 400 points and the step ∆v = 0.1. The
integrals in Eq. (19) are calculated by using the same technique. The shear modulus G is found by

the least-squares method from the condition of minimum of the function 

, 

where the sum is calculated over all experimental points ,  and  are the storage and

loss moduli measured in a test, and  and  are given by Eq. (19). The “best-fit”

parameters V and  are determined from the condition of minimum of the function F on the set

{V(i), (j)}. After finding the "best-fit" values V(i) and (j), this procedure is repeated twice for the

new intervals [V(i-1), V(i+1)] and [ (j-1), (j+1)], to ensure an acceptable accuracy of fitting. Figs. 1, 2,

4, 5, 7 and 8 demonstrate good agreement between the experimental data and the results of

numerical simulation. 

For each annealing time ta and annealing temperature Ta, we (1) find the ratio of mass-average

molecular weights dw from Eqs. (1) and (2) and the observations depicted in Figs. 3, 6 and 9, (2)

calculate the material constants G, V and  by matching the experimental data plotted in Figs. 1, 2,

4, 5, 7 and 8 and (3) present the quantities G, V and  as functions of dw. 

The instantaneous shear modulus G is plotted versus the ratio of mass-average molecular weights

dw in Fig. 15 for LLDPE and in Fig. 16 for iPP. The experimental data are fitted by the linear

equation 

, (24)

where the coefficients Gi(i = 0,1) are calculated by the least-squares technique. Figs. 15 and 16

show that Eq. (24) provides an acceptable approximation of the observations. To compare our

findings for LLDPE and iPP, we present Eq. (24) in the form

,

where  and . The coefficient  is calculated by using the

experimental data presented in Figs. 15 and 16. We find that  = 2.00 for LLDPE and  = 0.61

for iPP. This implies that the influence of molecular weight on the elastic modulus G is substantially

more pronounced for linear low-density polyethylene than for isotactic polypropylene. 

The dimensionless average activation energy for separation of strands from temporary junctions V

is plotted versus the ratio of mass-average molecular weights dw in Fig. 16 for LLDPE and in Fig.

17 for iPP. The experimental data are approximated by the constants, 

.  (25)

Figs. 17 and 18 show that the average activation energy for rearrangement of chains is

independent of molecular weight. It is worth noting that the values of V for two polymer melts
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cannot be compared directly with one another, because the rheological tests were performed at

various temperatures, while the same value of  was employed in the fitting procedure. 

The dimensionless standard deviation of activation energies  is depicted in Fig. 16 for LLDPE

and in Fig. 17 for iPP. The observations are matched by the linear function.

Γ *

Σ

Fig. 14 The instantaneous shear modulus G versus the ratio of mass-average molecular weights d
w
. Circles:

treatment of observations in torsional oscillation tests on LLDPE. Solid line: approximation of the
experimental data by Eq. (24) with G0 = -1.27 and G1 = 2.53 

Fig. 15 The shear modulus G versus the ratio of mass-average molecular weights d
w
. Symbols: treatment of

observations in torsional oscillation tests at T = 230oC on iPP annealed for t
a
 = 60 min at the

temperatures T
a
 = 250, 270, 290 and 310oC (unfilled circles) and annealed at the temperature T

a
 =

190oC for t
a
 = 0, 30, 60, 90 and 120 min (filled circles). Solid line: approximation of the experimental

data by Eq. (24) with G0 = 0.087 and G1 = 0.14 
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,  (26)

where the coefficients i (i = 0,1) are found by the least-squares algorithm. Figs. 16 and 17

demonstrate that the mass-average molecular weight affects the standard deviation of activation

energies of LLDPE and iPP in different ways. The parameter  is independent of dw for linear low-

density polyethylene, and  strongly grows with mass-average molecular weight for isotactic

polypropylene. 

According to Figs. 16 and 17, the ratio ξ does not exceed 0.2 for both polymer melts under

consideration, which implies that inequality Eq. (22) is satisfied with a reasonable level of accuracy.

4. Discussion

We begin with the analysis of material constants in Eq. (1) that describes the effect of frequency

of oscillations ω on the modulus of complex viscosity η. According to Figs. 10 and 11, the

exponent α decreases with molecular weight for both polymers. Changes in the function α(dw) are

rather modest: the values of α are located in the interval between 0.6 and 0.9 for LLDPE and in the

interval between 0.4 and 0.8 for iPP (not far away from the value α = 2/3 conventionally used in

matching observations). According to Eq. (3), the rate of decrease in α with dw for LLDPE exceeds

that for iPP, which means that the presence of highly branched chains in a polymer melt reduces the

influence of molecular weight on this quantity.

Figs. 12 and 13 reveal a substantial difference between the effects of molecular weight on the

characteristic time τ of two polyolefins. According to Fig. 13, τ increases with dw for polypropylene

melt. This behavior appears to be quite natural, as it resembles in some sense the influence on

mass-average molecular weight Mw on the zero-frequency viscosity η0, see Eq. (2). The increase in

Σ Σ0 Σ1dw+=

Σ

Σ
Σ

Fig. 16 The average activation energy V (unfilled circles) and the standard deviation of activation energies 
(filled circles) versus the ratio of mass-average molecular weights d

w
. Symbols: treatment of

observations in torsional oscillation tests on LLDPE. Solid lines: approximation of the experimental
data by Eqs. (25) and (26) with V0 = 11.42, 0= 2.38 and 1= 0 

Σ

Σ Σ
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T with molecular weight observed for iPP is also in agreement with the reptation concept that

predicts a similar behavior (Doi 1986).

Fig. 12 shows that the characteristic time T strongly decreases with Mw for polyethylene melt. The

scatter of the experimental data in Fig. 13 is relatively small. Deviations of the observations

depicted in Fig. 12 from their approximation by Eq. (3) are a bit larger, but even they are too small

to suppose that other characteristics of molecular weight (like, for example, the polydispersity index

(Carrot 1996)) may noticeably affect τ. 

To provide some explanation for the unusual decrease in the characteristic time of LLDPE with

molecular weight, we recall that the growth of relaxation time with molecular weight is

conventionally attributed to curvilinear diffusion of a characteristic chain along a tube formed by

surrounding macromolecules (Doi 1986). The latter implies that the larger the average length of a

chain is, the higher is the disengagement time (the time necessary for the chain to leave the home

tube). This conclusion, however, remains true, provided that the average radius of the tube is

unaffected by changes in molecular weight. In our recent study on the kinetics of thermal

degradation ((Drozdov 2003), it was demonstrated that the evolution of molecular weight driven by

the degradation process may be adequately described as a combination of two processes: binary

scission (fragmentation) of chains, and detachment and subsequent diffusion and evaporation

(annihilation) of side-groups and short branches. It is natural to suppose that for a polymer melt

with long-branched chains (iPP), the annihilation process weakly affects the radius of a tube to

which the characteristic chain is confined, because this radius is mainly determined by the

architecture of long branches that prevent chains to shrink. On the contrary, annihilation of side-

groups and short branches in a network of short-branched chains (LLDPE) should result in a

substantial decrease in the radius of a tube, and, as a consequence, in a noticeable increase of the

reptation time, in agreement with the observations depicted in Fig. 12. 

To add some quantitative estimates to this qualitative description, we determine the characteristic

Fig. 17 The average activation energy V (unfilled circles) and the standard deviation of activation energies 
(filled circles) versus the ratio of mass-average molecular weights d

w
. Symbols: treatment of

observations in torsional oscillation tests on iPP. Solid lines: approximation of the experimental data
by Eqs. (25) and (26) with V0 = 15.88, 0= 1.37 and 1= 1.39 
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time T by the conventional formula (Drozdov 2003)

, (27)

where Mn is the number-average molecular weight and Me is the molecular weight between

entanglements. It follows from Eq. (27) that T can increase with a decrease in molecular weight,

provided that the molecular weight between entanglements Me grows with the number average

molecular weight Mn rather rapidly, 

, (28)

where .

Figs. 14 and 15 reveal that the elastic modulus G linearly increases with mass-average molecular

weight. This conclusion is in agreement with the classical theory of rubber elasticity (Ferry 1980),

according to which the shear modulus is proportional to the molecular weight between entanglements

Me, which, in turn, grows to molecular weight. It is worth noting that the influence of dw on G is

more pronounced for LLDPE than for iPP. This conclusion seems rather natural, because

annihilation of side-groups and short branches at thermal degradation of polyethylene melt strongly

enhances disentanglement of chains. It is also in accord with estimate Eq. (28), which implies that

the molecular weight between entanglements of LLDPE increases more rapidly with molecular

weight than that of iPP. 

Figs. 16 and 17 show that the average activation energy for separation of strands from temporary

junctions V is not affected by molecular weight. This finding may be treated as an indirect

confirmation of the model, because the energy V characterizes local interactions between two

entangled chains which are not affected by their lengths. 

According to Figs. 16 and 17, the effect of molecular weight on the standard deviation of

activation energies  of LLDPE and iPP is quite different. For linear low-density polyethylene, 

remains independent of mass-average molecular weight, whereas for isotactic polypropylene, 

linearly grows with dw. This result seems natural as well. Indeed, it follows from Eq. (20) that 

serves as a measure of disorder in the distribution of activation energies that reflects different

strengths of interaction between strands in an equivalent network. For a network of linear chains

with short branches (LLDPE), fragmentation of chains induced by thermal degradation does not

cause substantial changes in the strength of interaction, which implies that  remains constant. On

the contrary, for a network of highly branched chains (iPP), thermal degradation induces

fragmentation of chains at the branching points, which implies that the content of junctions with

high energies of interaction is reduced, and, as a consequence, the width of the distribution of

activation energies decreases, in accord with the observations presented in Fig. 17. 

5. Conclusions

Two series of torsional oscillation tests with small strains have been performed on linear low

density polyethylene at the temperature T = 140oC and isotactic polypropylene at T = 230oC. Prior

to rheological testing, specimens were annealed at various temperatures Ta (from 180 to 310
oC) for
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various amounts of time ta ranging from 30 to 120 min. Thermal treatment induced thermal

degradation of samples observed as a pronounced decrease in their mass average molecular weight

with exposure time ta. 

A constitutive model has been developed for the viscoelastic response of a polymer melt at

isothermal three-dimensional deformations with small strains. The melt is treated as an equivalent

transient network of strands bridged by temporary junctions. Its time-dependent behavior is modeled

as separation of active strands from their junctions and attachment of dangling strands to the

network. The rearrangement events occur at random times, as appropriate strands are thermally

activated. 

Stress-strain relations for an equivalent heterogeneous network of strands (where different

junctions have different activation energies for rearrangement of strands) have been derived by

using the laws of thermodynamics. The constitutive equations involve three material parameters that

are determined by matching the experimental data for the storage and loss moduli as functions of

frequency of oscillations. Fair agreement is demonstrated between the observations and the results

of numerical simulation. 

The following conclusions are drawn; The characteristic time for relaxation T decreases with

molecular weight for LLDPE and increases for iPP. For both polymers under consideration, the

average activation energy for rearrangement of strands V is independent of molecular weight. The

shear modulus G linearly grow with mass-average molecular weight Mw. The standard, deviation of

activation energies  is independent of mass-average molecular weight for LLDPE and linearly

grows with Mw for iPP. 
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