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Abstract.  Two different model selection indices, the Akaike information criterion (AIC) and the 
coefficient of determination (R2), are used to discriminate competing isotherm equations for aqueous 
pollutant removal systems. The former takes into account model accuracy and complexity while the latter 
considers model accuracy only. The five types of isotherm shape in the Brunauer-Deming-Deming-Teller 
(BDDT) classification are considered. Sorption equilibrium data taken from the literature were correlated 
using isotherm equations with fitting parameters ranging from two to five. For the isotherm shapes of types I 
(favorable) and III (unfavorable), the AIC favors two-parameter equations which can easily track these 
simple isotherm shapes with high accuracy. The R2 indicator by contrast recommends isotherm equations 
with more than two parameters which can provide marginally better fits than two-parameter equations. To 
correlate the more intricate shapes of types II (multilayer), IV (two-plateau) and V (S-shaped) isotherms, 
both indices favor isotherm equations with more than two parameters. 
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1. Introduction 

 
Sorption-based technologies are now widely used as a key method to remove trace quantities of 

toxic, non-biodegradable contaminants from aqueous streams. For these applications, a key task is 
to characterize the equilibrium behavior of a given contaminant-sorbent system, usually by using 
the well-established batch technique. The resultant data describe the equilibrium relationship 
between the uptake concentration in the sorbent phase and the residual concentration in the liquid 
phase, which is usually a function of various environmental factors such as pH and temperature. 
To transform the experimentally measured equilibrium relationship into a practical form, isotherm 
equations are commonly used to correlate the discrete data points. The calibrated isotherm 
equations may be used to compare different sorbents on a quantitative basis, elucidate mechanistic 
relevance or used as part of a process model for design and optimization studies. 

A multitude of isotherm equations of varying complexity, especially for single contaminant 
systems, may be used to correlate measured sorption equilibrium data. Most of these isotherm 
equations have their origins in the gas sorption literature (Do 1998). To test the correlative ability 
of rival isotherm equations, a common practice is to use some form of goodness-of-fit measures. 
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For example, Maurya and Mittal (2006) tested 16 isotherm equations with different numbers of 
adjustable parameters in the correlation of dye sorption on fungal sorbents and isotherm 
comparisons were based on indices such as the correlation coefficient and t-test. Hamdaoui and 
Naffrechoux (2007) presented a similar study in which 13 isotherms with fitting parameters 
ranging from three to five were tested. Yet another two studies in a similar vein fitted 21 isotherm 
equations to the equilibrium data of heavy metal sorption on seaweed sorbents (Basha and Jha 
2008, Basha et al. 2008). The isotherms with adjustable parameters ranging from one to five were 
compared using the correlation coefficient, sum of squared errors, standard error and F-ratio. In 
general, these studies found that the best isotherm equations tended to be those with a high number 
of fitting parameters. This finding is however trivial because a model can always be made to fit the 
data better by adding complications. For example, adding an adjustable parameter to an isotherm 
equation will almost always improve fit to some degree. Ranking competing isotherm equations 
with different numbers of fitting parameters solely in terms of goodness-of-fit measures is 
therefore a simplistic approach. 

Several statistical tests that address the tradeoff between gain in fit and addition of parameters 
have been developed in a branch of statistics called model selection (Burnham and Anderson 2002, 
Motulsky and Christopoulos 2004). For example, the Akaike information criterion (AIC) is a 
commonly implemented test in several fields of science and engineering. The AIC, first developed 
in information theory in the 1970’s (Akaike 1974), is a model discrimination technique that 
considers both model accuracy and complexity. Recently, an increasing number of studies have 
recommended or employed the AIC test to discriminate rival isotherm equations for a variety of 
aqueous contaminant removal systems (Bolster and Hornberger 2007, Matott et al. 2009, Zamil et 
al. 2009, El-Khaiary and Malash 2011, Akpa and Unuabonah 2011, Kah et al. 2011, Bianchi 
Janetti et al. 2012, Çoruh and Geyikçi, 2012, Marešová et al. 2012, Wang 2012, Copello et al. 
2013). However, the experimental isotherms reported in these studies are largely of the favorable 
or convex type, which can be adequately correlated by using the popular Langmuir and Freundlich 
isotherm equations or their variants. 

This contribution aims at applying for the first time the AIC test to the discrimination of 
isotherm equations for the five types of isotherm shape described in the Brunauer-Deming- 
Deming-Teller (BDDT) classification. Besides the ubiquitous favorable isotherm shape, the other 
four types of isotherm shape in the BDDT classification (unfavorable, multilayer, two-plateau and 
S-shaped) have been reported for some aqueous contaminant removal systems. The analysis will 
be illustrated with experimental data taken from the literature. Each type of isotherm shape will be 
correlated with a selection of rival isotherm equations with varying numbers of parameters and 
ranked according to the AIC test as well as a goodness-of-fit measure based on the coefficient of 
determination. 
 
 
2. Sorption isotherms 

 
2.1 Classification of isotherm shapes 
 
In 1940, Brunauer et al. (1940) introduced a systematic scheme to classify sorption isotherms 

for gas-solid equilibria. This identification, referred to as the BDDT classification, divides 
experimentally observed sorption isotherms into five classes, as illustrated in Fig. 1. A modern 
IUPAC classification of sorption isotherms is based on the BDDT classification (Sing et al. 1985). 
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Fig. 1 Isotherm shapes in the BDDT classification 
 
 
Table 1 Summary of the considered isotherm equations 
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a Langmuir (1918); b Czinkota et al. (2002), Konda et al. (2002); c Brunauer et al. (1938), Gritti et al. (2002); 
d Freundlich (1926); e Sips (1948); f Fritz and Schlunder (1974); g Brunauer et al. (1940); h Jovanović (1969); 
i Li (1985) 
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An alternative classification scheme suggested by Giles et al. (1974) divides sorption isotherms 
into four main types based on their initial slopes and curvatures. These curves are called the high 
affinity (H) isotherm, Langmuir (L) isotherm, constant partition (C) isotherm, and sigmoidal- 
shaped (S) isotherm (Hinz 2011). In the BDDT classification of sorption isotherms for physical 
adsorption of gases (Fig. 1), types I, II, and IV curves correspond to ‘favorable’ sorption isotherms 
while types III and V represent ‘unfavorable’ isotherms at low concentrations. Interestingly, 
examples of all five types of sorption isotherms have been reported for liquid-solid systems of 
contaminant removal. 

 
2.2 Classification of isotherm equations 
 
Although there are only five major classes of isotherm shape in the BDDT classification, 

numerous theoretical and empirical isotherm equations for data fitting abound in the literature. As 
noted earlier, as many as 21 isotherm equations were used to fit the equilibrium data of metal 
sorption on seaweed sorbents (Basha et al. 2008, Basha and Jha 2008). Hinz (2011) pointed out 
that the mathematical forms of most of the isotherm equations can be classified into three major 
classes: rational, power law, and transcendental. Listed in Table 1 are the isotherm equations tested 
in this study which are classified according to Hinz (2011). The selected isotherm equations have 
fitting parameters that range from two to five. Virtually all the equations in Table 1 can fit the type 
I isotherm shape while some have been formulated to fit a particular type of isotherm shape. In 
Table 1, q is the sorbed concentration in equilibrium with the solution concentration C. 

 
 

3. Parameter estimation 
 

Optimal parameter estimates were obtained by fitting the nonlinear isotherm equations in Table 
1 to equilibrium data taken from the literature. In this work a genetic algorithm based on a scheme 
with a floating-point representation was used as the parameter estimation method. The genetic 
algorithm optimization method is a type of stochastic global optimization method based on an 
iterative procedure that mimics the process of biological evolution. The genetic algorithm method 
seeks to minimize the sum of the squared errors (SSE) between measured and calculated q values 
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where m is the number of observations, and qexp,j and qcal,j are, respectively, the measured and 
model-calculated values for observation j. 
 
 

4. Criteria for isotherm discrimination 
 
4.1 Coefficient of determination 

 

The following coefficient of determination (R2) is used as an indicator of goodness-of-fit 
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where q̅exp is the mean of measured values and all other variables are as defined above. An R2 of 1 
indicates a perfect fit to the data. Rival models may be ranked according to the R2 test statistics, 
with the one having the highest R2 being the best. When the sample size is small compared to the 
number of parameters, one should use a more conservative statistic to compensate for possible bias 
to parameter-rich models. Ranking candidate models solely in terms of the R2 test is a simplistic 
approach because it does not consider model complexity. We note, in passing, that another 
definition of R2, called adjusted R2, may be used to compensate for possible bias to parameter-rich 
models 
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where m is the number of observations and p is the number of fitting parameters. 

 
4.2 Akaike information criterion 
 
The AIC test is a quantitative way to rank competing models with different numbers of 

adjustable parameters and identify the model that is most justified by the data at hand. The AIC 
provides an implementation of Occam's razor, in which parsimony or simplicity is balanced 
against goodness-of-fit. For small numbers of data points or sample sizes, the AIC takes on the 
following form (Hurvich and Tsai 1989, Burnham and Anderson 2002, Motulsky and 
Christopoulos 2004) 
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where AICc stands for corrected AIC for small sample size and p, m and SSE are as defined in Eqs. 
(10) and (12). The AICc is used for model discrimination when the sample size is small, i.e., when 
m/p < 40 (Burnham and Anderson 2002). To apply Eq. (13), m – p must be  3 although Bolster 
and Hornberger (2007) recommend m – p  5 to ensure meaningful model comparison. In Eq. (13) 
the first term measures fit, while the second term penalizes complex models, i.e., models with 
more adjustable parameters. The number of adjustable parameters is thus considered as a measure 
of model complexity in the AICc formula. Given a data set, multiple models with different 
numbers of parameters may be ranked according to their AICc, with the one producing the lowest 
value being the best. The AICc test is a statistically sound procedure for model discrimination and 
offers a valuable alternative to traditional goodness-of-fit measures. 

Strictly speaking, the AICc expression is not a valid equation because the first term on the right 
of Eq. (13) has the units of SSE which are adsorbed concentration squared while the second term 
is dimensionless (Motulsky and Christopoulos 2004). The numerical value of AICc is thus 
dependent on the units of SSE. The effect of SSE units vanishes when a model is compared to the 
best model within a cohort of candidate models based on the difference in their AICc values (Δi), 
as follows (Burnham and Anderson 2002, Motulsky and Christopoulos 2004) 
 

minc,c, AICAIC  ii                          (14) 
 
where i is an index corresponding to the number of models, AICc,i is the AICc value for model i 
and AICc,min is the AICc value of the model with the lowest AICc value calculated from Eq. (13). 
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As a rule of thumb, a Δi < 2 indicates substantial support from the data for model i, 3 < Δi < 7 
suggests weak support, and a Δi > 10 suggests model i receives essentially no support (Burnham 
and Anderson 2002). Additionally, these Δi values can be used to compute another measure termed 
the Akaike weight. For a set of R competing models, the Akaike weight for model i (wi) is 
calculated as (Burnham and Anderson 2002, Motulsky and Christopoulos 2004) 
 

 
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

R

r r

i
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1
5.0exp
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wi can be interpreted as the probability that model i is the best model given the data at hand and the 
chosen set of competing models. 

 
 

5. Results and discussion 
 
Using data taken from the literature, we compare the ability of rival isotherm equations with 

different numbers of parameters to fit the five types of isotherm shape in the BDDT classification. 
Given the requirement of m – p  3 of the AICc formula, an important consideration in the selection 
of literature data is the number of data points reported in a data set. The results of this work are 
conveniently split into five groups according to the BDDT classification. We discuss these 
sequentially. 

 
5.1 Type I isotherm shape 
 
The shape of this isotherm is convex upward (cf. Fig. 1). This isotherm shape is the most 

ubiquitous one reported in the literature of contaminant sorption in aqueous systems. Countless 
systems involving the sorption of contaminants such as heavy metals and dyes to a broad cohort of 
sorbents exhibit this type of equilibrium relationship. For example, this type of favorable 
isotherms can be found in the work of Barka et al. (2009) who investigated the sorption of 
methylene blue and basic yellow 28 on natural phosphate rock. The equilibrium data of the two 
dyes, shown in Fig. 2, exhibit similar saturation capacities but vastly different isotherm slopes. The 
slope of the methylene blue sorption curve is much steeper than that of the basic yellow 28 
sorption curve. Indeed, the methylene blue isotherm is highly favorable and may thus be 
approximated by a rectangular isotherm. Here, we will fit some of the isotherm equations listed in 
Table 1 to the two data sets and use the R2 and AICc tests as guides to select the best isotherm 
equation for each data set. 

Although most of the isotherm equations in Table 1 are able to describe the type I isotherm 
shape, we restrict our interest to the following three rational and power-law equations: the 
two-parameter Langmuir (Eq. (1) in Table 1), the three-parameter Langmuir-Freundlich (Eq. (5) in 
Table 1), and the four-parameter Fritz-Schlunder (Eq. (6) in Table 1). For the two data sets, the 
derived parameters and associated R2 and AICc scores are summarized in Tables A1-A2 of 
Appendix A. To compare fits in visual terms, parity plots of the calculated q values versus 
observed q values are given in Fig. 3. For the methylene blue data, Fig. 3(a) shows that the three 
equations provide satisfactory fits to the data points in the plateau region, as judged by the 
closeness of the calculated q values to the 1:1 line. However, all three equations performed rather 
poorly in tracking the data points in the ascending part of the sorption curve. The calculated q 
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Fig. 2 Type I isotherms of the sorption of methylene blue and basic yellow 28 on natural 

phosphate rock (Data of Barka et al. (2009)) 

 

 

(a) Comparison between the methylene blue 
data of Fig. 2 and q values calculated from 
the Langmuir, Langmuir-Freundlich and 
Fritz-Schlunder equations with the para- 
meters given in Table A1 

(b) Comparison between the Basic Yellow 28 
data of Fig. 2 and q values calculated from 
the Langmuir, Langmuir-Freundlich and 
Fritz-Schlunder equations with the para- 
meters given in Table A2 

 
Fig. 3 Type I isotherms of the sorption of methylene blue and basic yellow 28 on natural 

phosphate rock (Data of Barka et al. (2009)) 

 
 
values lie very close to or beyond the lines of ± 10% errors, revealing limitations of the rational or 
power-law equations to correlate this type of highly favorable sorption curve. In contrast, Fig. 3(b) 
shows that all three isotherm equations provide excellent fits to the entire range of the basic yellow 
28 data set. The moderate steepness of the isotherm slope poses no significant challenge to the 
correlative power of the isotherm equations. 

For the methylene blue data, Table A1 indicates that the R2 score of the four-parameter 
Fritz-Schlunder fit is 3.5% and 0.9% higher than the respective R2 score of the two-parameter 
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Langmuir and three-parameter Langmuir–Freundlich fits. This indicates that the four-parameter 
Fritz-Schlunder equation with the highest R2 score is the best isotherm for this data set. As for the 
basic yellow 28 data, although differences in the R2 scores of the three fits appear trivial (cf. Table 
A2), the four-parameter Fritz-Schlunder equation still comes out on top. These results confirm the 
general perception that a model can always be made to fit the data better by adding more 
parameters and that the R2 approach tends to select a parameter-rich model as the best one among a 
group of competing models. 

Next, we assess the relative performance of the three equations in terms of AICc statistics. 
Table A1 indicates that the Langmuir equation with the lowest AICc score (‒6.28) is well supported 
by the methylene blue data compared to the other two equations. The three-parameter 
Langmuir-Freundlich equation with a Δi of 3.41 and a wi of 0.15 receives some limited support 
from the data. The four-parameter Fritz-Schlunder with a Δi > 10 and a wi of zero receives no 
support from the data. Likewise, the Langmuir equation is well supported by the basic yellow 28 
data whereas the Langmuir-Freundlich and Fritz-Schlunder equations with Δi values > 10 receive 
no support from the data. It is evident that the improvement in fit provided by the parameter-rich 
Fritz-Schlunder equation, especially in the methylene blue case, is deemed by the AICc test to be 
insufficient to justify the use of four fitting parameters. 

Given that the R2 and AICc tests differ in their selection of the best isotherm equation for the 
dye data sets, which approach should we follow? If the aim of correlating the dye data is to find 
the best-fit isotherm equation, it is obvious that one should opt for the four-parameter 
Fritz-Schlunder equation recommended by the R2 approach. However, because the R2 indicator 
tends to favor parameter-rich models, one should be mindful of the issue of parameter 
inter-correlation in such models. Note that parameter correlation is common in power-law models; 
it is even present in the simple two-parameter Freundlich isotherm (Schwaab and Pinto 2008). 
When multiple parameters are to be simultaneously identified, it is important to assess the degree 
of correlation between the parameters being estimated. This is because strong correlations may 
result in non-unique estimates of each parameter or hamper convergence when gradient-based 
regression methods are used for parameter identification. 

To explore the possible presence of parameter correlation in the four-parameter Fritz-Schlunder 
equation, we used a rapidly converging regression method based on a combination of 
Gauss-Newton and Levenberg-Marquardt algorithms for parameter estimation. We found that the 
nonlinear regression method required initial parameter guesses that were in the vicinity of the 
optimal values determined by the genetic algorithm method in order to avoid convergence 
difficulties. The regression method was especially sensitive to the starting values of 1 and 2. 
Note that the genetic algorithm makes use of a population of individuals (parameter estimates), so 
good initial guesses are not required. The convergence problem of the gradient-based regression 
method suggests that the parameters in the Fritz-Schlunder equation are closely correlated. 

One means of assessing the degree of parameter correlation is to look at the correlation matrix 
of the derived parameters (Bolster and Hornberger 2007). First, the covariance matrix of the 
derived parameters (cov) is estimated from the Jacobian matrix, as follows 
 

  1SSE 











 JJ T

pm
cov                            (16) 

 

where J and JT are the Jacobian matrix and its transpose, respectively. The relation between a 
coefficient of the covariance matrix (θij) and a coefficient of the correlation matrix (θ*

ij) is given by 
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jjiiijij  *                              (17) 
 

The resulting correlation matrix will contain 1’s in the diagonal, reflecting that each parameter 
is perfectly correlated with itself. The off-diagonals are filled with θ*

ij between –1 and +1. A θ*
ij 

with value near –1 or +1 reflects highly correlated parameter estimates, and a value close or equal 
to 0 indicates that parameters i and j are not correlated. The correlation matrix containing 
correlation coefficients calculated at the optimal values of the four Fritz-Schlunder parameters is 
given below. 

 α1 1 α2 2

α1 1    
1 0.989 1   
α2 0.000 0.987 1  
2 0.984 0.999 0.981 1 

symmetric

 α1 1 α2 2

α1 1    
1 0.989 1   
α2 0.000 0.987 1  
2 0.984 0.999 0.981 1 

symmetric

 
 

The above correlation matrix clearly shows that, with the exception of the α1-α2 pair, the four 
parameters are strongly correlated. In particular, 1 and 2 with a correlation coefficient of 0.999 
are highly interrelated. As a result, without knowing the genetic algorithm-derived parameter 
values, simultaneous identification of the Fritz-Schlunder parameters using gradient-based 
regression methods will require a careful search for a set of initial parameter guesses in order to 
attain convergence and/or unique estimates. 

If the aim of correlating the dye data is to obtain an isotherm equation for use as part of a 
dynamic process model (e.g., fixed bed model) for design or optimization studies, one should 
follow the AICc recommendation and opt for the two-parameter Langmuir equation. For this 
purpose, simpler is better because in dynamic process studies, using a simple isotherm equation 
reduces computational requirements considerably. 

Additionally, there is evidence that the performance of a dynamic process model is not 
particularly sensitive to the type of isotherm equation used. For example, simulation results 
obtained from a dynamic model for a membrane-based biosorption system were found to be 
insensitive to the type of isotherm equation used (Pagnanelli et al. 2003). Lua and Yang (2009) 
also reported that different types of nonlinear isotherms used in a kinetic model of SO2 sorption on 
activated carbon exerted little effect on the overall particle uptake kinetics. Consequently, from a 
practical standpoint, no useful purpose is served in using an isotherm equation with more than two 
parameters to fit equilibrium data exhibiting the type I isotherm shape if the resulting equation is 
to be embedded in a dynamic process model. 

 
5.2 Type II isotherm shape 

 
This class of isotherm shape is found in gas-solid systems that display multilayer adsorption 

behavior. The shape of these isotherms is favorable at low concentrations. At high concentrations 
the isotherms have an inflection point due to a change from a plateau to an unfavorable shape (cf. 
Fig. 1). Examples of aqueous systems manifesting this type of isotherm shape include the sorption 
of phenolic compounds (Miller and Clump 1970, Edgehill and Lu 1998, Juang and Shiau 1999) 
and methyl tert-butyl ether (Ebadi et al. 2007) on a variety of sorbents. We chose the data set of 
Miller and Clump (1970) for analysis because it contains an unusually large number of data points. 
We fit the following isotherm equations to their data of phenol sorption on activated carbon: the 
two-parameter Langmuir (Eq. (1) in Table 1), the three-parameter BET (Eq. (3) in Table 1), the 
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three-parameter Jovanović (Eq. (8) in Table 1), and the four-parameter Li (Eq. (9) in Table 1). 
Note that the functional form of the Langmuir equation does not permit it to fit the type II isotherm 
shape. It is included here as an example of a misspecified model. 

The BET, Jovanović and Li equations are originally developed to fit type II isotherms of 
gas-solid systems. For example, the original BET equation for multilayer adsorption (Brunauer et 
al. 1938) has the form 

  SSS

Sm

PPbPPPP

PPbq
q




11
                      (18) 

 
where qm is the monolayer capacity, b is the adsorption-desorption equilibrium constant and P and 
PS are, respectively, the partial pressure and the saturation pressure of the adsorbate. Application 
of the BET equation to liquid-solid systems requires the following modifications (Gritti et al. 2002, 
Ebadi et al. 2009) 

LSLs bPbbbCP 1;;                       (19) 
 
where bS is the equilibrium constant for the first layer and bL is the equilibrium constant for 
subsequent layers. Substituting Eq. (19) in Eq. (18) leads to Eq. (3). 

The original Jovanović and Li equations require similar modifications before they can be 
applied to liquid-solid systems. The original Jovanović equation for multilayer adsorption 
(Jovanović 1969) is given by 
 

     SSm PPPPqq 21 expexp1                     (20) 
 

where 1 and 2 are two constants which describe adsorption in the first and in the second and 
higher layers, respectively. The parameter PS can be absorbed in the constants 1 and 2 
 

     PbPaqq JJm expexp1                        (21) 
 

where aJ = 1/PS and bJ = 2/PS. We obtain Eq. (8) by replacing P in Eq. (21) with C. 
The original Li equation for multilayer adsorption (Li 1985) is given by 
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where KL, b0 and M are constants with physical meanings. Eq. (9) is obtained when P and PS in Eq. 
(22) are replaced by C and 1/bL, respectively. 

The equilibrium data of Miller and Clump (1970) are shown in Fig. 4. It is evident that the data 
conform to the type II isotherm shape. Tabulated in Table A3 of Appendix A are the derived 
parameters obtained by fitting the four equations to the Fig. 4 data. The results of the model fits 
are grouped together in Fig. 4 (lines). It is obvious that the BET, Jovanović and Li equations can 
track the data well. The Langmuir equation, by contrast, performed poorly. The lack-of-fit 
displayed by the Langmuir equation is expected in that its functional form limits its correlative 
ability to the type I isotherm shape. With four parameters the Li equation provides the best fit to 
the data, as indicated by the highest R2 given in Table A3. The R2 score of the four-parameter Li fit 
is 3.2% and 4.5% higher than the respective R2 score of the three-parameter BET and Jovanović 
fits. The AICc statistics in Table A3 also suggest that the Li equation is well supported by the data 
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Fig. 4 Type II isotherm of the sorption of phenol on activated carbon showing comparison 

between the experimental trend and the theoretical curves calculated from the 
Langmuir, BET, Jovanović and Li equations with the parameters given in Table A3 
(Data of Miller and Clump (1970)) 

 

 
Fig. 5 Type III isotherm of the sorption of reactive yellow 125 on natural phosphate rock 

showing comparison between the experimental trend and the theoretical curves 
calculated from the Langmuir, Freundlich and Jovanović equations with the 
parameters given in Table A4 (Data of Barka et al. (2009)) 

 
 
and is superior to the BET and Jovanović equations. It is apparent that both the R2 indicator and 
the AICc test endorse the use of the four-parameter Li equation to fit the type II isotherm data of 
Miller and Clump. 

 
5.3 Type III isotherm shape 

 
This isotherm shape, depicted in Fig. 1, is termed unfavorable because there is essentially no 

sorption at low concentrations. Very few aqueous systems exhibiting the type III isotherm shape 
have been reported. This is understandable because such sorbents are useless for the removal of 
trace quantities of contaminants from wastewaters. Examples of this class of isotherms include the 
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sorption of phenolic compounds on fly ash (Akgerman and Zardkoohi 1996) and of a reactive dye 
on natural phosphate rock (Barka et al. 2009). The latter data set with more data points is analyzed 
here. Fig. 5 shows the sorption data of reactive yellow 125 on natural phosphate rock reported by 
Barka et al. (2009). Although there is an outlier, it can be seen that the sorption isotherm 
resembles a type III isotherm shape. We fit the two-parameter Langmuir (Eq. (1) in Table 1), 
two-parameter Freundlich (Eq. (4) in Table 1) and three-parameter Jovanović (Eq. (8) in Table 1) 
equations to the Fig. 5 data. As in the case of the type II data fits, the Langmuir fit is meant to 
illustrate the application of a misspecified model. 

The results of the model fits are grouped together in Fig. 5. From this figure, one may conclude 
that, with the exception of the obvious outlier, the data set is very well fitted by the Freundlich and 
Jovanović equations. The serious divergence of the Langmuir fit from the data is indicative of the 
limitations of its equation structure. The derived parameters and associated R2 and AICc scores are 
summarized in Table A4 of Appendix A. According to the R2 statistics, the three-parameter 
Jovanović equation provides a more accurate means of fitting the data as compared to the 
two-parameter Freundlich equation. However, the AICc statistics reveal that the improvement in fit 
is not sufficiently large enough to justify the use of three parameters to fit the data. Consequently, 
the AICc measure favors the use of the two-parameter Freundlich equation to describe this data set. 
It appears that two-parameter equations (e.g., Langmuir and Freundlich) are advocated by the AICc 
approach as the preferred models for fitting the relatively simple types I and III isotherm shapes. 

 
5.4 Type IV isotherm shape 
 
This isotherm shape is characterized by two plateaus (cf. Fig. 1). Although not common, this 

type of isotherm is increasingly being reported for aqueous systems involving the sorption of 
pesticides on soil (Czinkota et al. 2002, Konda et al. 2002) as well as the sorption of heavy metals 
on citrus peels (Schiewer and Patil 2008) and solid waste from olive oil production (Martín-Lara et 
al. 2009, Blázquez et al. 2010). To describe the shape of these isotherms, equations with specific 
functional forms are needed. For example, the somewhat complex BDDT equation (Eq. (7) in 
Table 1) can deal with this isotherm shape. Originally developed for gas-solids systems, the BDDT 
equation (Brunauer et al. 1940) is an extension of the famous BET equation and has the form 
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where g is a constant with physical meaning and X = P/PS. Using Eq. (19), Eq. (23) can be 
converted to Eq. (7) for liquid-solids systems. Another equation developed for the type IV 
isotherm shape is the so-called two-step Langmuir (Czinkota et al. 2002, Konda et al. 2002). This 
equation (Eq. (2) in Table 1) uses two inter-connected Langmuir equations to capture the type IV 
isotherm shape. 

We fit the BDDT (Eq. (7) in Table 1) and two-step Langmuir (Eq. (2) in Table 1) equations to 
the data of cadmium sorption on untreated lemon peels reported by Schiewer and Patil (2008). The 
Langmuir equation (Eq. (1) in Table 1) is also tested here. As before, it is used as an example of 
model misapplication. The fits are shown in Fig. 6(a). It is clearly seen in the figure that the 
Langmuir equation is unable to reproduce the isotherm shape whereas the BDDT and two-step 
Langmuir equations provide excellent fits to the data, the excellent fits coming at the expense of 
five adjustable parameters. These visual observations are reflected in the R2 statistics of the fits (cf. 
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Table A5 of Appendix A). On the basis of the R2 scores, the two-step Langmuir fit gives the best 
overall agreement with the data. 

The AICc statistics on the other hand indicate that the Langmuir equation is the best model for 
describing this particular data set. The excellent fits of the BDDT and two-step Langmuir 
equations, whose R2 scores are respectively 7.3% and 7.2% higher than that of the Langmuir 
equation, are rejected by the AICc test largely because they rely on five fitting parameters. It 
appears that the low AICc score of the Langmuir equation relative to those of the BDDT and 
two-Langmuir equations is attributable to two factors: (a) a fortuitous fit to a majority of the data 
points resulted in a low SSE and hence a small first term on the right side of the AICc formula, and 
(b) two fitting parameters, compared to five in the BDDT and two-Langmuir equations, led to a 
very small second term in the AICc formula. As such, the AICc approach is not a panacea as it can 
lead to a mistaken preference for the Langmuir equation which is clearly inappropriate for 
correlating the type IV isotherm shape. 

It should be noted that the genetic algorithm was unable to determine a unique value for the 
parameter b2 in the two-step Langmuir equation. The final value of b2 was found to vary with the 
upper limit used in the parameter estimation process. The b2 value given in Table A5 was obtained 
when the upper limit was set at 500. This problem is due in large part to a lack of data points in the 
region between the first and second plateaus. As can be seen in Fig. 6(a), the fit is characterized by 
a vertical line for this region as a result of a large b2. One way to circumvent the problem caused 
by b2 is to assume that the two Langmuir components of the two-step Langmuir equation have the 
same b, i.e., b1 = b2. This assumption effectively reduces the five-parameter two-step Langmuir 
equation to a four-parameter equation. As Fig. 6(b) shows, the modification provides an excellent 
fit to the data. All four parameters can now be uniquely determined. Listed in Table A6 of 
Appendix A is the R2 score for this new fit, which is slightly lower than the R2 score obtained 

 
 

 

(a) Comparison between the experimental trend 
and the theoretical curves calculated from 
the Langmuir, BDDT and two-step 
Langmuir equations with the parameters 
given in Table A5 

(b) Comparison between the experimental trend 
and the theoretical curve calculated from a 
modified form of the two-step Langmuir 
equation (b1 = b2) with the parameters given 
in Table A6 

 
Fig. 6 Type IV isotherm of the sorption of cadmium on untreated lemon peels (Data of 

Schiewer and Patil (2008)) 
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Fig. 7 Type V isotherm of the sorption of fluoride on MgAl-CO3 layered double hydroxides 

showing comparison between the experimental trend and the theoretical curves 
calculated from the Langmuir, Langmuir-Freundlich and Fritz-Schlunder equations with 
the parameters given in Table A7 (Data of Lv et al. (2007)) 

 
 
with the original equation. Nevertheless, it is still higher than the R2 scores for the BDDT and 
Langmuir equations. A bonus of this modification is that the Akaike scores now agree with the R2 
statistics, selecting the modified two-step Langmuir equation with four parameters as the best 
model (cf. Table A6). 

 
5.5 Type V isotherm shape 
 
As with the type III isotherm shape, this isotherm shape is unfavorable at low concentrations 

(cf. Fig. 1). This type of S-shaped isotherm seems to be rather rare for aqueous systems, a good 
example of which is the sorption of fluoride on MgAl-CO3 layered double hydroxides reported by 
Lv et al. (2007), as shown in Fig. 7. Isotherm models best suitable for correlating this isotherm 
shape are the power-law functions. Accordingly, we fit the three-parameter Langmuir-Freundlich 
(Eq. (5) in Table 1) and four-parameter Fritz-Schlunder (Eq. (6) in Table 1) equations to the Fig. 7 
data. As before, the Langmuir equation (Eq. (1) in Table 1) is used as an example of an 
inappropriate model fit. The derived parameters are summarized in Table A7 of Appendix A. As 
can be seen in Fig. 7, the data are well correlated by the two power-law equations, and, as 
expected, poorly fitted by the Langmuir equation. The Fritz-Schlunder equation with the highest 
R2 score delivers only slightly better fit than the Langmuir-Freundlich equation, but it has four 
fitting parameters. As a result, the AICc test favors the three-parameter Langmuir-Freundlich 
equation, as indicated by the Akaike scores in Table A7. 

 
 

6. Conclusions 
 
A comparison of the AICc and R2 indicators as guides in discriminating rival isotherm 

equations for the five types of isotherm shape in the BDDT classification is presented. The AICc 
measure is perceived as more appropriate due to its ability to tradeoff between goodness-of-fit and 
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model complexity. The findings from this work indicate that for the simple isotherm shapes of 
types I and III the AICc test will pick two-parameter equations while the R2 approach will favor 
equations with more than two parameters. For these two types of isotherms, according to the 
premise of the AICc test, any improvement in the quality of fit that can be obtained from equations 
with more than two parameters is marginal. Given that most of the aqueous contaminant removal 
systems reported in the literature exhibit the type I (favorable) isotherm shape, the AICc measure 
will recommend that their equilibrium data be interpreted in terms of the simple two-parameter 
Langmuir or Freundlich equation. For the more intricate isotherm shapes of types II, IV and V, 
both indices favor equations with more than two parameters. This is due to the fact that 
two-parameter equations are unable to track these isotherm shapes. As a result, equations with 
more than two parameters can provide significantly better fits, justifying the need for 
parameter-rich equations. 

As a final note, we present a caveat on using the AICc measure to discriminate rival isotherm 
equations for intricate isotherm shapes. It was shown that a fortuitous fit by the Langmuir equation 
to a majority of the data points of a type IV isotherm propelled the AICc measure to select it as the 
best model. Visual inspection of the fit revealed that the two-parameter Langmuir equation, 
originally intended as an example of a misspecified model, was unable to track the type IV 
isotherm shape. To avoid such pitfalls, one should ensure that the competing equations selected to 
interpret a complex isotherm shape have the correct functional form. 
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Appendix A 
 
Results of model fits to the five types of isotherm shape in the BDDT classification. 

 
Table A1 Results of model fits to type I isotherm of the sorption of methylene blue on natural phosphate 

rock 

Isotherm model Derived parameters R2 
Akaike measures 

AICc Δi wi 

Langmuir 7.23 a, 10.71 b 0.9299 –6.28 0.00 0.85 

Langmuir-Freundlich 6.99 a, 41.83 b, 1.64 c 0.9540 –2.87 3.41 0.15 

Fritz-Schlunder 814.53 d, 122.56 e, 2.02 f, 1.98 g 0.9621 7.39 13.67 0.00 
a qm (mg/g); b b (L/mg) or (L/mg)n; c n; d α1 (mg(1-β1)L β1)/g; e α2 (L/mg)β2; f 1; 

g 2 

 
Table A2 Results of model fits to type I isotherm of the sorption of basic yellow 28 on natural phosphate 

rock 

Isotherm model Derived parameters R2 
Akaike measures 

AICc Δi wi 

Langmuir 7.47 a, 0.91 b 0.9960 –19.99 0.00 1.00 

Langmuir-Freundlich 7.33 a, 0.93 b, 1.07 c 0.9965 –6.87 13.11 0.00 

Fritz-Schlunder 5.49 d, 0.56 e, 0.87 f, 0.96 g 0.9968 34.55 54.53 0.00 
a qm (mg/g); b b (L/mg) or (L/mg)n; c n; d α1 (mg(1-β1)L β1)/g; e α2 (L/mg)β2; f 1; 

g 2 

 
Table A3 Results of model fits to type II isotherm of the sorption of phenol on activated carbon 

Isotherm model Derived parameters R2 
Akaike measures 

AICc Δi wi 

Langmuir 1.48 a, 7.72 b 0.7357 –67.97 49.26 0.00 

BET 0.68 a, 83.20 c, 0.68 d 0.9617 –108.92 8.31 0.02 

Jovanović 0.57 a, 69.86 e, 1.20 f 0.9481 –101.80 15.42 0.00 

Li 1.73 g, 1.47 h, 1.10 i, 2.74 j 0.9920 –117.23 0.00 0.98 
a qm (mmol/g); b b, c bS, 

d bL, eaJ, 
f bJ (L/mmol); g KL (mmol/g); h b0, 

i bL (L/mmol); j M0 

 
Table A4 Results of model fits to type III isotherm of the sorption of reactive yellow 125 on natural 

phosphate rock 

Isotherm model Derived parameters R2 
Akaike measures 

AICc Δi wi 

Langmuir 252.94 a, 0.001 b 0.6258 20.78 15.24 0.00 

Freundlich 1.26E–5 c, 4.40 d 0.9576 5.54 0.00 1.00 

Jovanović 0.05 a, 0.76 e, 0.24 f 0.9725 16.52 10.98 0.00 
a qm (mg/g); b b (L/mg); c KF ((mg(1-n)Ln)/g); d n; e aJ, 

f bJ (L/mg) 
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Table A5 Results of model fits to type IV isotherm of the sorption of cadmium on untreated lemon peels 

Isotherm model Derived parameters R2 
Akaike measures 

AICc Δi wi 

Langmuir 1.20 a, 0.24 b 0.9298 –37.33 0.00 1.00 

BDDT 
0.113 a, 19.38 c, 0.14 d, 

655.57 e, 6.31 f 
0.9963 –20.56 16.77 0.00 

Two-step Langmuir 
0.22 g, 0.49 h, 3.69 i, 

490.64 j, 2.75 k 
0.9978 –25.26 12.07 0.00 

a qm (meq/g); b b, c bS, 
d bL (L/meq); e g; f n; g a1, 

h a2 (meq/g); i b1, 
j b2 (L/meq); k c2 (meq/L) 

 
Table A6 Results of model fits to type IV isotherm of the sorption of cadmium on untreated lemon peels 

Isotherm model Derived parameters R2 
Akaike measures 

AICc Δi wi 

Langmuir 1.20 a, 0.24 b 0.9298 –37.33 10.44 0.01 

BDDT 
0.113 a, 19.38 c, 0.14 d,  

655.57 e, 6.31 f 
0.9963 –20.56 27.21 0.00 

Two-step Langmuir 
(b1 = b2) 

0.22 g, 0.52 h, 4.01 i,j, 2.00 k 0.9974 –47.77 0.00 0.99 

a qm (meq/g); b b, c bS, 
d bL (L/meq); e g; f n; g a1, 

h a2 (meq/g); i b1, 
j b2 (L/meq); k c2 (meq/L) 

 
Table A7 Results of model fits to type V isotherm of the sorption of fluoride on MgAl-CO3 layered double 

hydroxides 

Isotherm model Derived parameters R2 
Akaike measures 

AICc Δi wi 

Langmuir 736.17 a, 0.02 b 0.9322 65.76 23.12 0.00 

Langmuir-Freundlich 320.72 a, 0.002 b, 2.50 c 0.9988 42.63 0.00 1.00 

Fritz-Schlunder 0.23 d, 0.002 e, 2.98 f, 2.80 g 0.9995 54.08 11.45 0.00 
a qm (mg/g); b b (L/mg) or (L/mg)n; c n; d α1 (mg(1-β1)L β1)/g; e α2 (L/mg)β2; f 1; 

g 2 
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